

The National ENGINEERING

AI Enabled Technologies

Al Workshop Sept 26, 2019

Neil A. Armstrong Flight Research Center

Ricardo A. Arteaga

Overview

Mission Objectives: Explore use of a sUAS capability at an aircraft crash scene to:

- □ Assist Crash and Rescue Efforts
 - □ Define Crash Area –security and public safety
 - Assess hazards before entry
 - Locate personnel
- Video document the site
 - □ Identify/locate objects
 - GPS tag/inventory individual objects
 - Enable management and EOC efforts
 - Detect/Classify the Black Box
- Stream video to AFRC Edwards location

20 Megapixel Camera

Artificial Intelligence

8/9/2017 9:05:54 am

Method: 4K Video and Camera imagery (20.8 MP). Concurrent with initial firefighting operations, the IRT will launch a sUAS that provides a live video feed to provide additional situational awareness for the incident commander.

2018 Google

Google Earth

Objective 2: Secure the scene

Method: 4K Video and Camera imagery (20.8 MP) sUAS flies to altitude and provide a live video feed to outline secure boundaries for the IRT

Objective 3: Identify/locate the injured

□ Method: 4K Video and Artificial Intelligence detect and classify objects in real time The sUAS will expedite the search for aircraft victims and explosive hazards

Objective 4: Collect evidence

□ Method: Using 4K Video and Camera for Debris Footprint Find the "Black Box" sUAS flies pre-programmed patterns and provides a live video feed to collect evidence for the mishap team.

Artificial Intelligence Algorithm

Research in Machine Vision uses a robust real-time system based on the YOLO object detection Convolutional Neural Networks (CNNs)

Major focus is on training data and HW development

- Iterative Process
- Label small dataset
- Train CNN network on small dataset
- Use trained network to classify many images
- Manually review and correct results
- Incorporate new images into dataset
- Repeat (may take up to a week)
- Neural Networks trained for detecting aircraft debris, people, vehicles another for detecting the "Black-Box"

AI CNN Detection Results

□ Neural Networks for Object Detection and Tracking (speed, accuracy, and efficiency)

Results: YOLOv2 predicts (96%) bounding box on 1080P resolution at 30 FPS video at low altitudes

Aircraft Crash Mishap Exercise

❑ Mission Economics based on the hazardous conditions and limited time

Results: Video Uploaded 2.5 Mbps at 30 FPS ~ 3 second lag on Live Stream Video on MiFi

Al Enabled UAVs for Search & Rescue

❑ Mission Economics based on the limited mission resources and limited time

□ Results: YOLOv2 predicts multiple bounding boxes on 1080P resolution at 30 FPS video.

ENHANCED ADS-B SUPERSONIC^{National Aeronautics and Space Administration}

Introduction to ADS-B

Automatic Dependent Surveillance Broadcast

- Replacing radar for tracking aircraft worldwide
 Prevent collisions
- Sharing position, altitude, velocity, etc. with air traffic control and other aircraft

– ADS-B Out = Transmit

– ADS-B In = Receive

• FAA-mandate by Jan. 1, 2020

Stratway – strategies are iterated.

Al-Trained Neural Network F-18 Flight Trajectory Prediction

10 Super-Sonic flights, 8 used for AI supervised learning, 2 used for testing

NASA

ADS-B

Trained Neural Network is required to reduced errors in ADS-B flight trajectory predictions during dynamic supersonic maneuvers for a more accurate conflict detection.

ADS-B Supersonic Flight #1

First Flight of NASA 846 equipped with an enhanced ADS-B device - Sept 24th 2018.

NASA

ADS-B

NASA 846 low-boom dive flight-trajectory

Flight Test #1

ADS-B Trajectory Profile M=1.4 FL49

Enhanced ADS-B Flight 1- FAA NAS GBT data (blue) vs FAA local recorder (white)

Enhanced Vision Display

On board Tablet ADS-B Traffic Alerts

ASA

ADS-B

ADS-B Flight #3 - Sept 25th 2018 PM: Commands maneuver to avoid the collision

AI Challenges & Regulations

- When an AI system fails at its assigned tasks, who takes the blame?
 - Programmers
 - End Users, UAV operators
 - □ Blame AI for any decision with negative outcome
- Autonomous Crash Landing site selection -do no harm heuristics:
 - □ Avoid people
 - Avoid vehicles
 - Avoid buildings or structures
 - Avoid terrain obstacles
- Safety and ethical considerations with AI operations in specific domains.
- □ AI needs "Black-Box" for explaining decisions "Sully Factor"

VIDEO: Artificial Intelligence enabled **UAVs for Mishap investigations**

SCIENCES The National ENGINEERING Academies of

MEDICINE

sUAS the future of emergency response Does not put accident investigators in harms way