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Overview for the Day

8:30—-9:00 Arrival and Registration

9:00 —10:00 Review / Model Results and Interpretation
10:00 - 11:00 Intro to Calibration Methods

11:15-12:00 Health Break

12:00 - 12:30 Model Calibration

12:30 — 14:00 Lunch Break

14:00 — 15:00 Model Calibration

15:00 — 15:10 Health Break

15:10 - 16:10 Model Calibration



Review
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Why do we calibrate?

“All models are wrong, but some models are useful”
- George Box, Statistician
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» Calibrating can improve estimations

» Decreases the gap/ inconsistencies between estimation and observation

* An increase in parameter heterogeneity in space/time = decrease in large-
scale estimation accuracy

* |t is easier to remove consistent biases. With further calibration, and

removing bias, your various measures of error will improve. Yay!
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Common Measures of Error

Nash—Sutcliffe model efficiency Root Mean Square Error (RMSE) R squared (R?)
coefficient (NSE)
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Image Credit: Wikipedia

NSE =1 —

Q,— Average of the observed
discharge

Q,,— Modelled discharge
Q,'—Modelled discharge at a given
time (t)

NSE can range from-eoto 1

1 —The model is perfect!

0 —model is as accurate as the
mean

NSE < 0 —the average is better
than the model

0.5 < NSE < 0.65 —model is good
quality
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Root Mean Square Error (RMSE)

Absolute measure of fit
Compares estimated and observed
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P. = estimated values

O, = observed values

n = the sum of observed minus
estimated

RMSE range is defined by dependent
variable

Smaller RMSE = better estimated
values

R squared (R?)
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P. = estimated values

O, = observed values

n = the sum of observed minus
estimated

RMSE range is defined by dependent
variable

Smaller RMSE = better estimated
values

R squared (R?)

Measurement of how well the
estimated values match the observed
values
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SSges = Residual sum of square error
SS¢or = Total sum of squared error
Yi = Estimated values
1) =Mean of predicted values
Yi = Predicted values

Coefficient of Determination

Values range from0—1 (0—100%)



Outputs from yesterday's VIC run

Monthly Averaged Estimated & Observed Discharge for the Little Ruaha River Basin at Gauge 1KA31
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Calculate NSE Demo
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2 Jan-00 3.262064516 454.6977174 | -71.997301l
3 Feb-00 6.371862069 149.2730362 |
4 Mar-00 16.56312903 156.8414536
5 Apr-00 12.58646667 243.0135127
6 May-00 4.306225806 111.3181296
74 Jun-00 1.916566667 60.94686525
8 Jul-00 1.35416129 52.09733879
9 Aug-00 1.061709677 32.71156298
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12 Nov-00 1.0778 38.10776542
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15 Feb-01 38.17760714 279.4043353
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Calculate RMSE Demo
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Computer-Based Calibration Methods

Computer-based calibrations: Manual Calibrations:
 Processing heavy e More time consuming for the user

e Time-consuming e May not provide the best parameters
e Complextolearn e User makes parameter changes based

on extensive knowledge of the region
Examples:

\/

*%* Random Autostart Simplex Method
¢ Genetic Optimization Scheme
¢ Multi Objective COMplex Evolution

\/

s Shuffled Complex Evolution

These algorithms have the same goal to sync estimated and observed discharge for the period of record



Calibration Methods

These algorithms have the same goal to sync estimated and observed discharge for the period of record

Random autostart simplex method

1. Selects alarge number of random parameter sets at different grid cells and solves the model

2. The best set of parameters are selected from the random generation and used in the simplex minimization
algorithm

3. The simplex minimization algorithm groups the minimum values in a geometric shape (the simplex), with N
+ 1 apexes

- N is the number of parameters that are being optimized

4.  With the minimum, the algorithm minimizes the volume of the simplex until all of the parameters are within
a tolerance of each other

5. The process restarts continuously until until the global optimization parameters are located

Limitation: The algorithm will first find the local minimum instead of the global minimum for model optimization.
If the the algorithm “re-starts” enough times the global optimization parameters will eventually be reached



Global Minimum vs. Local Minimum

We are not getting the whole picture...
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Calibration Methods

These algorithms have the same goal to sync estimated and observed discharge for the period of record

Genetic optimization scheme (survival of the fittest)

1. Arandom set of parameters is generated
2. The parameters are sorted and assigned a probability of reproducing
-lowest —R? values are assigned highest probabilities
A new generation is created by randomly selecting parameters from the previous generation
The parameter sets for both generations are encoded as bit strings
Fragments are selected from both parameter sets and recombined to form a new set
The model is solved for the new set of parameters
The process repeats until the less optimal parameters are cycled out
-Eventually the algorithm provides optimized parameters

N o U hEWw

Tested by the University of Washington and failed after 6 days! Moving on...



