

Pressure Gain Combustion for High Speed Propulsion

Daniel E. Paxson NASA Glenn Research Center Cleveland, Ohio

Propulsion and Energy 2019 Hypersonic Air-Breathing Propulsion: Emerging Technologies and Cycles Indianapolis, Indiana August 19-22, 2019

Outline

- What is Pressure Gain Combustion (PGC)?
- Why Pursue PGC?
- How is PGC Done in the Real World?
- Challenges
- Community
- Concluding Remarks

What is Pressure Gain Combustion?

A fundamentally unsteady process whereby gas expansion by heat release is constrained, causing a rise in stagnation pressure and allowing work extraction by expansion to the initial pressure.

- Combustion may be detonative, constant volume, confined volume
- Device is fixed volume (i.e. no pistons)
- Valve at inlet (and possibly exit)

Notional Ram PGC Device

Pressure Rise Provides Increased Availability to Nozzle (or Turbine)

The Edgy Answer

- Most Air Breathing Propulsion & Power Systems Do the Same Thing:
 - Suck Squish Burn Blow
- Many Years of R&D Have Relentlessly Focused On:
 - Suck Squish - Blow
- 90+% of Performance Limiting Entropy Is Produced During:
 Burn
- Perhaps It's Time To Think About That...

Better Answer: It is Essentially the Atkinson/Humphrey Cycle Without Pistons

Atkinson Produces Less Entropy For the Same Ram Compression and Heat Addition (Less Heat Rejected, More Net Work Available)

Important Background: The Manner by Which the Cycle is Analyzed Matters

<u>Unsteady</u> Control Volume Analysis is Required for the PGC Atkinson Cycle (Simple 'States at Stations' is No Longer Sufficient)

Important Background: Expansion Phase Requires Special Attention Peak T_{t4} is Only Momentary

T_{t4}, P_{t4} Take on a Range of Values in One Cycle

Performance (i.e. Efficiency and Specific Thrust) Requires Evaluation of Flux Integrals

Why Pursue PGC?

Ideal Notional Ramjet Example

For the Same Heat Addition:

- Same Mass Averaged T_{t4}
- More Kinetic Energy Produced
- Higher Efficiency

The Ramjet PGC With Losses Illustrated

- $M_0 = 3$
- Hydrocarbon Fuel
 - $\Delta h_v = 18500 \text{ BTU/lb}_m$
 - ER = 0.8
 - $q_0 = 10.38$
- Component Efficiencies

 $- \eta_c = \eta_e = 90\%$

How is PGC Done in the Real World?

P&E 2019 HSABP Short Course

How is PGC Done in the Real World?

Resonant Pulse Combustion

(slow deflagration)

Temperature contours (top half) and fuel mass fraction contours (bottom half) at various times during one cycle (ϕ = 0.72).

Operational Rig Video

Characteristics

- Self-sustaining
- Self-aspirating (operates statically)
- Liquid fueled
- Few or no moving parts
- Relatively low mechanical/thermal stress
- Limited performance potential (confined, not constant volume combustion)
- Unequivocally demonstrated p-gain

How is PGC Done in the Real World?

Photo, movie, courtesy IUPUI and LibertyWorks

Characteristics

- Flow in ports is nominally steady
- Self-cooling is possible
- Very high frequency ignition source required
- High performance potential
- Low stress valve design
- Requires sealing between rotor and endwall
- Closest to true constant volume combustion

Internal Combustion Wave Rotor ('Fast' Deflagration)

Operational Rig Video

How is PGC Done in the Real World?

Courtesy Naval Postgraduate School
Characteristics

- Supersonic detonation
 approximates CV
- Ignition source required
- Deflagration-to-detonation transition obstacles required
- High performance potential
- High frequency valves
 required
- Highly non-uniform effluent

Pulsed Detonation Engines

Courtesy Boeing Corporation

Courtesy Air Force Research Laboratory

P&E 2019 HSABP Short Course

P&E 2019 HSABP Short Course

www.nasa.gov 14

...And PGC Someday?

