

Low Size, Weight, and Power (SWaP) Sensor Analyses Plan

NASA Gilbert Wu Cal Analytics Chris Crowder Dan Landers

June 13, 2019

UAS INTEGRATION IN THE NAS

- Overview
- Analysis objectives
- Analysis assumptions
- Dataset assumptions
- Analysis methodology
- Schedule

- RTCA SC-228 WG1 is creating a new class of air-toair radar (ATAR) in DO-366 Phase 2 MOPS development for low size, weight, and power (SWaP) UAS
- RTCA SC-228 WG1 may also create a class of low SWaP EO/IR sensor equipment
- Analyses will be performed to understand trade space for Field of Regard (FoR) and Radar Declaration Range (RDR) requirements for low SWaP sensors

Overview

- Phase 1 analyses will be repeated for the low SWaP radar and EO/IR sensor parameters
 - DO-366 Appendix C investigates cases where field of regard (FOR) limits the timely detection of targets according to alerting requirements for DAA.
 - DO-366 Appendix D verifies that the radar declaration range (RDR) provides enough time margin, from detection to loss of well clear (LoWC), to meet DAA alerting requirements.
- Since the surveillance volume requirements have not been established, multiple values of RDR and FoR will be used as independent variables

- Explore implications of low SWaP sensor FoR and RDR on ability to detect intruders and maintain DAA well clear definitions
- Requirements addressed for low SWaP in DO-366
 - 2.2.6 Radar Field of Regard
 - Azimuth (026) /Elevation Coverage (027)
 - 2.2.7 Radar Tracks
 - Intruder track acquisition time (022)
 - RDR for Small (039), Medium (040), and Large (041) intruders

- Perform fast time, unmitigated simulation of a large number of encounters using candidate Low SWaP Radar and EO/IR sensor parameters
- Analyze data to
 - estimate the probability of an intruder entering the sensor field of regard within the sensor declaration range (Appendix C)
 - validate the radar declaration volume against
 DAA alerting requirements (Appendix D)

Radar Requirements

Symbol	Parameter	Phase 1	Phase 2, Non-cooperative, Low SWaP
FOR	Field of Regard, Azimuth	+(-110"	+/- 110°, +/- 135° preierred
FOR	Field of Regard, Elevation	+/- 15°	+/- 15°
ADR	Radar Declaration Range, at Azimuth = 0"	5.4, 6, 6.7 NMi	2, 2.5, 3, 3.5 NMi (TBD)
ADR	Radar Declaration Range, Correction Factor	(See next slide)	? – From AAG
RCPR	Radar Closest Performance Range	4000 ft	? - From Honeywel
	"Track Acquisition Time" from 00-355	53	7 - from Hore red

Symbol	Parameter	Phase 1	Phase 2, Non-cooperative, Low SWaP
FOR	Field of Regard, Azimuth	+/- 110°	+/- 110°, +/- 135° preferred
FOR	Field of Regard, Elevation	+/- 15°	+/- 15°
RDR	Radar Declaration Range, at Azimuth = 0°	5.4, 6, 6.7 NMi	2, 2.5, 3, 3.5 NMi (TBD)
RDR	Radar Declaration Range, Correction Factor	(See next slide)	? – From AAG
RCPR	Radar Closest Performance Range	4000 ft	? – From Honeywell
	"Track Acquisition Time" from DO-366 requirement 2.2.7.22. †	15 s	? – From Honeywell

†: For intruders that enter the FOR within **95%** of the RDR, in **90%** of these encounters, tracks must meet accuracy requirements (2.2.8) within **15s** after entering FOR/RDR (DO-366 requirement 2.2.7.22). This was the requirement that was validated in appendix C.

Radar Requirements: RDR Correction Factor

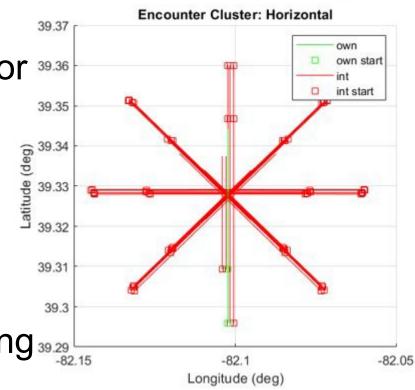
Intrudor Dooring Angle	RDR Correction Factor			
Intruder Bearing Angle	Small	Medium	Large	
angle < 30	1	1	1	
$30 \le angle \le 60$	0.67	0.78	0.84	
$60 \le angle \le 90$	0.45	0.52	0.6	
$ angle \ge 90$	0.35	0.43	0.55	

(from phase 1, DO-366 2.2.7.14)

