

Experiment Objective

- Goal: assess ACAS Xu Run 5 in a human-in-the-loop (HITL) simulation in order to measure pilot and system performance in real-time
 - An emphasis on pilots' ability to comply with:
 - Remain Well Clear (RWC) alerting and guidance
 - Resolution Advisory (RA) alerting and guidance
 - Vertical, Horizontal and 'Blended' (vertical + horizontal) RAs
- Where appropriate, we will compare ACAS Xu Run 5 results to previous SC-228 Phase 1 DAA work
 - The Phase 1 V&V HITL was conducted in 2016 using NASA's DAIDALUS algorithm to provide DAA alerting and guidance
 - The design of the present scenarios were kept as similar as possible to the Phase 1 sim to allow for comparisons, however:
 - Sensor noise was not modeled in the Phase 1 study & the simulated RADAR detection range was 8nm
- Note results have been shared with the Xu team and have been incorporated into the pre-FRAC version of Xu

NASA

Experiment Design

- Independent Variables:
 - Display Configuration (2 levels, within-subjects)
 - Integrated DAA information presented within TSD
 - <u>Standalone</u> DAA information shown in separate, dedicated display
 - Threat Type at First Alert (2 levels, within-trial)
 - <u>Corrective DAA Alert</u>: encounter scripted to provide the *maximum allowable* Corrective DAA (RWC) alerting time
 - Resolution Advisory: encounter scripted to "force" RAs without a preceding DAA alert (i.e., pop-up or blundering intruders)
 - Intruder Equipage (2 levels, within-trial)
 - Cooperative (ADS-B)
 - Detection Range: 20 nm, 360° field of regard
 - Vertical Range: +/- 10000 ft MSL
 - Non-Cooperative (RADAR-only)
 - Detection Range: 6.7 nm
 - Field of regard: 110° azimuth & 15° elevation

Experiment Design

STANDALONE CONFIGURATION

 DAA & CA information presented separately from navigation and vehicle control interfaces

Experiment Design

INTEGRATED CONFIGURATION

DAA & CA information collocated with navigation and vehicle control interfaces

NASA

Test Setup

- Simulation Elements
 - UAS pilots situated at AFRL's Vigilant Spirit Control Station (VSCS)
 - Simulated Oakland Center, Class E airspace
 - Pilot booth isolated from rest of simulation environment
 - Honeywell Sensor Model provided representative ADS-B and RADAR sensor noise

- ATC confederates and 'pseudo' pilots managed airspace
 - Provided realistic comms & background traffic
 - Used retired Oakland Center controllers and general aviation pilots as confederates

NASA

Test Setup

- 16 total participants
 - All active UAS pilots
 - 4 experimental trials per pilot (~45min per trial)
 - 2 mission routes x 2 display configurations
- Pilot task
 - Maintain safety of aircraft along pre-filed flight path
 - Manually respond to DAA and RA guidance from Xu
 - Coordinate with center controller as appropriate
 - Respond to scripted chat messages and system failure events
- Ownship configuration
 - Generic MQ-9 model
 - Cruise speed: 160 KIAS
 - Climb/descent rate: 1,000 fpm
 - Turn rate: 3° per second

HITL Display Modifications

- Several display modifications were made based on results from a prior engineering analysis and early testing with Run 5
 - An RA 'auto-fill' feature was added to the GCS control interfaces to help reduce RA response times
 - Eliminated need to manually input RA target heading or vertical speed
 - Pilot only had to approve & click "Send" button
 - Horizontal RA target headings were capped at a 5 second update rate
 - Testing showed that target headings could update up to once-a-second
 - The pre-FRAC version of Xu implemented similar behavior
 - Note: target heading updates were not annunciated
 - GCS converted Xu's native DAA vertical speed guidance to discrete altitudes within DAA altitude bands
 - SC-228 requires RWC/DAA vertical guidance to be shown in altitudes if the GCS cannot upload vertical rates

ACAS Xu Alerting Logic

Symbol	Name	Pilot Action	Aural Alert Verbiage
	Resolution Advisory (RA)	 Immediate action required to comply with RA Must upload maneuver within 5 seconds Notify ATC after maneuver 	"Climb/Descend" x2 "Turn Left/Right" x2 or a combination of above
	Corrective DAA Alert	 Action required to remain 'DAA well clear' Coordinate with ATC prior to maneuvering 	"Traffic, Avoid"
	Preventive DAA Alert	 No action required Generating peripheral guidance bands Monitor for potential increase in severity 	"Traffic, Monitor"
	Guidance Traffic	 No action required Ownship maneuvers against traffic might generate increase in threat level 	N/A
A	"Other"	No action requiredNo coordination required	N/A

Non-Coop Encounter Example

Scenario Design

6 scripted encounters per scenario:

Scripted Threat Type	Non-Cooperative (RADAR Only)	Cooperative (ADS-B & RADAR)
Corrective DAA Alert	1	3
Resolution Advisory (RA)	1	1

- "Forced" RAs were executed differently depending on intruder equipage:
 - Cooperative forced RAs were triggered by a late intruder climb/descent into ownship (i.e., a 'blunder')
 - Non-cooperative forced RAs were triggered by the intruder popping-up on the scope
 - Could not consistently force immediate non-coop RAs through blunders due to sensor noise

REMAIN WELL CLEAR (RWC) RESULTS

RWC / Corrective Alert Response Times

- Display Configuration Variable
 - No difference in aircraft response times between Standalone and Integrated display conditions
 - Aircraft response time = time from appearance of a Corrective DAA alert to the first upload sent to aircraft
 - Overall aircraft response times nearly identical to the Phase 1 V&V HITL

