The OpenSSP Snow Particle and Scattering Property Database

Ian S. Adams, Kuo-Sen Kuo, William S. Olson, Craig Pelissier, Thomas Clune, Matthew Lammers, Adrian Loftus, Robert S. Schrom, S. Joseph Munchak

Scattering Tables

The OpenSSP database include realistic particles synthesized using quasi-physical methods

- Depositional growth
- Heuristic monohabit aggregation
- Uniformly-random orientational averaging
- ~10k particles
- 230 unique file downloads
 - Does not include database testing

Backscatter Convergence

Backscatter is particularly sensitive to the number of orientations used in orientational averaging

- Far more sensitive than extinction
- Frequency dependent
- Non-uniform zenith distributions may impact results for azimuthally-random particles

Melting Particles

Melting particles are the largest gap across the various particle databases

- Currently performing scattering calculations on Dr. Ben Johnson's melted particles
 - 25 of Kuo's aggregates
 - Increased surface tension to avoid breakup
- Implemented smooth particle hydrodynamics
 - 1e6 particles
 - $_{\circ}$ Finalizing code
- High-resolutions particles costly for DDA
 - Blurring method to reduce resolution, conserve mass

Particle Blurring

Backscatter: Full resolution vs blurred

International Summer Snowfall Workshop 2019

Particle Melting using SPH

Polycrystals

A significant number of observed "pristine" particles comprise polycrystals

- Rosettes
- Capped columns
- Extending depositional growth model to produce quasi-physical polycrystals
- Currently implementing adaptive mesh for more efficient calculations

Hydrometeor Effects on Radar Multiple Scattering

Observational studies suggest graupel is a significant contributor to multiple scattering

- Demonstrated with OLYMPEX simulation
- Morrison 2M, 3 ICE
- Uniformly-random snow and graupel
- Azimuthally-random cloud ice
 - Invariant Imbedding T-Matrix Method (IITM)

Multiple Scattering Enhancement

Radiometer Simulation (OLYMPEX, 20151203, 1500 UTC)

Convective Radiometer Simulations (MC3E)

Web Interface Enhancements

Conclusion

- Free online database
- Pristines and aggregates

 Level 0
 - \circ Level 2+
- Finishing melting and polycrystals
- Employing other EM methods
- Useful for understanding
 observations

https://storm.pps.eosdis.nasa.gov/storm/OpenSSP.jsp

Family 0 p-13 p-14 p-04 p-16 p-29 p-19 p-16 p-29 p-19 p-19 p-46 p-44 p-43	Aggregate Examples @	Size [um] Select All Or Choose Up To 20 Below 187.1673 191.2374 195.1412 200 202.5121 204.2731 207.7069 211.0307 212.6542 215.8286 217.3814 220.4220 221.9113 223.3810 229.0748 231.8184 237.1189 239.6826 240.9441 244.6516	Selected @ Size [um] Frequency [GHz]	Frequency [GHz] @ Select All 3.00 5.00 10.66 13.61 18.71 23.82 35.53 89.06 94.07 150.10 165.62 176.42 180.43 186.43 190.43
--	----------------------	--	--	--