Calibration Methods

These algorithms have the same goal to sync estimated and observed discharge for the period of record

Multl Objective COMplex Evolution (MOCOM-UA) (Yapo, et al., 1998)

Pareto principle: a theory that says 80% of the output from a system is determined by 20% of the input
> This calibration method produces optimized parameters that define a subset of the Pareto and increases
the number of simulations.

1. Model selects a randomly distributed number of observations throughout the parameter space; a uniform
sampling distribution is used

2. Foreach sample the multi-objective vector is computed and the observations are ranked and sorted using
the Pareto-ranking procedure

3. Simplexes of s+1 observations are selected according to the robust rank-based selection method

4. A multi-objective extension of the downhill simplex method is used to evolve each simplex in a multi-
objective improvement direction

5. lIterative application of the ranking and evolution procedures causes all observations to converge towards
the Pareto optimum (global optimum parameters)



Calibration Methods: IN OTHER WORDS

L
S

These algorithms have the same goal to sync estimated and observed discharge for the period of record

Multi Objective COMplex Evolution (MOCOM-UA) (Yapo, et al., 1998

/n terms of natural selection...

1.

2.
3.
4

P

Think of the parameter values as rabbits in a population

Each rabbit is a potential parent with the ability to reproduce baby rabbits

A selected simplex is like a set of three parent rabbits

The “better” parents have a higher probability of getting to contribute to the offspring
population than “lesser” parents (The selection of three parents makes the scenario a
competitive one)

The same multi-objective strategy is applied to each group of parents to generate
offspring

Each new offspring replaces the “lesser” offspring and each parent gets a chance at
reproducing before being discarded; Every rabbit gets a chance!

lease explore this algorithm on your own time. Example can be found here:

https://vic.readthedocs.io/en/vic.4.2.d/Documentation/MOCOM/



https://vic.readthedocs.io/en/vic.4.2.d/Documentation/MOCOM/

Calibration Methods

These algorithms have the same goal to sync estimated and observed discharge for the period of record

Shuffled Complex Evolution (SCE-UA)(Duan et al.)

A very common calibration method

1.

SR

A random sample of parameter values is created using a uniform probability distribution
and a criterion value is calculated for each parameter value

The parameter values are sorted and ranked based on the criterion value-— the smallest
value is first and the largest criterion value is last

The parameter values are then put into groups

Each group evolves according to the Competitive Complex Evolution (CCE) algorithm
Groups are re-split and shuffled around

If any of the new values meet the global optimization parameters (convergence) the
algorithm will stop (otherwise, the process repeats itself)
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Common Parameters to Calibrate

b_infilt ‘WS‘DS ‘ Dsmax‘soil depth

b_infilt is the Variable Infiltration Curve
Variable Infiltration Curve values range from 10.5 to 0.4
Higher values will produce more runoff

0.2 is the default starting value

A higher value of b,  gives lower infiltration and yields higher surface runoff



Common Parameters to Calibrate

b_infilt ‘WS‘DS ‘ Dsmax‘soil depth

Ws is the fraction of maximum soil moisture where non-linear baseflow occurs.
Ws values are usually greater than 0.5

0.9 is the default starting value

A higher value of Ws will raise the water content required for rapidly
increasing, non-linear baseflow, which will tend to delay runoff peaks



Common Parameters to Calibrate

b_infilt ‘Ws ‘ Ds ‘ Dsmax‘soil depth

Dsmax is the maximum velocity of baseflow for each grid cell in mm/day
Dsmax = saturated hydraulic conductivity (Ksat) at each grid cell * slope of grid cell

Ds is the fraction of Dsmax where non-linear baseflow occurs in millimeters

With a higher value of Ds, the baseflow will be higher at lower water content in lowest soil
layer



Common Parameters to Calibrate

b_infilt ‘Ws ‘ Ds ‘ Dsmax‘soil depth

soil depth (depth) is the depth of each soil layer in meters.

Typical values for each layer can range from 0.1 — 1.5 meters

Soil depth effects many model variables
e For runoff considerations, thicker soil depths slow down (baseflow dominated) seasonal
peak flows and increase the loss due to evapotranspiration



Calibration Tips & Tricks

» No universal method of calibration exists for a
» Globally calibrated models perform well globa
» Take the split-sample approach: Set aside

| models
ly (not locally)

part of the period of

record to validate your calibrated dataset (approx. half)
» Vegetation classes and snow bands are computationally expensive!

