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Abstract: We present a high-order finite-element method for moving body and fluid/structure
interaction problems. Our solution strategy is based on a space-time discontinuous Galerkin (DG)
spectral-element discretization which extends to arbitrary order of accuracy. The space-time DG
discretization is a natural choice for moving body and fluid-structure interaction problems as
moving surfaces are incorporated simply by considering curved space-time elements whose space-
time faces align with the moving body. We present a discontinuous-Galerkin in time discretization
for six-degree of motion modeling of rigid bodies, and a continuous-Galerkin discretization for
equations of linear elasticity to generate curved space-time meshes. Numerical results for several
simple 2D test cases are presented in order to verify the implementation of the different models.
Finally we present a preliminary dynamic simulation of a parachute.
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1 Introduction

Accurate modeling of fluid-structure interactions is important in many aerospace systems (i.e. parachute-
dynamics, flutter analysis, etc). Higher-order numerical methods can provide greater efficiency for these
simulations requiring high spatial and temporal resolution, allowing for solutions with fewer degrees of free-
dom and lower computational cost than traditional second-order methods. In our recent work, we have been
developing a high-order space-time discontinuous-Galerkin finite-element method for high-Reynolds-number
compressible turbulent flow simulations [1, 2, 3, 4, 5]. We have recently enhanced our solver’s capability to
solve higher-order continuous- and C1-discontinuous- Galerkin discretizations for solid-mechanics problems
[6, 7], and developed a framework for the monolithic solution of coupled multi-physics problems [8]. We have
shown the advantage of using higher-order methods for compressible turbulent flows [1, 2, 4] and our desire
is to take advantage of higher-order methods for the simulation of coupled fluid/structures interaction prob-
lems. In this work we present preliminary work using our monolithic space-time finite-element framework to
solve moving-body and fluid/structure interaction problems.

In a space-time formulation the entire 4-dimensional (3-spatial + time) space-time domain is discretized
using finite elements with polynomials in both space and time [9, 10, 11, 12, 13, 14, 15]. For fixed domain
simulations, the spatial mesh is simply extruded in the temporal direction to form the space-time mesh.
However, a space-time finite element formulation can be naturally extended for moving domain problems
by deforming the spatial boundaries of the space-time mesh as a function of time. By treating the spatial
and temporal discretization in a unified manner, the resulting discretization guarantees the satisfaction of
the geometric conservation law (provided sufficient integration is used) [16]. This has made the space-time
formulations a natural choice for moving domain and FSI simulations [9, 10, 14, 15].

The reduced numerical stabilization present in higher-order schemes implies that special care needs to
be taken in the development of numerical methods to suppress nonlinear instabilities. Inconsistent coupling
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of fluid and structure can lead to numerical instabilities and catastrophic failure of the simulation [17, 9,
12]. Typically, numerical methods for FSI problems are based on partitioned schemes; separate solvers
are developed for each discipline, leveraging expertise and existing software for each domain. Coupling
of multiple disciplines is often performed as an after-thought, with coupling schemes which may be non-
conservative, inaccurate or numerically unstable [18]. Monolithic approaches solve the complete system of
equations corresponding to the coupled FSI problem simulatenously [11, 18]. As such, monolithic approaches
may be designed to be conservative, higher-order and stable[11, 12].

Our numerical scheme for the fluid is based on a nonlinearly-stable space-time discontinuous-Galerkin
method which has been used to perform turbulent flow simulations up to 16th-order accuracy in space
and time [4]. In order to ensure conservative coupling between fluid and structural domains we have been
developing structural models discretized with finite-element methods which are conjugate to our fluid solver.
In particular, we have developed a linear-elastic analogy solved using a higher-order continuous finite-element
discretization to generate iso-parametric space-time elements [6]. The structure may be modeled using this
same linear-elastic discretization, or alternatively for thin shells we have developed a C1 discontinuous
linear-shell model [7]. In this work we also develop a six degree-of-freedom (6-DOF) solver for rigid body
displacement, also based on a discontiuous-Galerkin formulation. By choosing a structural model based on
a space-time finite-element space which is conjugate to our fluid solver we can ensure discrete conservation
of energy in the coupled FSI problem. Finally, we use a monolithic solution approach, which can ensure
non-linear stability of the fully coupled problem [9, 12].

