

Computer-Based Calibration Methods for Parameter Optimization Day 4

Hydrological Modeling Using the Variable Infiltration Capacity Model (VIC) to Support Streamflow Monitoring in the Rufiji and Wami Ruvu Basins

> Andi Thomas **Regional Science Associate** SERVIR Eastern & Southern Africa

Overview for the Day

Date/Time	Thursday 12 th September
8:30 - 9:00	Arrival and Registration
9:00 - 10:00	Review / Model Results and Interpretation
10:00 - 11:00	Intro to Calibration Methods
11:15 – 12:00	Health Break
12:00 – 12:30	Model Calibration
12:30 - 14:00	Lunch Break
14:00 - 15:00	Model Calibration
15:00 – 15:10	Health Break
15:10 – 16:10	Model Calibration

Review

SERVIR

VIC is a gridded large-scale hydrologic model

VIC coupled with a routing model outputs streamflow for a given watershed $\rightarrow \rightarrow \rightarrow$

Do we want to walk through the VIC documentation again?

VIC River Network Routing Model

"All models are wrong, but some models are useful" - George Box, Statistician

- Calibrating can improve estimations
- Decreases the gap/ inconsistencies between estimation and observation
- An increase in parameter heterogeneity in space/time = decrease in largescale estimation accuracy
- It is easier to remove consistent biases. With further calibration, and removing bias, your various measures of error will improve. Yay!

Common Measures of Error

SERVIR

Nash–Sutcliffe model efficiency coefficient (NSE)

$$NSE = 1 - rac{\sum_{t=1}^T \left(Q_m^t - Q_o^t
ight)^2}{\sum_{t=1}^T \left(Q_o^t - \overline{Q_o}
ight)^2}$$
Image Credit: Wikipedia

Q_o – Average of the observed discharge Q_m – Modelled discharge

 Q_o^{t} – Modelled discharge at a given time (t)

NSE can range from $-\infty$ to 1 1 – The model is perfect! 0 – model is as accurate as the mean NSE < 0 – the average is better than the model 0.5 < NSE < 0.65 – model is good quality

Root Mean Square Error (RMSE)

R squared (R²)

Common Measures of Error

SERVIR

Nash–Sutcliffe model efficiency coefficient (NSE)

 $NSE = 1 - rac{\sum_{t=1}^{T} \left(Q_m^t - Q_o^t
ight)^2}{\sum_{t=1}^{T} \left(Q_o^t - \overline{Q_o}
ight)^2}$ Image Credit: Wikipedia

Q_o–Average of the observed discharge Q_m–Modelled discharge

 Q_o^t – Modelled discharge at a given time (t)

NSE can range from $-\infty$ to 1 1 – The model is perfect! 0 – model is as accurate as the mean NSE < 0 – the average is better than the model 0.5 < NSE < 0.65 – model is good quality

Root Mean Square Error (RMSE)

Absolute measure of fit Compares estimated and observed

$$\mathsf{RMSE} = \sqrt{\frac{\sum_{i=1}^{n} (P_i - O_i)^2}{n}}$$

Image Credit: Statistics How To

P_i = estimated values O_i = observed values n = the sum of observed minus estimated

RMSE range is defined by dependent variable Smaller RMSE = better estimated values R squared (R²)

Common Measures of Error

SERVIR

Nash–Sutcliffe model efficiency coefficient (NSE)

 $NSE = 1 - rac{\sum_{t=1}^{T} \left(Q_m^t - Q_o^t
ight)^2}{\sum_{t=1}^{T} \left(Q_o^t - \overline{Q_o}
ight)^2}$ Image Credit: Wikipedia

 Q_o – Average of the observed discharge Q_m – Modelled discharge

 Q_o^{t} – Modelled discharge at a given time (t)

NSE can range from $-\infty$ to 1 1 – The model is perfect! 0 – model is as accurate as the mean NSE < 0 – the average is better than the model 0.5 < NSE < 0.65 – model is good quality

Root Mean Square Error (RMSE)

Absolute measure of fit Compares estimated and observed

$$\mathsf{RMSE} = \sqrt{\frac{\sum_{i=1}^{n} (P_i - O_i)^2}{n}}$$

Image Credit: Statistics How To

 P_i = estimated values O_i = observed values n = the sum of observed minus estimated

RMSE range is defined by dependent variable Smaller RMSE = better estimated values

R squared (R²)

Measurement of how well the estimated values match the observed values values by the observed values values by the observed values by the

$$R^{2} = 1 - \frac{SS_{RES}}{SS_{TOT}} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

