

How does the energy

What are the

altitudes/pressures and

Layers?

compositions of the cloud

balance contribute to

A Compact, Versatile Net Flux Radiometer for Ice Giant Probes

S. Aslam^{1,*}, R. K. Achterberg², S. B. Calcutt³, V. Cottini², N. J. P. Gorius⁴, T. Hewagama², P. G. Irwin³, C. A. Nixon¹, G. Quilligan¹, M. C. Roos³, A. A. Simon¹, D. Tran⁴, and G. Villanueva¹

¹NASA Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A

²University of Maryland, College Park, MD 20742, U.S.A. ³Oxford University, Parks Rd., OX1 3PU, U.K.

⁴Catholic University of America, Washington, DC 20064, U.S.A.

What is the nature of

How are the energy inputs to the atmosphere' distributed and how do these inputs interact to create the planetary-scale

patterns? Measure a change of flux of at least 0.5 W/m² per decade of pressure

Atmospheric

LW thermal

emission

outgoing

be detected?

How do the cloud layers interact with solar visible and planetary thermal

radiation to influence the atmospheric energy balance?

atmospheric dynamics? Is the intrinsic flux spatially inhomogeneous? convection and Is there a hemispheric dicholomy? circulation on the Ice Giants and how does it couple to the temperature field? 7-spectral channels

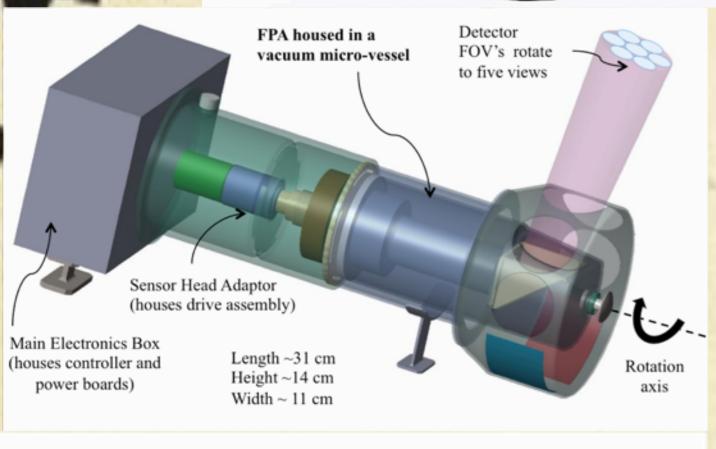
incoming SW haze, thin patchy Methane ice LW clouds reflected Hydrogen sulfide ice Altitude (km -50 Ammonium hydrosulfide ice SW emission troposphere Water, Ammonia, Water ice reflected Hydrogen sulfide droplets Wavelength -100 dependent deeper penetration of SW Internal heat LW Can the intrinsic flux 100 300 400 500 200 of Uranus or Neptune Temperature (K)

> It appears that the abundance of H2S exceeds that of NH3 in the observable atmosphere of Uranus and Neptune, which react/condense together to form a cloud of NH₄SH at a pressure of ~40 bars,

leaving the left-over H2S to condense alone at 3-5 bar.

Solar SW

de-Pater and his colleagues did observations at microwave wavelengths with the VLA and found a missing component of continuum absorption that was concluded to most likely arise from the pressure-broadened wings of H2S lines and moré recently Patrick Irwin and his colleagues have directly detected absorption lines of H2S at near-infrared wavelengths above the main observable cloud deck on Uranus and Neptune (check out our abstract for references)


10

20

50

100

200

1-m

diameter

probe

	Width ∼ 11 cm	
Vacuum Micro	Filter Bank	Fold Mirror Sub-assembly
Detector Sub-assembly		
Winston cone Sub-assembly		Vacuum Pumpout
Vacuum		Port
micro-vessel Cold Ta	rget	Hot Target

	repre acore ac	
Parameter	IG-NFR	
Spectral range	0.2 to 300 µm	
Optics	Non-imaging Winston cones	
Channels	7 science + 1 blind	
Field-Of-View	5 degrees	ŀ
Viewing angles	±80°; ±45° and 0° relative to nadir/zenith	
Detectors (uncooled)	7 thermopile pixels + 1 dark	88.0
Pixel size	0.5 mm diameter	1
Mass	~ 2.4 kg	
Basic power	~ 5.2 W	١
Envelope	$(11 \times 31 \times 14) \text{ cm}^3$	I,
Data volume (90 mins)	670 kbits	
Operating modes	36 ms integration	
Observation strategy	Sequential rotation into five sky view angles	

Filters, Winston cones, detectors and fold mirror are all housed in a vaccum

Ch#	Wavelength (µm)	Objectives		
1	2.5-300	Deposition/loss of thermal radiation		
2	0.6-3.5	Solar deposition in methane absorption region; cloud particles		
3	0.2-3.5	Total deposition of solar radiation and hot spot detection		
4-7		ve transfer modelling studies for H ₂ S, NH ₃ , gaseous abundances and cloud opacities		
8	Blind	Reference		

FPGA board
Interface board
oinosanns
Annum AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Multi-Channel Digitizer ASIC

A typical readout channel exhibits an average spot noise of ~27 nW/VHz

Ch	annel	SNR		
(µm)		50K	100K	300K
1	2.5-300	46	632	50819
2	0.6-3.5	140	140	168
3	0.2-3.5	226	226	254
	7279	3,121	100	-1111

We acknowledge support from NASA GSFC research and development funds and additionally the NASA ROSES PICASSO program. Presented at EPSC-DPS 2019, Geneva, Switzerland.

micro-vessel