In this paper we present preliminary verification of our space-time discontinuous Galerkin solver for
moving body simulations. In Section 2 we present the discretization for the fluid domain, the 6-DOF solver
and the linear elasticity approach for generating curved space-time domains. In Section 3 we discuss our
monolithic solution strategy. In Section 4 we present numerical results for several simple verification studies
as well as a preliminary dynamic simulation of a parachute. Finally we present conclusions and future
outlook in Section 5.

2 Discretization

2.1 Fluid Domain

For the fluid domain we solve the compressible Navier-Stokes equations written in conservative form as

u,t +
(
F Inv − F V isc

)
,i

= 0, (1)

where u = [ρ, ρuj , ρE] is the conservative state vector, with ρ the density of the fluid, uj the velocity
components and E the total energy. The inviscid and viscous fluxes are given respectively by

F Inv =

 ρui
ρujui + pδij

ρHui

 F V isc =

 0
τij

τijuj + κTT,j

 (2)

where p is the static pressure, δij the Kronecker delta, H the total enthalpy, τij the viscous stress tensor, T
the temperature and κT the thermal conductivity. The system is closed using the following relationships

T =
p

ρR
, p = (γ − 1)

(
ρE − 1

2
ρukuk

)
, τij = µ(ui,j + uj,i)− λuk,xk

δij , (3)

where R is the gas constant, γ the specific heat ratio, µ the dynamic viscosity and λ = 2
3µ the bulk viscosity.

We use a space-time discontinuous-Galerkin discretization of (1). The domain Ω is partitioned into
elements κ, while time is partitioned into time-intervals (time-slabs) I. We seek a solution u which satisfies
the weak form∑
κ

{∫
I

∫
κ

−
(
w,tu + w,i(f

I
i − fVi )

)
+

∫
I

∫
∂κ

w(f̂ Iini − f̂Vi ni) +

∫
κ

w(tn+1
− )u(tn+1

− )−w(tn+)u(tn−)

}
= 0 (4)

2



where the second and third integrals arise due to the spatial and temporal discontinuity, respectively, of the

basis functions. f̂ Iini and f̂Vi ni denote single valued numerical flux functions approximating, respectively,
the inviscid and viscous fluxes at the spatial boundaries of the elements. For fixed domains problems, the
elements κ are fixed in time, and the space-time elements corresponding to I×κ have “temporal faces” which
are orthogonal to the spatial direction and “spatial faces” which are orthogonal to the temporal direction.
For moving body simulations, we use a slab-based approach where the temporal faces remain orthogonal
to the spatial direction, however the spatial faces vary in time (i.e. are not orthogonal to the temporal
direction). Hence the space-time faces over which we integrate in the second term in (4) have normals with
components in the temporal direction and a fully 4-dimensional space-time flux must be computed. In this
work we compute the space-time flux by upwinding the temporal component, while computing the spatial
component using the inviscid flux of Ismail and Roe [19] and a viscous flux using an interior penalty method,
where the penalty parameter is computed in a manner that is consistent with the second method of Bassi
and Rebay [20].

In order to ensure stability we use an entropy variable formulation where we seek solutions which are
polynomial approximations of the entropy variables, v ∈ Vp, such that the conservative variables are given
through the mapping u(vh). The space Vp is spanned by the tensor-product of 1D Lagrange basis functions
defined at the Gauss-Legendre points. Under exact integration, this space-time DG discretization satisfies a
discrete Clausius-Duhem inequality ensuring discrete satisfaction of the second law of thermodynamics [21].
In particular, this allows for the proof of a nonlinear entropy-stability for the numerical scheme [21]. In
practice, integrals appearing in (4) are approximated with numerical quadrature rules using twice as many
points as solution coefficients in each dimension, which has been sufficient in our previous work [4].