Image Credit: Wikipedia

 SS_{RES} = Residual sum of square error SS_{TOT} = Total sum of squared error y_i = Estimated values \overline{y} = Mean of predicted values y_i = Predicted values

Coefficient of Determination

Values range from 0 - 1 (0 - 100%)

Outputs from yesterday's VIC run

SERVIR

Calculate NSE Demo

1-SUMPRODUCT((Average Observed Q – Average Estimated Q)² / SUMPRODUCT((Average Observed Q – Average All Observed Years)²)

SERVI

٥	😑 🥥 AutoSave 🕥 OFF	ጵቬኝ×ሆ፣	AKA31_rout_out (1)		
Но	me Insert Draw F	Page Layout Formulas Data Review View			
Pa	Ste S) • 12 • A [*] A [*] = ≡ ≡ ≫ • • ⊞ • ☆ • <u>A</u> • ≡ ≡ ≡ ⊡ Ξ	ab C Wrap Text ∨ General ∨ Image & Center ∨ \$ ∨ % \$ \$ < 0.00 .00 → 0 C	onditional Format as Table	Cell Insert Dele
E2	$ \times \sqrt{f_x} =$	1- SUMPRODUCT((B2:B133 - C2:C133)^2) / SUMPRODUCT((I	B2:B133 - B136)^2)		
1	A	В	с	D	E
1	Date	Average Observed Monthly Q (m3/sec)	Average Monthly Estimated Q (m3/sec)		NSE
2	Jan-00	3.262064516	454.6977174		-71.997301
3	Feb-00	6.371862069	149.2730362		
4	Mar-00	16.56312903	156.8414536		
5	Apr-00	12.58646667	243.0135127	1	
6	May-00	4.306225806	111.3181296	i l	
7	Jun-00	1.916566667	60.94686525		
8	Jul-00	1.35416129	52.09733879	1	
9	Aug-00	1.061709677	32.71156298	1	
10	Sep-00	0.5672	17.28032471	•	
11	Oct-00	0.215032258	13.22252049		
12	Nov-00	1.0778	38.10776542		
13	Dec-00	12.62245161	105.5890669	ř.	
14	Jan-01	40.83964516	281.6945992		
15	Feb-01	38.17760714	279.4043353		
16	Mar-01	41.21812903	224.0036422		
17	Apr-01	31.3938	241.4993677		
10		40.0702074	151 1011703		

Calculate RMSE Demo

24

New O1

SQRT(SUMSQ (Observed Q – Estimated Q) / COUNTA (Observed Q – Estimated Q))

SERVI

	🔵 🔵 🙆 Autos	Save 💵 📭 🏠 🏠 🗸 🗸	;	💁 1KA31	_rout_out_refer	ence
ŀ	lome Insert	Draw Page Layout Forn	nulas Data Review View			
		Calibri (Body) v 12 v	A^ A ≡ ≡ ≡	ab cŲ Wrap Text ∨	General	
	Paste	B I <u>U</u> v <u>→</u> v <u>↓</u> v	▲ •	Merge & Center 🗸	\$ * %	00. 0.→ 0.→ 00.
F	2 🌲 🗙	\checkmark fx =SQRT(SUMSQ(D2:D13	3)/COUNTA(D2:D133))			
	A	В	C	D	E	F
1	Date	Average Observed Monthly Q (m3/sec)	Average Monthly Estimated Q (m3/sec)	Observed - Estimated		RMSE
2	Jan-00	3.262064516	454.6977174	-451.4356529		134.496048
3	Feb-00	6.371862069	149.2730362	-142.9011742		
4	Mar-00	16.56312903	156.8414536	-140.2783245		
5	Apr-00	12.58646667	243.0135127	-230.427046		
6	May-00	4.306225806	111.3181296	-107.0119038		
7	Jun-00	1.916566667	60.94686525	-59.03029858		
8	Jul-00	1.35416129	52.09733879	-50.7431775		
9	Aug-00	1.061709677	32.71156298	-31.6498533		
10	Sep-00	0.5672	17.28032471	-16.71312471		
11	Oct-00	0.215032258	13.22252049	-13.00748823		
12	Nov-00	1.0778	38.10776542	-37.02996542		
13	Dec-00	12.62245161	105.5890669	-92.96661527		
14	Jan-01	40.83964516	281.6945992	-240.854954		
15	Feb-01	38.17760714	279.4043353	-241.2267282		
16	Mar-01	41.21812903	224.0036422	-182.7855132		
17	Apr-01	31.3938	241.4993677	-210.1055677		
18	May-01	18.9783871	151.1011703	-132.1227832		
19	Jun-01	10.62326667	93.10519346	-82.48192679		
20	Jul-01	6.197129032	62.34453742	-56.14740839		
21	Aug-01	3.799129032	37.3843843	-33.58525527		
22	Sep-01	2.089166667	21.9054759	-19.81630923		
23	Oct-01	1.100774194	13.87488453	-12.77411034		

