

A Scheduling Algorithm Compatible with a Distributed Management of Arrivals in the National Airspace System

Alexander V. Sadovsky Robert D. Windhorst

NASA Ames Research Center

DASC 2019 September 8-12, San Diego

Context: Arrival Scheduling

Goals

- Explore the potential benefits of a distributed system (service-oriented architecture)
- Enable an airline operator to:
 - Influence its schedule...
 - ...toward its business objectives
 - keep objectives undisclosed
 - re-negotiate a schedule

Outline

- Background: Arrival Scheduling
- Goals
- Context
- Definition of a "schedule"
- Computation of a schedule

Context

- Research of options for a 2045+ Air Traffic
 Control system
- NOT an advocacy for a distributed system
- Currently: scheduling algorithms used as part of Traffic-Based Flow Management (TBFM)
- Collaborative Decision Making (CDM)

What is a schedule?

• Along a flight's route, pick nodes.

• At each node, compute a Scheduled Time for flight to Arrive (STA).

A schedule:

Node	•••	n	•••
Scheduled Time of Arrival (STA)	•••	STA ⁿ	•••

What is a *schedule*?

- The STAs are the decision variables
- What constrains the decisions?
 - traffic
 - flight performance
 - weather

Type 1: Node constraints

• STA no earlier than the *Estimated Time of Arrival*:

$STA \ge ETA$

• Time separation:

 $STA_{f2}^{n} - STA_{f1}^{n} \ge (minimal required sep'n)$

Type 2: Link constraints

• Bounds on travel time:

(shortest t.t.) \leq STA_fⁿ¹ – STA_fⁿ² \leq (longest t.t.)

• Some links: no passing

 $STA_{f1}^{n1} \leq STA_{f2}^{n1}$ implies $STA_{f1}^{n2} \leq STA_{f2}^{n2}$

Effects of node constraints

scheduling flight f

Effects of Constraints: Travel time limitations can...

...make a time window unreachable downstream:

Effects of Constraints: Travel time limitations can...

...make an upstream time window uncontrollable:

Flight *f*

NASA

12

Scheduling Algorithm: Input

- A list of flights, ordered by priority
- Each flight has:
 - A sequence of nodes
 - A given ETA at first node
 - Aircraft type (separation)
 - Bounds on travel speed (t. t. bounds)

Scheduling Algorithm, Phase 1: Times Blocked by Prior Flights' STAs

Scheduling Algorithm, Phase 2: Effects of Travel Speed Bounds

Scheduling Algorithm, Phase 3: Pairing Available Time Intervals

Scheduling Algorithm, Phase 3: Pairing Available Time Intervals

Scheduling Algorithm, Phase 4: Sequences of Time Intervals

Scheduling Algorithm, Phase 4: Sequences of Time Intervals

Scheduling Algorithm, Phase 5: Pick a Feasible Sequence

Scheduling Algorithm, Phase 5: Pick a Feasible Sequence

Scheduling Algorithm, Phase 6: Pick the STAs to objective

Scheduling Algorithm, Phase 6: Pick the STAs to objective

Scheduling Algorithm, Phase 6: Ensure constraint compliance

	node	used by flight	at STA
	i	f_m	STA(<i>i</i> , <i>f</i> _m)
	i	f_n	STA(<i>i</i> , <i>f</i> _n)
S	j	f_m	STA(<i>j</i> , <i>f</i> _m)
	• •	• •	•

node	used by flight	at STA
i	f _m	STA(<i>i</i> , <i>f</i> _m)
i	f _n	STA(<i>i</i> , <i>f</i> _n)
j	f _m	STA(<i>j</i> , <i>f</i> _m)
•	•	

Schedule Service Supplier For the Operator of a Flight *f*

			1	
distributed	node	used by flight	at STA	
record of	i	<i>f</i> _m	STA(<i>i</i> , <i>f</i> _m)	
the already	i	f _n	STA(<i>i</i> , <i>f</i> _n)	
scheduled flights	j	f _m	STA(<i>j</i> , <i>f</i> _m)	
5	•	:	:	
Schedule Service Supplier For the Operator of a Flight <i>f</i> Which flights use needed by <i>f</i> ?			h flights use nodes ed by <i>f</i> ?	

distributed record of the already scheduled flights

node	used by flight	at STA
i	f _m	STA(<i>i</i> , <i>f</i> _m)
i	f _n	STA(<i>i</i> , <i>f</i> _n)
j	f _m	STA(<i>j</i> , <i>f</i> _m)
•	:	:

Schedule Service Supplier For the Operator of a Flight *f*

Schedule Service Supplier For the Operator of another Flight

Summary

- An algorithm for the generic step in scheduling.
- Requires knowing prior schedules.
- Can be run by each agent in a distributed system.

Future research questions

- How to prioritize flights?
- Different operators' objectives:
 - Systemic inefficiencies?
 - Criteria of equity and fairness?
- How to implement re-negotiation of a schedule?
- How to ensure a negotiation ends?
- Race conditions between Service Suppliers accessing distributed record?

Thank you!

Q&A

Terminal Sequencing and Spacing

"The TMA-TM generates an arrival schedule that conditions the flow in the Center to facilitate sequencing and spacing in the TRACON. [...] [The Center controllers'] radar displays show meter lists and delay countdown timers (DCTs) with a resolution of tenths of minutes. TRACON controllers are presented with CMS advisory tools to assist schedule conformance."

Thipphavong *et. al.*, 32nd DASC, Syracuse, NY, 2013.

Collaborative Decision Making

"XYZ AIRLINE: NEW YORK METROS SURROUNDED BY SIGNIFICANT AMOUNT OF CONVECTION FOR MANY HOURS. THEY TACTICALLY MOVED A LOT OF AIRPLANES, USED LIMITED GROUND STOPS AND HAD A GDP THAT SERVED THEM WELL. A VERY GOOD JOB AND WE APPRECIATE HELPING XYZ1234 DFW-LGA FROM DIVERTING."

Source:

https://www.icao.int/SAM/Documents/2015-ACDM/8_CDM_ATFM_ACDM_Modification.pdf