2.2 6-DOF Discretization

We initially consider the motion of a rigid body acting under the influence of forces exerted by the fluid.
The motion of a rigid body, commonly referred to as six-degree of freedom (6-DOF) motion, is computed by
solving Newton’s equations for the translation of the center of gravity and Euler’s equations for the rotation
about a centroidal axis (see for example [22]). Specifically, for the translation we solve for the position, xcg,
and velocity, vcg, of the center of gravity using:

xcg,t = vcg

vcg,t = f/m (5)

where f is the applied force while m is the mass. The orientation of the body can be expressed using
displacement φ about an axis of rotation a. The orientation is most conveniently expressed using the Euler

parameters e =
[
e0 e1 e2 e2

]T
, where

e0 = cos φ2 (6)

e1 = ax sin φ
2 (7)

e2 = ay sin φ
2 (8)

e2 = az sin φ
2 (9)

The rotation of the body is obtained by solving the following equations for the Euler parameters and angular
velocity ω:

Iω,t + ω × (Iω) = M

e,t = 1
2L

Tω (10)
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where I is the moment of inertia, M is the externally applied moment, while LT is given in terms of the
Euler parameters as:

LT =


−e1 −e2 −e3

e0 −e3 e2

e3 e0 −e1

−e2 e1 e0

 (11)

Equations (5) and (10) correspond to a system of coupled first-order ordinary differential equations which
are forced by the fluid through the terms f and M. In turn, the displacement (and velocity) of the rigid
body couples back to the fluid problem through the definition of the space-time mesh. While many possible
choices are available to integrate these equations of motion, we implement a discontinuous-Galerkin in time
discretization so that our discretization of the 6-DOF motion is conjugate with that used for our fluid solver.
Namely, the polynomial representation of the forces, displacements and velocities are consistent between the
fluid and 6-DOF solver. We use the 6-DOF motion to define the space-time mesh for the fluid domain. In
particular, the space-time mesh is obtained from an initial mesh by applying an affine transformation to
the polynomial representation of the coordinates of the initial mesh. Using a nodal basis in the temporal
direction, the transformation is applied independently for each temporal nodal location. The procedure
results in a fully curved isoparametric space-time mesh appropriate for the space-time fluid solver.

2.3 Elasticity

When considering more complicated fluid-structure interaction involving structural deformation, we wish to
directly generate a curved isoparametric space-time mesh. We solve the equations of linear elasiticity to
obtain the volume displacement of the fluid mesh given the prescribed motion of the surface (or part of the
surface) of the fluid mesh. The equations of linear elasticity are

σij,j = 0 (12)

where σij is the Cauchy stress tensor given by

σij = 2µeεij + λeεkk (13)

µe = E
2(1+ν) and λe = µe

2ν
1−2ν are the Lamé constants given as a function of the Young’s Modulus, E, and

Poisson ratio, ν. The strain tensor, ε is given by

εij = 1
2 (ui,j + uj,i) (14)

where u is the displacement field. A compact representation of the stress tensor may be given by σij =

Cijklui,j , where Cijkl is the stiffness tensor. We note that we could include an acceleration term in (12)
and solve the equations of linear elasticity as a structural model, though we have yet to apply it for this
purpose. When applying the linear elasticity model for mesh deformation the parameters E and ν may be
varied spatially to improve mesh quality. A common choice, employed here, is to fix ν and vary E on each
element proportionally with the inverse of the Jacobian of mapping from reference to physical space [13].

We apply a continuous finite element discretization of (12) over the initial mesh of the fluid domain. Define
V =

{
w ∈ H1(Ω× I),w|κ ∈ [P(κ× I)]3

}
, the space-time finite-element space consisting of C0 continuous

piece-wise polynomial functions on each element.
We seek solutions u ∈ VE satisfying∑

κ

{
−
∫
I

∫
κ0

wi,jC
ijkluk,l +

∫
I

∫
∂κ0∩∂Ω

̂wiC
ijkluk,lnj

}
= 0. (15)

We note that the integration is performed over the initial spatial mesh (i.e elements κ0) of the fluid domain
extruded in time, as opposed to the deformed mesh. An alternative approach is to integrate over the initial
spatial mesh for each time-slab, which may potentially allow for larger mesh deformations. However, this
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later approach results in a scheme where the mesh deformation is a function of not only the given boundary
displacement but the entire displacement history.

