

NASA/TM–2019–220221

Structure Deformation Calculation Program

Based on Displacement Theory for Shape

Predictions

Van Tran Fleischer, and William L. Ko

Armstrong Flight Research Center

Edwards, California 93523

August 2019

PATENT PROTECTION NOTICE

The method for structure deformed shape predictions using Displacement Theory to transform distributed

surface strains into structure deformed shapes described in this NASA technical report is protected under

Method for Real-Time Structure-Shape Sensing, U.S. Patent No. 7,520,176, issued April 21, 2009. Therefore,

those interested in using the method (with the accompanying program) should contact NASA Technology

Transfer Office at NASA Armstrong Flight Research Center, Edwards, California for more information.

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space science.

The NASA scientific and technical information (STI)

program plays a key part in helping NASA maintain

this important role.

The NASA STI program operates under the auspices

of the Agency Chief Information Officer. It collects,

organizes, provides for archiving, and disseminates

NASA’s STI. The NASA STI program provides access

to the NTRS Registered and its public interface, the

NASA Technical Reports Server, thus providing one

of the largest collections of aeronautical and space

science STI in the world. Results are published in both

non-NASA channels and by NASA in the NASA STI

Report Series, which includes the following report

types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase of

research that present the results of NASA

Programs and include extensive data or theoretical

analysis. Includes compila-

tions of significant scientific and technical data

and information deemed to be of continuing

reference value. NASA counter-part of peer-

reviewed formal professional papers but has less

stringent limitations on manuscript length and

extent of graphic presentations.

 TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain minimal

annotation. Does not contain extensive analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

 CONFERENCE PUBLICATION.

Collected papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or

co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA

programs, projects, and missions, often

concerned with subjects having substantial

public interest.

 TECHNICAL TRANSLATION.

English-language translations of foreign

scientific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing

and publishing research results, distributing

specialized research announcements and feeds,

providing information desk and personal search

support, and enabling data exchange services.

For more information about the NASA STI program,

see the following:

 Access the NASA STI program home page at

http://www.sti.nasa.gov

 E-mail your question to help@sti.nasa.gov

 Phone the NASA STI Information Desk at

757-864-9658

 Write to:

NASA STI Information Desk

Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

This page is required and contains approved text that cannot be changed.

NASA/TM–2019–220221

Structure Deformation Calculation Program

Based on Displacement Theory for Shape

Predictions

Van Tran Fleischer, and William L. Ko

Armstrong Flight Research Center

Edwards, California 93523

 Insert conference information, if applicable; otherwise delete

 Click here: Press F1 key (Windows) or Help key (Mac) for help

 Enter acknowledgments here, if applicable.