Annular Cross Section

0

0.1

0.2

0.3

0.4

0.5

х

0.6

0.7

0.8

0.9

Setup

- Isentropic inlet
- Guaranteed detonation
 Stoichiometric H₂/Air
- InviscidAdiabatic
- Premixed

• P_{t3}/p₉=10 • T_{t3}=540 R

Characteristics

- Supersonic axial flow upstream of detonation throughout annulus
- Pressure gain of detonation offset by normal shock loss yielding system total pressure loss (but doesn't all scram lose total pressure?)
- Reaction completes over a <u>very short axial</u> <u>distance</u>
- Intended to demonstrate theoretically possible flow field scenario only
- Implies an annular propulsion system

...And PGC Someday?

Pulse Detonation Combined-Cycle Propulsion (PDCC)

The Concept: Take advantage of improved thermodynamic efficiency and ejector performance of pulse detonation to enable a family of high performance combined-cycle propulsion options for access to space.

Advantages for initial application study (Pulse Detonation RBCC):

•Increased rocket cycle efficiency for a given propellant supply pressure

 Improved energy transfer to the secondary stream - gasdynamic waves instead of viscous shear – for Modes 1 & 4 (ducted rocket)

•Valved combustor provides increased rocket throttle ratio, leading to improved trajectory optimization

•Fast deflagration/detonation in secondary stream can improve thermodynamic efficiency further in Modes 1 & 4

Axi-symmetric Model of PDRBCC Engine with Pressure Contours

See Yungster, S., Perkins, H., "COMPUTATIONAL STUDY OF THE AIR-AUGMENTED PULSE DETONATION ROCKET ENGINE," JANNAF Meeting, May, 2007

P&E 2019 HSABP Short Course

Challenges

(We're Engineers-This is What We Live For!)

(Hey, if it were easy, it would have been done years ago)

- Fundamental Unsteadiness
 - Manifests as loss when developed momentum is considered
 - Components to which PGC device couple (inlets, nozzles, turbomachinery) are often designed/optimized for steady flow
 - Component aerodynamic response unquantified, unsteady-tolerant design approaches
 unclear
- Valves
 - All PGC methods require robust valve systems (mechanical or aero) which: prevent backflow; have low loss on forward flow; operate at high frequency; don't fail, tolerate high heat loads (though they are at least intermittent); are lightweight.
- Thermal Management
 - PGC methods have very high associated temperatures and heat transfer coefficients. They are intermittent, but still require attention.
- Instrumentation and Measurement
 - Harsh, high frequency, large amplitude range environment of PGC devices makes most conventional measurements very difficult
- Controls and Actuation
 - Most PGC devices do not operate (well) passively
- Modeling
 - Methods for PGC are fluidically complex
 - Validated models are essential to development and optimization

Recent Research Efforts Have Yielded Substantial Progress in All Areas: No Show Stoppers

Community (U.S. Only)

Government

Defense Advanced Research Projects Agency

•Air Force Research Laboratory

•Air Force Office of Scientific Research

•National Aeronautics and Space Administration – Glenn Research Center

•Naval Research Laboratory

Department of Energy – National Energy Technology Laboratory

•GE •UTRC	Industry (incomplete) •Aerojet •Rolls/Royce	 LibertyWorks
	University (U.S. incomplete)	
PurdueIUPUIU. CincinnatiPenn. State	 Naval Postgraduate School University of Connecticut U.T. Arlington U. Central Florida 	•U. Michigan•U. Maryland•U. Florida

These and Many Other Organizations Are Represented in the AIAA Pressure Gain Combustion Technical Committee

P&E 2019 HSABP Short Course

www.nasa.gov 18

Conclusion

- Pressure Gain Combustion offers the possibility of substantial performance enhancement in high speed propulsion
- The concept can be thought of as transforming the basic propulsion cycle from Brayton to Atkinson/Humphrey
- There are numerous ways to implement PGC: All are fundamentally unsteady
- There are numerous challenges to successful implementation, but progress is ongoing and no show stoppers have been identified
- This is really exciting stuff!

END

www.nasa.gov 20