12 020105

12 526605

0 4005

Computer-Based Calibration Methods

Computer-based calibrations:

- Processing heavy
- Time-consuming
- Complex to learn

Manual Calibrations:

- More time consuming for the user
- May not provide the best parameters

SERV

• User makes parameter changes based on extensive knowledge of the region

Examples:

- Random Autostart Simplex Method
- Genetic Optimization Scheme
- Multi Objective COMplex Evolution
- Shuffled Complex Evolution

These algorithms have the same goal to sync estimated and observed discharge for the period of record

Calibration Methods

SERVIR

These algorithms have the same goal to sync estimated and observed discharge for the period of record

Random autostart simplex method

- 1. Selects a large number of random parameter sets at different grid cells and solves the model
- 2. The best set of parameters are selected from the random generation and used in the simplex minimization algorithm
- The simplex minimization algorithm groups the minimum values in a geometric shape (the simplex), with N + 1 apexes
 - N is the number of parameters that are being optimized
- 4. With the minimum, the algorithm minimizes the volume of the simplex until all of the parameters are within a tolerance of each other
- 5. The process restarts continuously until until the *global optimization parameters* are located

Limitation: The algorithm will *first find the local minimum instead of the global minimum* for model optimization. If the the algorithm "re-starts" enough times the global optimization parameters will eventually be reached

Global Minimum vs. Local Minimum

We are not getting the whole picture...

SERVI

Image Credit: Math is fun

SERVIR

These algorithms have the same goal to sync estimated and observed discharge for the period of record

Genetic optimization scheme (survival of the fittest)

- 1. A random set of parameters is generated
- 2. The parameters are sorted and assigned a probability of reproducing -lowest $-R^2$ values are assigned highest probabilities
- 3. A new generation is created by randomly selecting parameters from the previous generation
- 4. The parameter sets for both generations are encoded as bit strings
- 5. Fragments are selected from both parameter sets and recombined to form a new set
- 6. The model is solved for the new set of parameters
- 7. The process repeats until the less optimal parameters are cycled out

-Eventually the algorithm provides optimized parameters

Tested by the University of Washington and failed after 6 days! Moving on...

These algorithms have the same goal to sync estimated and observed discharge for the period of record

Multi Objective COMplex Evolution (MOCOM-UA) (Yapo, et al., 1998)

- > Pareto principle: a theory that says 80% of the output from a system is determined by 20% of the input
- This calibration method produces optimized parameters that define a subset of the Pareto and increases the number of simulations.
- 1. Model selects a randomly distributed number of observations throughout the parameter space; a uniform sampling distribution is used
- 2. For each sample the multi-objective vector is computed and the observations are ranked and sorted using the Pareto-ranking procedure
- 3. Simplexes of *s*+1 observations are selected according to the robust rank-based selection method
- 4. A multi-objective extension of the downhill simplex method is used to evolve each simplex in a multiobjective improvement direction
- 5. Iterative application of the ranking and evolution procedures causes all observations to converge towards the Pareto optimum (global optimum parameters)

Calibration Methods: IN OTHER WORDS

These algorithms have the same goal to sync estimated and observed discharge for the period of record

Multi Objective COMplex Evolution (MOCOM-UA) (*Yapo, et al., 1998* In terms of natural selection...

- 1. Think of the parameter values as rabbits in a population
- 2. Each rabbit is a potential parent with the ability to reproduce baby rabbits
- 3. A selected simplex is like a set of three parent rabbits
- 4. The "better" parents have a higher probability of getting to contribute to the offspring population than "lesser" parents (The selection of three parents makes the scenario a competitive one)
- 5. The same multi-objective strategy is applied to each group of parents to generate offspring
- 6. Each new offspring replaces the "lesser" offspring and each parent gets a chance at reproducing before being discarded; Every rabbit gets a chance!

