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ABSTRACT 

The prevalence of electronic health record (EHR) storage systems has created prodigious biomedical 

informatics opportunity. Automated machine learning methods are effective at analyzing such data and 

have become common tools for healthcare predictive modeling. Medical informatics researchers have 

investigated the potential of deep learning and classical models applied to emergent care scenarios. In 

particular, differential diagnosis (DDX) prediction for admitted patients has proven useful in reducing 

superfluous lab tests and improving inpatient triage decision-making.  *BICEPS is the current US military 

treatment route and emphasizes DDX by severity of combat stress reaction symptoms. Moreover, 

identification of high-risk mortality patients in extreme environments such as combat support hospitals 

is vitally important for cost-effective medical resources allocation. 

The Medical Information Mart for Intensive Care (MIMIC-III) is an openly available dataset developed by 

the MIT lab for computational physiology and comprises de-identified critical care inpatient data. The 

repository was utilized in our study, contains hospital patient laboratory measurements, pharmacologic 

prescriptions, diagnostic data and procedure event recordings. When considering adult patients and 

discounting admissions with ICU length of stay less than 24 hours, there were 37,787 unique admissions 

and 30,414 total patients.  

We examined the top 25 most frequent ICD-9 group-level disease specificities in MIMIC-III using a multi-

label classification model.  In-hospital mortality was modeled as a binary classification task with 4,155 

(13%) of the adult patient population expiring, from which 3,138 (75.5%) resided in the ICU setting. The 

metrics AUC, F1 score, sensitivity and specificity values measured prediction performance and were 

calculated for each disease label. 

The usage of ICD-9 group codes reduced feature dimensions from 14,567 to 942 and greatly improved 

distribution of patient diagnostic categories. Disease temporal patterns were captured by considering 

the 6 most frequently sampled vital signs and top 13 commonly sampled laboratory values.  Missing 

data was replaced at each time-stamp by a form of hot-deck imputation called “last observation carried 

forward”. Time-series raw hourly average values were converted into 5 summary features (mean, 

standard deviation, number of observations, min & max values). Patient demographic variables such as 

age, gender, marital status and ethnicity were also factored into the modeling.  

Choi et al showed that contextual embedding of medical data, diagnostic and procedural codes alone 

can predict future diagnoses with sensitivity as high as 0.79. We utilized an embedding technique called 

word2vec which allowed sparse representations of medical history to be transformed into dense word 

vectors. The mappings captured contextual information by treating each admission as a sentence and 

learning the most likely neighboring words in a sliding window fashion. 



Binary and multi-label classification was achieved via collapse models, which do not consider temporal 

information, as well as recurrent neural networks (RNN) with regularization, Softmax output layer 

activation together with categorical cross-entropy as the loss function. See result Table 1 & 2 below. 

DDX Model AUC / F1 Model AUC / F1 

Pathology Collapse  RNN  

Coronary Artery Disease MLP w/ x48 0.796 / 0.520 CNN w/x19+demo 0.792 / 0.480 

Atrial Fibrillation MLP w/ x48 0.745 / 0.400 LSTM w/x19+demo 0.768 / 0.341 

Acute Kidney Failure MLP w/ x48 0.885 / 0.505 CNN w/x19 0.862 / 0.485 

Type II Diabetes Mellitus MLP w/ x48 0.740 / 0.200 LSTM w/x19+demo 0.745 / 0.144 

Hyperlipidemia MLP w/ x48 0.750 / 0.170 CNN w/x19+demo 0.748 / 0.173 

AUC – Area under receiver operating characteristic curve; F1 – Weighted average of precision & recall 
MLP – Multi-layer perceptron; x48 – Last 48 hours of physiologic feature values; demo – demographics 
CNN – Convolutional neural network; LSTM – Long short-term memory 

Table 1 DDX - Five pathologies selected by frequency of occurrence. 

 

Rank Model AUC F1 SN SP 

Collapse models 

1 MLP w/ W48 0.852 0.544 0.875 0.833 

2 RF w/ W48 0.841 0.520 0.862 0.820 

3 GBC w/ W48 0.771 0.435 0.757 0.784 

RNN models 

1 LSTM w/ x19 + h2v 0.948 0.621 0.881 0.885 

2 CNN-LSTM w/ x19 0.938 0.632 0.851 0.893 

3 CNN-LSTM w/ x19 0.931 0.585 0.852 0.866 

RF – Random forest; GBC – Gradient boost classifier; SN – Sensitivity; SP – Specificity; W48 – Diagnostic 
history word2vec embedding + x48; x19 + h2v – Combined patient visit and demographic information-
level representations. 

Table 2 Mortality risk top model predictors. 

Our results indicate that RNN models are most suitable for in-hospital mortality predictions, where 

temporal patterns of simple physiologic features are sufficient to capture mortality risk.  Deep models in 

general out-perform collapse models for the differential diagnostic task. However, temporal information 

from RNN models didn’t provide additional benefit when compared to MLP. 

 

*BICEPS – brevity, immediacy, contact, expectancy, proximity, and simplicity. 