National Aeronautics and

Space Administration

Armstrong Flight Research Center

Edwards, California 93523-0273

August 2019

 Click here: Press F1 key (Windows) or Help key (Mac) for help

This report is available in electronic form at

http://ntrs.nasa.gov

v

Table of Contents

Abstract ..1

Nomenclature ...1

Introduction ..2

Shape Prediction Technical Background ...2

Key Terminologies...3

Theoretical Background ...3

Depth Factors ...3

Depth Factors Known ... 3

Depth Factors Unknown ... 4

List of the Shifted Displacement Transfer Functions ..4

Vertical Deflection for Cantilever Embedded Beams ...5

Nonuniform Shifted Displacement Transfer Functions .. 5

Slightly Nonuniform Shifted Displacement Transfer Functions 5

Uniform Shifted Displacement Transfer Functions .. 5

Vertical Deflection for Two-End Supported Embedded Beams..6

List of Curved Displacement Transfer Functions ..6

Large Deflection for Cantilever Embedded Beam ...7

Nonuniform Curved Displacement Transfer Functions .. 7

Slightly Nonuniform Curved Displacement Transfer Functions 7

Uniform Curved Displacement Transfer Functions .. 7

Large Deflection for Two-end Supported Embedded Beam ...8

Cross-Sectional Twist Angle ...8

Procedure to Use the Program ...9

Preparation of the Strain Data File ...9

vi

Preparation of the Geometry file..9

Running the program ...9

Output files created by the program ...10

Structure Types ..10

Type 1 – Cantilever Embedded Beam ...10

Type 1 Structure .. 10

Type 1 Strain Data File ... 11

Type 1 Geometry File ... 12

Type 1 Deflection File .. 12

Type 1 Slope File .. 12

Max Min Deflection File for All Structure Types .. 13

Type 1 Output Files .. 13

Type 2 – Two-end Supported Beam ..13

Type 2 Structure .. 13

Type 2 Strain Data File ... 14

Type 2 Geometry File ... 15

Type 2 Deflection File .. 15

Type 2 Output Files .. 15

Type 3 – Tapered Wing Box and Two-line System ..15

Type 3 Structure .. 15

Type 3 Strain Data File ... 16

Type 3 Geometry File ... 16

Type 3 Deflection File .. 17

Type 3 Slope File .. 17

Type 3 Cross-sectional Twist Angle File.. 18

vii

Type 3 Output Files .. 18

Type 4 – Doubly Tapered Wing and Four-line System ...18

Type 4 Structure .. 18

Type 4 Strain Data File ... 19

Type 4 Geometry File ... 20

Type 4 Deflection File .. 20

Type 4 Slope File .. 21

Type 4 Depth Factor File .. 21

Type 4 Twist Angle File ... 22

Type 4 Output Files .. 22

Type 5 – Thin Uniform Plate ...22

Type 5 Structure .. 22

Type 5 Strain Data File ... 23

Type 5 Geometry File ... 23

Type 5 Deflection File .. 24

Type 5 Output Files .. 24

Type 6 – Long Beam with Known Depth Factors ...24

Type 6 Structure .. 24

Type 6 Strain Data File ... 25

Type 6 Geometry File ... 25

Type 6 Deflection File .. 25

Type 6 Slope File .. 26

Type 6 Output Files .. 26

Type 7 – Long Beam with Unknown Depth Factors ...26

Type 7 Structure .. 26

viii

Type 7 Strain Data File ... 27

Type 7 Geometry File ... 27

Type 7 Deflection File .. 28

Type 7 Slope File .. 28

Type 7 Depth Factor File .. 28

Type 7 Output Files .. 29

Final Remarks ..29

Appendix A: Program Flowchart ...30

Appendix B: Program Header File ..32

Appendix C: Program Code in C++ ..34

References ..67

1

Abstract

Separated programs were written in C/C++ to validate the Displacement Transfer Functions. The

Structure Deformation Calculation Program was written to combine all of the programs to calculate

deformed shapes of a structure using surface strain data and structural geometrical parameters. Users do

not need to know the material properties, nor the complex internal structures geometry because the

Displacement Theory is purely geometrical in nature. Users only need to know the structure types as defined

in this report and information such as the structure length, depth factors, number of strain sensors, and the

surface strains measured at the strain-sensing stations installed on the structures. Depending on the structure

type, an applicable Displacement Transfer Function will be used. This program requires two input files

created by users; the recorded strain data file in comma-separated values format and the structure geometry

data file in text format. The program will output the out-of-plane deflections, slopes, cross-sectional twist

angles, and depth factors if applicable. All output files are created in comma-separated values format. A

section in this report describes step-by-step procedures on how to use the Structure Deformation Calculation

Program for structure deformed shape calculations.

Nomenclature

 constant depth factor (vertical distance from the neutral axis to the lower surface of the

uniform embedded beam), in.

 lower depth factor at

(distance from the embedded beam neutral axis to the i-th

strain-sensing station on the lower surface of the embedded beam), in.

 upper depth factor at

(distance from the embedded beam neutral axis to the i-th

strain-sensing station on the upper surface of the embedded beam, in.

cn value of at free end, , in.

 value of at fixed end, , in.

csv comma-separated values format

𝑑𝑖 chord-wise separation distance of two strain-sensing lines at , in.

𝑑𝑛 value of 𝑑𝑖 at wing tip, 𝑥 = 𝑥𝑛 = 𝑙, in.

𝑑0 value of 𝑑𝑖 at wing root, 𝑥 = 𝑥0 = 0, in.
hi depth of the front embedded beam at , in.

 value of at free end, , in.

 value of at fixed end, , in.

l length of an embedded beam, in.

n number of domains or index for the last span-wise strain-sensing station

NASA National Aeronautics and Space Administration

P applied load, lb

SG strain gauge

txt text format

wn wing tip chord length (width), in.

w0 wing root chord length (width), in.

x, y Cartesian coordinates (x in axial direction, y in lateral direction), in.

𝑥𝑖 axial coordinate of i-th strain sensor, in.

𝑥𝑛 axial coordinate at wing tip x = 𝑥𝑛 = 𝑙, in.