RWC / Corrective Alert Response Times

- Intruder Equipage Variable
 - Aircraft response times to non-cooperative intruders in this study were
 *5 seconds faster than:
 - Cooperatives intruders in this study
 - Both coop & non-coop intruders in the Phase 1 sim
 - Limited RADAR detection range (6.7nm) resulted in shortened DAA
 Corrective alert durations (~15 seconds) for non-cooperatives
 - 37 of 65 (57%) non-coops progressed to RA before they could maneuver

*Non-coop aircraft RTs only include instances where pilots maneuvered against a CORR alert

Non-Coop RWC Encounter Outcomes

■ RWC maneuver, no RA

DAA WELL CLEAR PERFORMANCE

Loss of DAA Well Clear (LoDWC) Results

- Proportions of LoDWC were low for cooperative traffic but high for noncooperatives
 - Similar to proportion of LoDWC in Phase 1's blunder/Warning alerts
- High proportion of non-cooperative LoDWC against scripted Corrective alerts was due to short-duration Corrective alerts (~15 sec duration)
 - Pilots were typically unable to begin their RWC/DAA maneuver before the RA was issued
 - On average, non-cooperative RAs were issued closer to CPA compared to cooperatives
- LoDWC severity (SLoWC) was extremely low against both equipages
 - Lower than SLoWC values observed in Phase 1
 - Aided by auto-filled directive guidance before LoDWC

Causes of Cooperative LoDWC

- 9 total LoDWC against <u>cooperative</u> Corrective DAA threats
 - 6/9 were due to conversion from vertical rate RWC guidance to altitude guidance
 - Altitude guidance showed a climb/descent was safe when that was not the case
 - A result of the conversion to altitude bands assuming a variable vertical rate from the UA
 - 1/9 return to course too soon
 - 1/9 ineffective pilot maneuver
 - 1/9 long ATC coordination time (frequency congestion)

RA RESULTS

RA Results Summary

- 207 Total RA Encounters
 - 61% were the scripted, "Forced" RAs
 - 1 coop & 1 non-coop per trial
 - Remaining 39% were "Unscripted" RAs
 - I.e., intruder first appeared as Corrective DAA alert and progressed to an RA
 - 2/3 of "Unscripted" RAs were against non-cooperative intruders

- 67% of RA encounters were exclusively horizontal
 - 26% included both a horizontal and vertical sense
 - Remaining 7% were exclusively vertical
 - All "Unscripted" RAs against cooperatives
 - Typically following a DAA maneuver

RA Sense

COOP: "Forced" RAs

21

42

Blended Vertical-Only Horizontal-Only

NON-COOP: "Forced" RAs

RA Response Times (All RA Types)

- Initial RA
 - Avg. RT = 2.89sec
 - 97% of times under the 5 second response time requirement
- Subsequent RAs
 - Avg. RT = 2.68sec
 - 70% of times under the 2.5 second response time requirement

RA Target Updates

- Multiple RA target heading updates were common for each given RA encounter
 - Avg. of 4.5 target heading updates per RA
 - Simultaneous horizontal and vertical updates were rare
 - Vertical RAs were often appended to the end of a horizontal RA sequence (e.g., the 4th or 5th update), creating a blended RA

Horizontal RA Compliance Rate

- Pilots complied less often with target heading updates
 - Initial RA compliance = 88-98%
 - Subsequent RA compliance = 51%
- Similar compliance trends between "Forced" & "Unscripted" RAs
- Pilot feedback regarding non-compliance:
 - "Already headed that direction"

Vertical RA Compliance Rate

- Pilots complied with vertical RAs at a consistently high rate
 - 94% (64/68) overall compliance
 - 85% compliance rate when it was *vertical-only*
 - Occasionally recommended climb/descent that was already in progress
 - 96% compliance with vertical RAs added to an existing horizontal RA
 - i.e., creating a blended RA
 - 95% compliance when vertical and horizontal were issued simultaneously

SUBJECTIVE FEEDBACK

Recurring Themes from Debrief

Integrated configuration was heavily preferred

Standalone was manageable but not ideal

Horizontal RA updates were considered excessive

- #1 reason for non-compliance
 - Multiple updates to commanded heading before reaching initial target
- Rated as manageable, but undesirable
- Felt the size of the heading changes were larger than necessary
 - 90+ deg turns off-course were common for RAs w/ 5 or more updates

Alerting and guidance rated as intuitive

- Positive feedback on visual and aural RA presentation
- Pilots did not desire an aural for every new target heading

Auto-fill functionality was deemed necessary

- 44% of pilots would be open to automatic execution of the RA response
 - Only if automation could be toggled on/off

Desired more ATC coordination time for non-coop DAA alerts

Corrective alerting was limited by shortened RADAR range

CONCLUSION

Xu Alerting & Guidance Display Implications

- No effect of Display Configuration on pilot performance
 - Strong subjective preference for Integrated display

Remain Well Clear

- Comparable response times to the Phase 1 DAA study
- Pilots maintained DWC at a high rate against cooperative intruders
- Reducing minimum RADAR range from 8nm to 6.7nm substantially cuts RWC alerting against the Phase 1 DWC
 - LoDWC rates went up considerably against non-cooperatives
- Conversion of RWC vertical speed guidance to altitude guidance should assume ownship's default vertical speed performance

Resolution Advisories

- Effective at limiting severity of DWC violations
- Auto-fill function may enable compliance with TCAS II RA response time requirements while remaining in the loop
 - Avg. RA responses were close to the 5 sec and 2.5 sec requirements
- High compliance rates to vertical RAs and <u>initial</u> horizontal RAs (~95%)
 - Compliance rate dropped substantially as target heading updates increased
 - Pre-FRAC applied refinements to rounding & hysteresis logic for horizontal RAs

QUESTIONS?

kevin.j.monk@nasa.gov

conrad.rorie@nasa.gov