-Cells with <1-2% of the vegetation cl

asses can be removed

» Calibrate only “wet” cells that contribute to 75% of basin’s streamflow

» Aggregate cells to 1 degree If you are working
-Once you have targeted parameters
you can extract to a higher resolution

with lower resolutions
that yield good results



calibrate vic_sceua.py

class vic_model{object):

Navigate to your scripts

def __init_ (self,startTime,endTime):
folder ef.et - endlime
We need to modify/check:
Validation time series path def get_obs(self):
F||e pathS for pa rameter valFile = '../input/Nyando_discharge.xlsx'
and GIS flles obsData pd.ExcelFile{valFile)

obsSheet obsData.parse('Daily"')
obstimes pd.date_range('2005-02-91', '2013-12-31"',freg="D")

OUtpUt paths obsSeries xr.DataArray(obsSheet.Q, coords=[obstimes],dims=["time']}.se
ROUtIﬂg Va rlab|eS self.observations obsSeries

Simulation time series
Ca“bra‘“on Sta rt and end def run_vic({self,binfilt=None,Ws=None,Ds=None,c=None,soil_d2-None,soil_d3-N

dates _ _location__ os.path. realpathi
os.path.join(os.getcwd(), os.path.dirname(__file_ )))

Calibration output file

os.chdir{_ location_ )

globalF1ile os.path.join{ location .'../input/fglobal.params')



Calibration Steps Using SCE-UA for 1KA31

We will calibrate our estimated VIC outputs for the Little Ruaha River (at 1KA31) with CMORPH data

1. Point the Global Parameter file to the CHIRPS precipitation dataset by changing the file
path for the meteorological forcings row.

2. Open terminal and navigate to the “scripts” folder within the training directory

3. Runcommand: $ python calibrate vic sceua.py 10
-10 is the number of iterations we will run
-The number of iterations you choose for full calibration should be 5,000 — 10,000
(10,000 is a loose standard)
-This will take a while (maybe more than a week for 10,000 iterations!)
-Algorithm uses the Nash-Sutcliffe coefficient as the calibration objective function



Results after 190 iterations...

Compare a Barely Calibrated (190 iterations) with Observed and Estimated Q (m3/sec)

NSE : -56.475
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What if the calibration script stops?

Quick Fix:

1. Open calibrated discharge file (SCEUA VIC 1KA31.csv)

2. Sort “likel” column from greatest to least (this is your NSE value)

3. Copy parameter values on second row somewhere (text file, notepad, etc.)
-parbinfil (Variable Infiltration Curve)
-parWs (fraction of max soil moisture where non-linear baseflow occurs)
-parSoilD2 (Soil Layer One)
-parSoilD3 (Soil Layer Two)

4. Open format_soil params.py

Image Credit: Oh No GIFs, Tenor, Tenor.com



if b val == None:
b val = soilDrain['infilt']
if Ds_val None:
Ds val = soilDrain['Ds"']
if Ws val == None:
Ws val = soilDrain['Ws"']
if s2 == None:
s2 = 1.50
if s3 == None:
s3 = 0.30

grdc = cnt

lat = yy[i,j]
lon = xx[1;]]
infilt = b val
Ds = Ds val

Dsmax = (datali,j,4]1/100.) * (float(subSoilProl["

Ws = Ws val

c =2

expt = 3+(2*float(topSoilPro['SlopeRCurve']))
exptl = 3+(2*float(subSoilPro['[SlopeRCurve']))

tksat (float(topSoilPro['SatHydraulicCapacity’]
sksat (float(subSoilPro['SatHydraulicCapacity']

phis -999

elev datali,j,2]
depth = 0.10
depthl =s2

depth2 =s3

avg t = 27

Modified Script

#1f b val == None:
#b val soilDrain['infilt"']
—— #if Ds val == None:

— > #Ds val = soilDrain['Ds"']
— > #if Ws val == None:

— > #Ws val = soilDrain['Ws']
— > #if s2 == None:

—> #s2 = 1.50
—— > #1f s3 == None:

— #s3 = 0.30

grdc = cnt
lat = yyl[i,]]
lon = xx[i,]jl]
— infilt = 0.37305
— > Ds = 0.13965
Dsmax = (data[i,j,4]1/100.) * (float(subSoilPro["'!
— Ws = 0.0578
cC =2
expt = 3+(2*float(topSoilPro['SlopeRCurve']))

exptl = 3+(2*float(subSoilPro['SlopeRCurve']))
tksat = (float(topSoilPro['SatHydraulicCapacity'
sksat = (float(subSoilPro|[ 'SatHydraulicCapacity'
phis = -999

elev = datali,j,2]

depth = 0.10
—— > depthl = 0.7583
— depth2 = [0.99805

avg t = 27

i



Additional Resources

e VIC Read the Docs: https://vic.readthedocs.io/en/master/

e (alibration Methods:
https://vic.readthedocs.io/en/vic.4.2.d/Documentation/Calibration/

e Spotpy: https://pypi.org/project/spotpy/
e Python 3 Course: https://www.codecademy.com/learn/learn-python-3
e RVIC: https://rvic.readthedocs.io/en/latest/



https://vic.readthedocs.io/en/master/
https://vic.readthedocs.io/en/vic.4.2.d/Documentation/Calibration/
https://pypi.org/project/spotpy/
https://www.codecademy.com/learn/learn-python-3
https://rvic.readthedocs.io/en/latest/
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