3 Solution Strategy

We have chosen to discretize the fluid, 6-DOF and linear-elasticity equations using space-time finite-element
methods which are conjugate to one another. In order to ensure discrete conservation of energy we use a
monolithic solver for the coupled fluid-structure problem. Consider for example the coupled fluid/6-DOF
solver. We denote by UNS and U6DOF the discrete unknowns associated with the fluid and 6-DOF solver
respectively. The corresponding residual statements for the fluid and 6-DOF solver can be written accordingly
as:

RNS(UNS , α6DOF−NS) = 0 (16)

R6DOF (U6DOF , αNS−6DOF ) = 0 (17)

where α6DOF−NS and αNS−6DOF denote the data required for coupling the two different models. We denote
by U the vector of all unknowns (fluid/6-DOF/etc.) and solve the coupled problem:

R(U) = 0 (18)

We solve (18) using a Jacobian-free Newton-Krylov approach, where at each Newton iteration we obtain
an update of the solution by solving a linear system using GMRES. Each step of GMRES requires the
application of the Jacobian matrix to a vector which is equivalent to a linearized residual evaluation. We
note that the exact linearized residual involves propagating the sensitivity with respect to both U and α
through the residual statement for the discretization of each physics module. Thus the different models are
coupled both through the nonlinear and linear residual evaluation. Details of the coupling procedure is given
in [8].

4 Numerical Results

In this section we present initial numerical results for some verification tests performed using our finite-
element framework.

4.1 Heaving/Pitching Airfoil

In the first set of numerical test cases we validate the space-time DG formulation for solving moving body
problems with prescribed motion. We consider the heaving/pitching airfoil problem from the International
Workshop on higher-order CFD methods [23, 24] (case CL1). The three test cases involve flow over a
NACA0012 airfoil at M = 0.2, Re = 1000, starting initially from a steady-state solution with prescribed
motion corresponding to: 1. pure heaving, 2. flow aligning and 3. energy extracting motions. The equations
for the displacement and rotation about 1/3 chord are given in terms of non-dimensional time units are
presented in Table 1. Figure 1 show the images of the solution at several time instances throughtout the
motion.

Case 1 (Heaving) Case 2 (Flow Aligning) Case 3 (Energy Extracting)
h1(t) = t2(3− t)/4 h2(t) = t2(3− t)/4 h3(t) = t3(−8t3 + 51t2 − 111t+ 84)/16
θ1(t) = 0◦ θ2(t) = t2(t2 − 4t+ 4)60◦ θ3(t) = t2(t2 − 4t+ 4)80◦

Table 1: Heaving/Pitching airfoil case parameters

We validate our space-time DG scheme by computing two integral outputs: 1. the work which the fluid
exerts on the airfoil and 2. the vertical impulse from the fluid onto the airfoil. These are given respectively
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Figure 1: Mach number contours from heaving/pitching airfoil test cases.

6



by:

W =

∫ T

0

∫
airfoil

~v(t) · ~f(t)dsdt (19)

I =

∫ T

0

∫
airfoil

fydsdt (20)

where ~v is the velocity of the surface while ~f = [fx, fy] is the force imparted by the fluid on the airfoil. In
Table 2 we report the values of work and impulse computed using our space-time DG scheme on the finest
mesh considered as well as corresponding results from the 5th International Workshop on higher-order CFD
methods [24]. The present results fall within the range of the reported values and show particularly good
agreement with the results from UC Berkeley.