Please explore this algorithm on your own time. Example can be found here: <u>https://vic.readthedocs.io/en/vic.4.2.d/Documentation/MOCOM/</u>

Calibration Methods

SERVIR

These algorithms have the same goal to sync estimated and observed discharge for the period of record

Shuffled Complex Evolution (SCE-UA)(Duan et al.) A very common calibration method

- 1. A random sample of parameter values is created using a uniform probability distribution and a criterion value is calculated for each parameter value
- 2. The parameter values are sorted and ranked based on the criterion value— the smallest value is first and the largest criterion value is last
- 3. The parameter values are then put into groups
- 4. Each group evolves according to the Competitive Complex Evolution (CCE) algorithm
- 5. Groups are re-split and shuffled around
- 6. If any of the new values meet the global optimization parameters (convergence) the algorithm will stop (otherwise, the process repeats itself)

SCE-UA Flow Chart (Duan et al.)

SERV

b_infilt Ws Ds Dsmax soil depth

b_infilt is the Variable Infiltration Curve

Variable Infiltration Curve values range from 10.5 to 0.4

Higher values will produce more runoff

0.2 is the default starting value

A higher value of b_{inf} gives lower infiltration and yields higher surface runoff

SER

b_infilt Ws Ds Dsmax soil depth

Ws is the fraction of maximum soil moisture where non-linear baseflow occurs.

SE

Ws values are usually greater than 0.5

0.9 is the default starting value

A higher value of Ws will raise the water content required for rapidly increasing, non-linear baseflow, which will tend to delay runoff peaks

b_infilt Ws Ds Dsmax soil depth

Dsmax is the maximum velocity of baseflow for each grid cell in mm/day

Dsmax = saturated hydraulic conductivity (Ksat) at each grid cell * slope of grid cell

Ds is the fraction of Dsmax where non-linear baseflow occurs in millimeters

With a higher value of Ds, the baseflow will be higher at lower water content in lowest soil layer

SER

b_infilt Ws Ds Dsmax soil depth

soil depth (depth) is the depth of each soil layer in meters.

Typical values for each layer can range from 0.1 – 1.5 meters

Soil depth effects many model variables

 For runoff considerations, thicker soil depths slow down (baseflow dominated) seasonal peak flows and increase the loss due to evapotranspiration

Calibration Tips & Tricks

- > No universal method of calibration exists for all models
- Globally calibrated models perform well globally (not locally)
- Take the split-sample approach: Set aside part of the period of record to validate your calibrated dataset (approx. half)
- Vegetation classes and snow bands are computationally expensive!
 Cells with <1-2% of the vegetation classes can be removed
 Calibrate only "wet" cells that contribute to 75% of basin's streamflow
- Aggregate cells to 1 degree if you are working with lower resolutions -Once you have targeted parameters that yield good results you can extract to a higher resolution

calibrate_vic_sceua.py

27

29

30

31

32

33

35

37

40

41

42 43

44 45

47

51

52

53

54 55

Navigate to your scripts folder

We need to modify/check:

- 1. Validation time series path
- 2. File paths for parameter and GIS files
- 3. Output paths
- 4. Routing variables
- 5. Simulation time series
- 6. Calibration start and end dates
- 7. Calibration output file

```
class vic_model(object):
   def __init__(self,startTime,endTime):
       self.st = startTime
       self.et = endTime
   def get_obs(self):
       valFile = '../input/Nyando_discharge.xlsx'
       obsData = pd.ExcelFile(valFile)
       obsSheet = obsData.parse('Daily')
       obstimes = pd.date_range('2005-02-01','2013-12-31', freq='D')
       obsSeries = xr.DataArray(obsSheet.Q, coords=[obstimes], dims=['time']).se
       self.observations = obsSeries
   def run_vic(self,binfilt=None,Ws=None,Ds=None,c=None,soil_d2=None,soil_d3=N
       __location__ = os.path.realpath(
       os.path.join(os.getcwd(), os.path.dirname(__file__)))
       os.chdir(__location__)
       globalFile = os.path.join( location .'../input/global.params')
```

Calibration Steps Using SCE-UA for 1KA31

We will calibrate our estimated VIC outputs for the Little Ruaha River (at 1KA31) with CMORPH data

SERV

- 1. Point the Global Parameter file to the CHIRPS precipitation dataset by changing the file path for the meteorological forcings row.
- 2. Open terminal and navigate to the "scripts" folder within the training directory
- 3. Run command: **\$ python calibrate_vic_sceua. py 10** -10 is the number of iterations we will run The number of iterations you choose for full calibration should be 5.000
 - -The number of iterations you choose for full calibration should be 5,000 10,000 (10,000 is a loose standard)
 - -This will take a while (maybe more than a week for 10,000 iterations!) -Algorithm uses the Nash-Sutcliffe coefficient as the calibration objective function

Results after 190 iterations...