𝑦𝑖 vertical deflection at , in.

yi curved deflection at , in.

c

ci x = xi

ci x = xi

ci

x = xn = l

c0 ci

x = x0 = 0

x = xi

x = xi
hn hi x = xn = l

h0 hi

x = x0 = 0

x = xi
x = xi

2

 vertical deflection at x = 𝑥𝑛 = 𝑙, in.

y

𝑛
 curved deflection at x = 𝑥𝑛 = 𝑙, in.

 vertical deflection at of a two-end supported embedded beam, in.

y

𝑖

𝐵

 curved deflection at of a two-end supported embedded beam, in.

(∆𝑙)𝑖 = , i-th domain length (distance between two adjacent strain-sensing

stations), in.

Δln domain length at the tip, 𝑥𝑛 − 𝑥𝑛−1, in.

𝜀𝑖 lower surface bending strain at strain-sensing station i, in/in

𝜀�̅� upper surface bending strain at strain-sensing station i, in/in

𝜀𝑛 lower surface bending strain at the tip, strain-sensing station n, in/in

𝜀0 lower surface bending strain at the root, strain-sensing station 0, in/in

𝜀(𝑥) surface bending strain at axial location x, in/in

 𝜃𝑖 slope angle of a cantilever embedded beam at , rad

𝜃𝑛 slope angle of a cantilever embedded beam at (free end), rad

𝜃0 slope angle of a cantilever embedded beam at (fixed end), rad

 cross-sectional twist angle of a cantilever embedded beam at , rad

()′ quantity associated with the rear strain-sensing lines

Introduction

Traditionally, the wing deflections can be measured during ground testing by using position transducers

or a photogrammetry system. For in-flight deflection measurements, those methods cannot be used. One

technique is to use the electro-optical flight deflection measurement systems, which are composed of on-

board cameras and several wing mounted targets. Such systems can provide wing deflection information

during the flight, but can be too heavy for lightweight flying vehicle applications.

After the invention of the Displacement Theory which contains different Displacement Transfer

Functions (refs. 1–12), a patented technology called, “Method for Real-Time Structure Shape-Sensing,”

U.S. Patent Number 7,520,176 (ref. 2), was granted. The shape-sensing technology is to use the

Displacement Transfer Functions to transform distributed surface strains into structure deformed shapes.

This structure shape-sensing technology is quite attractive for the in-flight deformed shape monitoring of

flight vehicles for flight control and maintaining flight safety. In addition, the real time wing shape

monitored could then be input to the aircraft control system for aero-elastic wing shape control.

The objective of this technical memorandum is to provide users some guidance on how to use the

Structure Deformation Calculation Program to calculate the deformed shape of a structure based on the

Displacement Theory and Displacement Transfer Functions (refs. 1–12). Users need to prepare two files,

the recorded measured surface strain data in a comma-separated values (csv) file and the required

geometrical information in a text (txt) file. Depending on the structure type, the program will create several

csv output files that contain the out-of-plane deflections , slopes 𝜃𝑖 , cross-sectional twist angles , and

depth factors 𝑐𝑖 if applicable.

Shape Prediction Technical Background

The structure shape prediction using the Displacement Transfer Functions to transform the distributed

surface strains into structure deformed shapes was reported in many National Aeronautic and Space

Administration (NASA) technical reports (refs. 1–12). The following sections only cover what are related

yn

yi
B x = xi

x = xi

il º (xi - xi-1)

x = xi
x = xn = l

x = x0 = 0

i x = xi

yi i

3

to the Structure Deformation Calculation Program. To understand more about the Displacement Theory

and Displacement Transfer Functions, users can read the NASA technical reports listed in the reference

section.

Key Terminologies

A surface line, along which the strain-sensing stations are to be discretely distributed, is called a strain-

sensing line. The surface strains are to be measured at those strain-sensing stations and recorded. The region

between any two adjacent strain-sensing stations is called the domain. The structure depth-wise cross

section along the strain-sensing line is called the embedded beam (not to be confused with the traditional

isolated Euler-Bernoulli beam). The distances from the embedded beam neutral axis to the strain-sensing

stations along the lower strain-sensing line are called the depth factors. When the data of bending surface

strains, domain lengths, depth factors, and number of strain-sensing stations are input into the appropriate

Displacement Transfer Functions, the deformed shape of each embedded beam can be calculated.

Theoretical Background

In the formulations of the Displacement Transfer Functions (refs. 1–12), each embedded beam was first

discretized into multiple small domains with domain junctures matching the strain-sensing stations. Such a

discretization approach allowed the surface strain distribution along each strain-sensing line to be

represented with a piecewise-linear function. The piecewise-linear approach enabled piecewise integrations

of the embedded-beam curvature equation to yield the Displacement Transfer Functions, which

geometrically relate the surface strains to the out-of plane deflections along the embedded beam.