Group UC Berkeley U. Michigan Onera NASA (Current)
Case1, Work -1.409 -1.384 -1.405 -1.412
Case1, Impulse -2.376 -2.331 -2.373 -2.380
Case2, Work -0.220 -0.205 -0.209 -0.221
Case2, Impulse 0.590 0.610 0.591 0.593
Case3, Work 0.401 0.364 0.334 0.396
Case3, Impulse 1.695 1.670 1.708 1.693

Table 2: Computed output quantities from 5th International Workshop on higher-order CFD and current
results [24]

The source of the small discrepencies between the results computed by different groups at the higher-order
workshop has yet to be satisfactorily determined. As a result, each participant at the higher-order workshop
presented convergence results relative to a truth value computed using a highly refined mesh using their
numerical scheme [24]. We report convergence results in the same manner. Figure 2 shows the convergence
of the work and impulse outputs using our DG scheme with 4th and 8th order space-time elements. Due
to the lack of solution regularity for this test case we do not expect to achieve formal order of accuracy for
our higher order schemes. However, we observe that the 8th order scheme generally has lower error in the
work output than the 4th order scheme for a given number of degrees of freedom (the exception is case 1 at
4th order where the fortuitous cancellation of forces causes the coarsest grid to appear to have the smallest
work error). Additionally, the convergence rate of the 8th order scheme appears to be better than the 4th
order scheme . Similarly, for the impulse output, the 8th order scheme has lower absolute error versus the
4th order scheme for a given number of degrees of freedom, however, the trend in the convergence rate is
less clear.

4.2 6-DOF verification

We next consider verification of the space-time implementation of 6-DOF solver. We consider two verification
test cases from Murman et al. [22]. First, we consider translational motion corresponding to applying a
constant external force. The exact solution corresponds to a displacement which is a quadratic function of
time. Thus, our space-time DG scheme should reproduce the exact solution when using quadratic or higher
order polynomials. We have verified that this is indeed the case. Next, we consider a test case corresponding
to the spining motion of a block in the absence of external forces. Rotation about the semi-major axis is
unstable resulting in a tumbling motion for which an analytic solution is available. Figure 3 plots the angular
velocity for the tumbling motion solved using 2nd and 8th order schemes with a fixed number of degrees
of freedom. As can be seen the large numerical dissipation of the 2nd order scheme results in damping of
the angular momentum, while 8th order scheme is much less dissipative. Figure 4 shows the corresponding
error convergence using 2nd, 4th and 8th order schemes. The numerical experiment shows the we recover
the formal order of accuracy of the scheme.
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(a) Work convergence (b) Impulse convergence

Figure 2: Error convergence plots for heaving/pitching airfoil test cases.

(a) N = 2 (b) N = 8

Figure 3: Angular velocity for 6DOF verification of tumbling motion about semi-major axis

Figure 4: Error convergence for 6-DOF verification of tumbling motion about semi-major axis
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4.3 Coupled Fluid/6-DOF

Next we verify the coupled fluid/6-DOF model. In the absence of verification cases with analytical solutions,
we consider the motion of a NACA0012 airfoil under the influence of gravity. We consider several test cases
corresponding to different values for the center of gravity, mass and moment of inertia. In the first set of test
cases we verify the asymptotic behaviour of the coupled fluid/6-DOF problem under a constant gravitational
force. We first compute the drag on the NACA0012 airfoil at zero angle of attack, M = 0.2 and Re = 1000.
We then solve a coupled fluid/6-DOF problem where we set the center of gravity to be a point on the leading
edge of the airfoil and choose the mass such that the gravitational force will be equivalent to the computed
drag. Thus, the coupled fluid/6-DOF problem should result in a terminal velocity matching the steady-state
problem. We consider three test cases: 1. the airfoil is initially aligned with the gravitational force and 2.
the airfoil is orthogonal to the gravitational force with a small moment of inertia and 3. with large moment of
inertia. Figure 5 shows selected images from the simulation, while Figure 6 plots the corresponding velocity,
and angle for the three cases. While the initial motion is significantly different for the three test cases, the
expected asymptotic behaviour is reached in each case.

Next we consider moving the location of the center of gravity along the airfoil. Again we consider three
test cases, with the center of gravity located at: 1. the leading edge, 2. slightly fore of the aerodynamic
center and 3. slighlty aft of the aerodynamic center. Figure 7 plots the trajectories of the airfoil for these
test cases and the corresponding velocity and orientation. With the center of gravity located at the leading
edge, we recover the terminal velocity test case above. With the center of gravity located slightly fore of
the aerodynamic center we recover an asymptotic trajectory with a constant glide slope. Finally, with the
center of gravity aft of the aerodynamic center we recover an unstable feather-like trajectory. Figure 8 shows
images from this trajectory.