DAA Well Clear Alerting Requirements

Symbol	Parameter	Phase 1	Phase 2, Non-cooperative, Low SWaP	
HMD*	Horizontal Miss Distance Threshold	4000 ft	2200 ft*	
h*	Vertical Separation Threshold, Corrective & Warning	450 ft	450 ft*	
h^*	Vertical Separation Threshold, Preventive	700 ft	700 ft	
$ au^*_{mod}$	Modified Tau Threshold	35 s	0 s*	
MIR	Maneuver Initiation Range		1.9 NMi*	
THR _{Late}	Late Threshold, Preventive & Corrective	20 s	20 s	
THR _{Late}	Late Threshold, Warning	15 s	15 s	
	Minimum Average Alert Time, Preventive & Corrective	55 s	55 s	
	Minimum Average Alert Time, Warning	25 s	25 s	
Note: Non-Hazard alerting requirements have *From NASA, MIT/LL, CAL Analytics				
not been established.		DWC Joint Briefing 03/05/2019		

Ownship Simulation Assumptions



Parameter	Phase 1	Phase 2, Non-cooperative, Low SWaP
Turn Rate	3°/s	7°/s
Velocity	40 – 200 KTAS	40 – 100 KTAS
Min Altitude, AGL	1000 ft (AGL)	500 ft (AGL)
Max Altitude, MSL	10,000 ft (MSL)	10,000 ft (MSL)

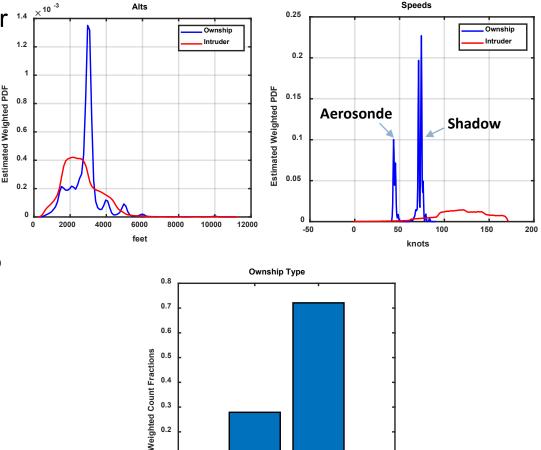
- Extended operations in airspace classes D, E (non-terminal), or G (non-terminal).
- Transit operations in classes B and C.

Dataset Assumptions

- Recommend low SWaP encounter set used by MIT/LL for NASA Mitigated Well
 Clear Analysis dated March 5, 2019
 - See next slide for details
- Modeling & Sim tool for sweeping linear encounter parameters
 - Altitude separation, closest point of approach (CPA), heading

LYTICS

Encounter Set Parameters


Encounter characteristics

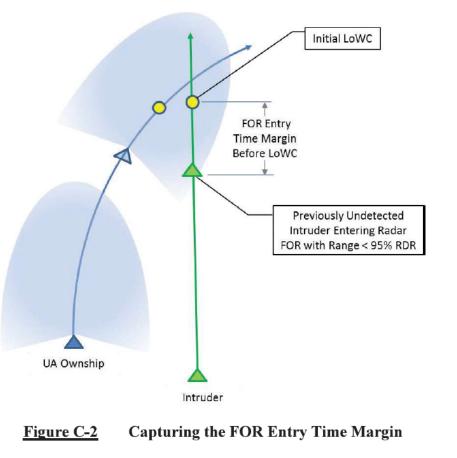
- Minimum Separation at Encounter ¹⁴ Start: 800 ft (vertically) or 1.5 NM (horizontally)
- Max HMD: 3 NM
- Max VMD: 1500 ft
- Closest Approach: 150 sec
- Encounter duration: 180 sec
 - Extended up to 300 sec if necessary to satisfy initial minimum separation
- Airspace classes: E/G

Aircraft characteristics

- Ownship speed: 40-100 kts
- Intruder speed: 0-170 kts
- Ownship/intruder altitude: 500 AGL-10000 ft MSL

