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Overview for the Day

Date/Time Thursday 12th September

8:30 – 9:00 Arrival and Registration 

9:00 – 10:00 Review / Model Results and Interpretation 

10:00 – 11:00 Intro to Calibration Methods

11:15 – 12:00 Health Break 

12:00 – 12:30 Model Calibration 

12:30 – 14:00 Lunch Break 

14:00 – 15:00 Model Calibration 

15:00 – 15:10 Health Break 

15:10 – 16:10 Model Calibration 



Review

VIC is a gridded large-scale hydrologic 
model 

VIC coupled with a routing model outputs 
streamflow for a given watershed 

Do we want to walk through the VIC 
documentation again?

Image Credit: vic.readthedocs.io



Why do we calibrate?

“All models are wrong, but some models are useful”
- George Box, Statistician

 Calibrating can improve estimations 
 Decreases the gap/ inconsistencies between estimation and observation
 An increase in parameter heterogeneity in space/time = decrease in large-

scale estimation accuracy
 It is easier to remove consistent biases. With further calibration, and 

removing bias, your various measures of error will improve. Yay!



Common Measures of Error
Nash–Sutcliffe model efficiency 
coefficient (NSE)

Qo – Average of the observed 
discharge
Qm – Modelled discharge
Qo

t – Modelled discharge at a given 
time (t)

NSE can range from -∞ to 1
1 – The model is perfect! 
0 – model is as accurate as the 
mean
NSE < 0 – the  average is better 
than the model
0.5 < NSE < 0.65 – model is good 
quality 

Root Mean Square Error (RMSE) R squared (R2)

Image Credit: Wikipedia
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Absolute measure of fit 
Compares estimated and observed
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Qo

t – Modelled discharge at a given 
time (t)
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Oi = observed values 
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Measurement of how well the 
estimated values match the observed 
values

Absolute measure of fit 
Compares estimated and observed



Outputs from yesterday’s VIC run



Calculate NSE Demo

1-SUMPRODUCT((Average Observed Q – Average Estimated Q)^2 / SUMPRODUCT((Average Observed Q – Average All Observed Years)^2) 



Calculate RMSE Demo
SQRT(SUMSQ ( Observed Q – Estimated Q ) / COUNTA (Observed Q – Estimated Q))



Computer-Based Calibration Methods

Computer-based calibrations:
• Processing heavy 
• Time-consuming 
• Complex to learn 

Examples:
 Random Autostart Simplex Method
 Genetic Optimization Scheme
 Multi Objective COMplex Evolution
 Shuffled Complex Evolution 

Manual Calibrations:
• More time consuming for the user
• May not provide the best parameters
• User makes parameter changes based 

on extensive knowledge of the region 

These algorithms have the same goal to sync estimated and observed discharge for the period of record



Calibration Methods 

Random autostart simplex method
1. Selects a large number of random parameter sets at different grid cells and solves the model
2. The best set of parameters are selected from the random generation and used in the simplex minimization 

algorithm
3. The simplex minimization algorithm groups the minimum values in a geometric shape (the simplex), with N 

+ 1 apexes
- N is the number of parameters that are being optimized 

4. With the minimum, the algorithm minimizes the volume of the simplex until all of the parameters are within 
a tolerance of each other 

5. The process restarts continuously until until the global optimization parameters are located

Limitation: The algorithm will first find the local minimum instead of the global minimum for model optimization. 
If the the algorithm “re-starts” enough times the global optimization parameters will eventually be reached

These algorithms have the same goal to sync estimated and observed discharge for the period of record



Global Minimum vs. Local Minimum 

We are not getting the whole picture…

Image Credit: Math is fun 



Calibration Methods

Genetic optimization scheme (survival of the fittest)
1. A random set of parameters is generated
2. The parameters are sorted and assigned a probability of reproducing

-lowest –R2 values are assigned highest probabilities
3. A new generation is created by randomly selecting parameters from the previous generation
4. The parameter sets for both generations are encoded as bit strings 
5. Fragments are selected from both parameter sets and recombined to form a new set
6. The model is solved for the new set of parameters 
7. The process repeats until the less optimal parameters are cycled out 

-Eventually the algorithm provides optimized parameters 

Tested by the University of Washington and failed after 6 days! Moving on…

These algorithms have the same goal to sync estimated and observed discharge for the period of record



Calibration Methods
These algorithms have the same goal to sync estimated and observed discharge for the period of record

Multi Objective COMplex Evolution (MOCOM-UA) (Yapo, et al., 1998)
 Pareto principle: a theory that says 80% of the output from a system is determined by 20% of the input
 This calibration method produces optimized parameters that define a subset of the Pareto and increases 

the number of simulations.

1. Model selects a randomly distributed number of observations throughout the parameter space; a uniform 
sampling distribution is used 

2. For each sample the multi-objective vector is computed and the observations are ranked and sorted using 
the Pareto-ranking procedure 

3. Simplexes of s+1 observations are selected according to the robust rank-based selection method 
4. A multi-objective extension of the downhill simplex method is used to evolve each simplex in a multi-

objective improvement direction 
5. Iterative application of the ranking and evolution procedures causes all observations to converge towards 

the Pareto optimum (global optimum parameters)



Calibration Methods: IN OTHER WORDS 
These algorithms have the same goal to sync estimated and observed discharge for the period of record

Multi Objective COMplex Evolution (MOCOM-UA) (Yapo, et al., 1998
In terms of natural selection…
1. Think of the parameter values as rabbits in a population 
2. Each rabbit is a potential parent with the ability to reproduce baby rabbits
3. A selected simplex is like a set of three parent rabbits
4. The “better” parents have a higher probability of getting to contribute to the offspring 

population than “lesser” parents (The selection of three parents makes the scenario a 
competitive one)

5. The same multi-objective strategy is applied to each group of parents to generate 
offspring

6. Each new offspring replaces the “lesser” offspring and each parent gets a chance at 
reproducing before being discarded; Every rabbit gets a chance!