	Compare a Barely Calibra	ated (190 iterations) with O	bserved and Estimated Q (n	n3/sec)
1350				
1250				NSE : -56.475
1150 -				
1050				
950				
850				
800				
700 650				
600				
500		1		
400				
300	M.A.	And Ma		A MII
250 200	MAN .			
150				
50	man all the	- hhore	and the second	all more and
Linnot tee that the the the of the of the the the the	AS 1500 LOCCI BOULDE CO LING LED LAND LAD AND LUNCHURDES SOO LOCCI A	AND DE THE STOR AND THAT AND THAT THE THE TOP TO THE THE TOP TO THE THE	AND DE THE THE THE TRACT WAS THE THE THE TREE TO TO THE	or to the sparse
	Estimated Q Cali	prated (m3/sec) (190 iterations) — Estimated Q Without Calibr	ration (m3/sec) —Observed Q (m3/sec)	

Results after 6,358 iterations...

What if the calibration script stops?

Quick Fix:

- 1. Open calibrated discharge file (SCEUA_VIC_1KA31.csv)
- 2. Sort "like1" column from greatest to least (this is your NSE value)
- Copy parameter values on second row somewhere (text file, notepad, etc.)
 -parbinfil (Variable Infiltration Curve)
 - -parWs (fraction of max soil moisture where non-linear baseflow occurs)

-parSoilD2 (Soil Layer One) -parSoilD3 (Soil Layer Two)

4. Open format_soil_params.py

SER

Image Credit: Oh No GIFs, Tenor, Tenor.com

What if the calibration script stops?

SERVIR

Original Script

<pre>if b_val == None: b_val = soilDrain['infilt'] if Ds_val == None: Ds_val = soilDrain['Ds'] if Ws_val == None: Ws_val = soilDrain['Ws'] if s2 == None: s2 = 1.50 if s3 == None: s3 = 0.30</pre>
<pre>grdc = cnt lat = yy[i,j] lon = xx[i,j] infilt = b_val Ds = Ds_val Dsmax = (data[i,j,4]/100.) * (float(subSoilPro['S Ws = Ws_val c = 2 expt = 3+(2*float(topSoilPro['SlopeRCurve'])) expt1 = 3+(2*float(subSoilPro['SlopeRCurve'])) tksat = (float(topSoilPro['SatHydraulicCapacity'] sksat = (float(subSoilPro['SatHydraulicCapacity'] phis = -999 elev = data[i,j,2] depth = 0.10 depth1 =s2 depth2 =s3 avg_t = 27</pre>

Modified Script

<pre>#if b_val == None: #b_val = soilDrain['infilt'] #if D_val = None:</pre>
$\longrightarrow \#IT DS_Val == None:$
<pre>#if Ws_val == None: #Ws_val = soilDrain['Ws'] #if s2 == None:</pre>
#11 32 = 1.50 #1f s3 == None: #s3 = 0.30
grdc = cnt
<pre>lat = yy[i,j] lon = xx[i,j] infilt = 0.27205</pre>
\rightarrow Ds = 0.13965
<pre>Dsmax = (data[i,j,4]/100.) * (float(subSoilPro['</pre>
<pre>expt = 3+(2*float(topSoilPro['SlopeRCurve'])) expt1 = 3+(2*float(subSoilPro['SlopeRCurve'])) tksat = (float(topSoilPro['SatHydraulicCapacity' sksat = (float(subSoilPro['SatHydraulicCapacity' phis = -999</pre>
elev = data[i,j,2] depth = 0.10
<pre>depth1 = 0.7583 depth2 = 0.99805</pre>
$avg_t = 27$

Additional Resources

- VIC Read the Docs: https://vic.readthedocs.io/en/master/
 - Calibration Methods: <u>https://vic.readthedocs.io/en/vic.4.2.d/Documentation/Calibration/</u>
- Spotpy: <u>https://pypi.org/project/spotpy/</u>
- Python 3 Course: https://www.codecademy.com/learn/learn-python-3

SER

• RVIC: <u>https://rvic.readthedocs.io/en/latest/</u>

References

Duan, Qingyun & Sorooshian, Soroosh & Gupta, Vijai. (1992). Effective and Efficient Global Optimization for Conceptual Rainfall-Runoff Models. Water Resources Research - WATER RESOUR RES. 28. 1015-1031. 10.1029/91WR02985.

Liang, X., D. P. Lettenmaier, E. F. Wood, & S. J. Burges (1994), A simple hydrologically based model of land surface water and energy fluxes for general circulation models, *J. Geophys. Res.*, 99, 14415-14428

Yapo, P., H. Gupta, and S. Sorooshian, 1998: Multi-objective global optimization for hydrologic models, *J. Hydrology*, **204**(1), 83-97.