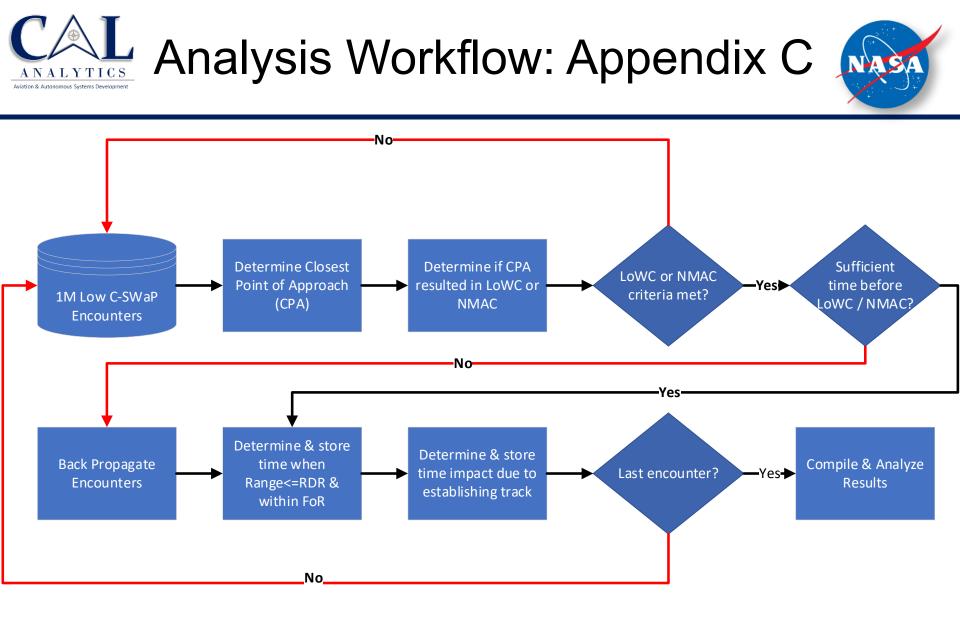
MQ19

ShadowB

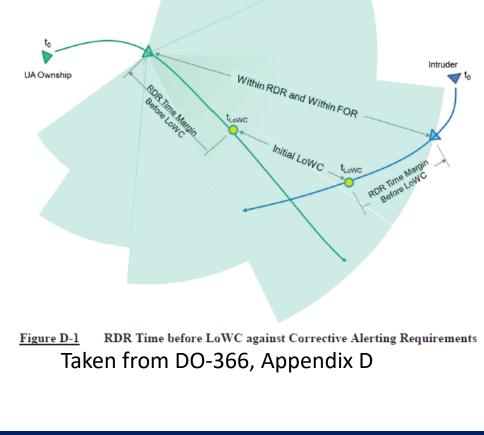

MQ-19: AAI Aerosonde

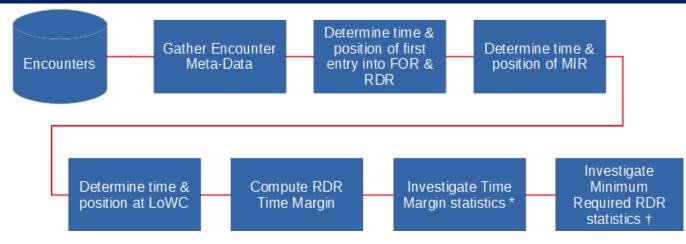
0.2 0.1

Aviation & Autonomous Systems Developm


Appendix C Analysis

- Objective: estimate the probability of an intruder entering the sensor field of regard within the radar declaration range (RDR)
 - Determine probability of those impacted by track acquisition time requirement of 15s
- Analyze multiple RDRs for FoRs to cover possible final values of RDR
- Perform micro-level analysis of encounters which enter FoR within RDR to better understand challenging encounter scenarios


Taken from DO-366, Appendix C


Appendix D Analysis

- Objective: Verify that radar declaration range (RDR), subject to the Field of Regard (FOR), provides enough Time Margin, from detection to loss of well clear (LoWC), for DAA alerting
 - Compare RDR Time Margin per encounter to Minimum Average Alert Times and Late Alert Thresholds
 - Compute Required RDR per encounter and compare statistics to candidate RDRs
- Time Margins resulting from various RDR candidates will be examined
- Statistics will be generated for different geometries and encounter categories

- RDR Time Margin and Minimum Required RDR will be analyzed per encounter to generate statistics
- * RDR Time Margin statistics will be compared to the time parameters from phase 1: **Minimum Average Alert Times** and **Late Alert Thresholds**.
- † Minimum Required RDR statistics will be compared to current **RDR** candidates.

Schedule

Analyses of the Alerting Timeline with Low C-SWaP Sensors' Field of Regard	4/15/2019	10/28/2019
Coordination with SC-228	4/15/2019	6/15/2019
Development	4/30/2019	09/09/2019
Report Preparation	9/10/19	9/30/2019
[SP D.2.110] Delivery of Analyses results to SC-228	10/28/2019	10/28/2019

Analysis Workflow: Appendix C

- For each encounter, determine if LoWC or NMAC occurred
- If sufficient time within the encounter does not exist, back propagate encounters
 - E.g. encounter starts within RDR/FoR
- Determine intruder times when:
 - First enter FoR
 - First enter RDR
 - First time when intruder is in FoR AND RDR
- Determine time impact due to track acquisition requirement
- Compile and analyze results to assess if intruder entered FoR within RDR
- Analysis
 - Micro analysis figures of challenging encounter geometries
 - Encounter distribution plots for time margin for entering FoR
 - Computed probabilities of intruder entering FoR within RDR for RDRs detailed above

- The correlation of Time Margin and RDR to ownship / intruder speeds, and relative heading, will be investigated
- Time Margin will be computed for various RDR
- The percentage of targets detected vs. Time Margin will be computed
- Statistics will be computed from...
 - all encounters
 - non-accelerating encounters
 - accelerating encounters
 - turning encounters
 - vertically converging encounters
 - Intruder overtake encounters