Please explore this algorithm on your own time. Example can be found here:
https://vic.readthedocs.io/en/vic.4.2.d/Documentation/MOCOM/

https://vic.readthedocs.io/en/vic.4.2.d/Documentation/MOCOM/


Calibration Methods
These algorithms have the same goal to sync estimated and observed discharge for the period of record

Shuffled Complex Evolution (SCE-UA)(Duan et al.)
A very common calibration method 

1. A random sample of parameter values is created using a uniform probability distribution 
and a criterion value is calculated for each parameter value

2. The parameter values are sorted  and ranked based on the criterion value-– the smallest 
value is first and the largest criterion value is last

3. The parameter values are then put into groups
4. Each group evolves according to the Competitive Complex Evolution (CCE) algorithm 
5. Groups are re-split and shuffled around
6. If any of the new values meet the global optimization parameters (convergence) the 

algorithm will stop (otherwise, the process repeats itself)



SCE-UA Flow Chart (Duan et al.)



Common Parameters to Calibrate 

b_infilt Ws Ds Dsmax soil depth

b_infilt is the Variable Infiltration Curve

Variable Infiltration Curve values range from 10.5 to 0.4 

Higher values will produce more runoff

0.2 is the default starting value

A higher value of binf gives lower infiltration and yields higher surface runoff



Common Parameters to Calibrate 

b_infilt Ws Ds Dsmax soil depth

Ws is the fraction of maximum soil moisture where non-linear baseflow occurs.

Ws values are usually greater than 0.5

0.9 is the default starting value

A higher value of Ws will raise the water content required for rapidly 
increasing, non-linear baseflow, which will tend to delay runoff peaks



Common Parameters to Calibrate 

b_infilt Ws Ds Dsmax soil depth

Dsmax is the maximum velocity of baseflow for each grid cell in mm/day

Dsmax = saturated hydraulic conductivity (Ksat) at each grid cell * slope of grid cell 

Ds is the fraction of Dsmax where non-linear baseflow occurs in millimeters 

With a higher value of Ds, the baseflow will be higher at lower water content in lowest soil 
layer



Common Parameters to Calibrate 

b_infilt Ws Ds Dsmax soil depth

soil depth (depth) is the depth of each soil layer in meters. 

Typical values for each layer can range from 0.1 – 1.5 meters

Soil depth effects many model variables
• For runoff considerations, thicker soil depths slow down (baseflow dominated) seasonal 

peak flows and increase the loss due to evapotranspiration



Calibration Tips & Tricks

 No universal method of calibration exists for all models 
 Globally calibrated models perform well globally (not locally)
 Take the split-sample approach: Set aside part of the period of 

record to validate your calibrated dataset (approx. half)
 Vegetation classes and snow bands are computationally expensive!

-Cells with <1-2% of the vegetation classes can be removed 
Calibrate only “wet” cells that contribute to 75% of basin’s streamflow
 Aggregate cells to 1 degree if you are working with lower resolutions

-Once you have targeted parameters that yield good results 
you can extract to a higher resolution



calibrate_vic_sceua.py

Navigate to your scripts 
folder
We need to modify/check:
1. Validation time series path 
2. File paths for parameter 

and GIS files 
3. Output paths 
4. Routing variables
5. Simulation time series
6. Calibration start and end 

dates
7. Calibration output file



Calibration Steps Using SCE-UA for 1KA31
We will calibrate our estimated VIC outputs for the Little Ruaha River (at 1KA31) with CMORPH data

1. Point the Global Parameter file to the CHIRPS precipitation dataset by changing the file 
path for the meteorological forcings row.

2. Open terminal and navigate to the “scripts” folder within the training directory

3. Run command: $ python calibrate_vic_sceua.py 10
-10 is the number of iterations we will run
-The number of iterations you choose for full calibration should be 5,000 – 10,000 
(10,000 is a loose standard)
-This will take a while (maybe more than a week for 10,000 iterations!)
-Algorithm uses the Nash-Sutcliffe coefficient as the calibration objective function



Results after 190 iterations…

NSE : -56.475



Results after 6,358 iterations…

NSE : 0.702



What if the calibration script stops?

Quick Fix:
1. Open calibrated discharge file (SCEUA_VIC_1KA31.csv)
2. Sort “like1” column from greatest to least (this is your NSE value)
3. Copy parameter values on second row somewhere (text file, notepad, etc.)

-parbinfil (Variable Infiltration Curve)
-parWs (fraction of max soil moisture where non-linear baseflow occurs)
-parSoilD2 (Soil Layer One)
-parSoilD3 (Soil Layer Two)

4. Open format_soil_params.py

Image Credit: Oh No GIFs, Tenor, Tenor.com



What if the calibration script stops?

Original Script Modified Script



Additional Resources 

• VIC Read the Docs: https://vic.readthedocs.io/en/master/
• Calibration Methods: 

https://vic.readthedocs.io/en/vic.4.2.d/Documentation/Calibration/

• Spotpy: https://pypi.org/project/spotpy/
• Python 3 Course: https://www.codecademy.com/learn/learn-python-3
• RVIC: https://rvic.readthedocs.io/en/latest/

https://vic.readthedocs.io/en/master/
https://vic.readthedocs.io/en/vic.4.2.d/Documentation/Calibration/
https://pypi.org/project/spotpy/
https://www.codecademy.com/learn/learn-python-3
https://rvic.readthedocs.io/en/latest/
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