4.4 Heaving/Pitching Airfoil using Elasticity Mesh Deformation

Next we solve the heaving/pitching airfoil test case using linear elasticity to deform the mesh. The displace-
ment of the surface of the airfoil is specified, while the location of the space-time mesh is determined using
the linear-elasticity solver. We solve test case 2 from the higher-order workshop using a 4th order space-time
mesh. Figure 9 depicts the initial 4th order mesh, along with the space-time mesh deformed using elasticity
at several temporal locations throughout the heaving/pitching motion. Displacing the interior nodes of the
mesh the linear elastic model, with Poisson ratio of ν = 0.4 and Young’s modulus scaled with the inverse of
the Jacobian determinant, ensures valid elements everywhere in the domain despite the large deformations
due to the prescribed motion. We quantify the quality of the mesh by plotting the determinant of the defor-
mation gradient tensor near the surface of the airfoil. As can be seen, the linear-elastic model maintains high
quality elements throughout the domain with the deformation tensor near unity everywhere in the domain
except for some significant deformation near the trailing edge. Using a Young’s modulus scaled inversely
with the Jacobian determinant ensures near rigid body motion near the airfoil surface as we generally have
small elements here, while larger deformations are allowed further from the airfoil surface where there are
larger elements.

4.5 Dynamic Parachute Simulation

Finally, use our space-time discontinuous Galerkin scheme to performs a dynamic parachute simulation.
In this preliminary result we consider only rigid body displacement with a predefined motion. For this
preliminary simulation we consider a 2nd order spatial and 4th order temporal discretization for the fluid.
The prescribed mesh motion corresponds to a pendulum-like motion as seen in recent parachute drop tests
[25]. Figure 10 shows images from the dynamic simulations. Ultimately, the goal of this work is to model
the full dynamics of the parachute motion, while this work represents one step in this direction.

5 Conclusion and Future Work

We presented a higher-order space-time finite element discontinuous-Galerkin method for performing moving
body and fluid-structure interaction simulations. The space-time DG formulation extends naturally to
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Figure 5: Images from terminal velocity fluid/6dof verification
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(a) Velocity (b) Angle

Figure 6: Velocity and orientation for terminal velocity fluid/6-DOF verification

(a) Trajectory

(b) Velocity (c) Angle

Figure 7: Velocity and orientation for fluid/6-DOF verification with different center of gravity locations
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(a) t=0.0 (b) t=2.5 (c) t=5.0

(d) t=7.5 (e) t=10.0 (f) t=12.5

(g) t=15.0 (h) t=17.5

Figure 8: Images from terminal velocity fluid/6-DOF verification with center of gravity aft of the aerodynamic
center
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(a) t = 0.0 (b) t = 0.4

(c) t = 0.8 (d) t = 1.2

(e) t = 1.6 (f) t = 2.0

Figure 9: Heaving/Pitching Airfoil test case: Initial and displaced mesh at various temporal locations
coloured with determinant of the deformation gradient tensor
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(a) t = 0.0

(b) t = 0.50

(c) t = 1.00

Figure 10: Images from dynamic parachute simulation
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moving body simulations by using a mesh with space-time elements which are curved to match the moving
geometry. We have developed a six degree-of-freedom solver for performing rigid body simulations and a
linear-elasticity approach for more general structural deformations. Preliminary verification results have been
presented for moving-body simulations coupled with the 6-DOF solver or linear elasticity solver. Finally, we
presented preliminary results from a dynamic parachute simulation.

The ultimate goal of this work is to perform simulations which can capture all of the relevant dynamics
of the parachute motion. This works represents a small step in this direction. Future work will include
verification of the coupling of the current solver with our shell structural solver, and focusing on performance
through improving the linear and nonlinear solvers for tightly coupled FSI problems.
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