For structure shape calculations using the Displacement Transfer Functions, surface strain data and

depth factors of an embedded beam are needed. Based on the type of structure geometry and loading

conditions, users can select the proper strain-sensing line system and structure type for their structures. If

the depth factors are unknown, extra strain-sensing line(s) is/are required. The Structure Deformation

Calculation Program covers seven structure types that have depth factors known and depth factors

unknown.

Depth Factors

The depth factors of a structure are important variables in Displacement Transfer Functions. The depth

factors , along with strains 𝜀𝑖 and domain lengths , are used in the calculations of the vertical

deflections 𝑦𝑖, slopes 𝜃𝑖 , and cross-sectional twist angles if applicable at the i-th strain-sensing location.

For some structures, it is difficult to know the depth factors; therefore, extra strain-sensing lines are needed.

Depth Factors Known

Structure types 1 and 6 for a one-line system applied to a cantilever beam are shown in the type 1 and

type 6 sections of this report. Structure type 2 for a two-end supported tubular beam is shown in the type 2

section. Since the depth factors are known, only one strain-sensing line on the lower surface is needed for

bending shape prediction analysis.

Structure type 3 for a two-line system on the lower surface for combined bending and torsion or on the

side and lower surfaces for combined horizontal and vertical bending is shown in the type 3 section. The

two-line system includes tapered un-swept and swept wing boxes. If the depth factor is known, only two

strain-sensing lines along the lower front and lower rear edges are needed. For this type of structure, the

local cross-sectional twist angles can be calculated.

Structure type 5 for a square thin plate (finite-element model) subjected to a point load at the plate

center, inducing two-dimensional bending under different edge conditions (four edges clamped or simply

ci il

i

4

supported) is shown in the type 5 section. Because the depth factors are known, only the multi parallel

strain-sensing lines on the lower surface are needed.

Depth Factors Unknown

Structure type 4 of a four-line system with two lines on the lower surface and two lines on the upper

surface for shape calculations of structures under combined bending and torsion is shown in the type 4

section. The four-line system is the most suitable sensing system for slender aircraft wings, for which the

two neutral axes are unknown and are always subjected to both bending and torsion loadings. Two upper

strain-sensing lines are needed for calculations of unknown depth factors. If the depth factors are known,

the upper surface lines are not required.

The depths at the beam root and beam tip at the front of the embedded beam are known, and

the local depth can be calculated as shown in equation (1a).

 ; (𝑖 = 1,2,3, … , 𝑛) (1a)

The depths at the beam root and beam tip at the rear of the embedded beam are known, and

the local depth can be calculated as shown in equation (1b).

 ; (𝑖 = 1,2,3, … , 𝑛) (1b)

The values of calculated and the bending strains where are the bending strains of the

front upper surface are used to calculate as shown in equation (2a).

; ; (𝑖 = 1,2,3, … , 𝑛) (2a)

The values of calculated at the rear and the bending strains where are the bending strains

of the rear upper surface are used to calculate as shown in equation (2b).

; ; (𝑖 = 1,2,3, … , 𝑛) (2b)

For a nonuniform large bending structure of a two-line system on lower and upper surfaces, an extra

upper strain-sensing line is required to calculate the depth factors as shown in type 7 section.

List of the Shifted Displacement Transfer Functions

Based on the piecewise-linear representations of both depth factor and surface strain 𝜀𝑖 where

𝑖 = 1, 2, 3, … , 𝑛, the Shifted Displacement Transfer Functions (refs. 1, 3) were formulated to transform the

surface strains 𝜀𝑖 into slopes and vertical deflections {𝑡𝑎𝑛𝜃𝑖, 𝑦𝑖}

along the embedded beam. The Shifted

},{ 0 nhh

ih

l

x
hhhh i

ni 00

},{ 0 nhh

ih

l

x
hhhh i

ni
 00

ih },{ ii i

ic

i

ii

i
i hc

||||

||

iii chc

ih },{ ii
i

ic

i

ii

i
i hc

||||

||

iii chc

ci

5

Displacement Transfer Functions for vertical deflections have the following different mathematical forms

formulated for different types of structures (nonuniform, slightly nonuniform, and uniform).

Vertical Deflection for Cantilever Embedded Beams

There are three Shifted Displacement Transfer Functions for a cantilever embedded beam where

(𝑦0 = 𝑡𝑎𝑛𝜃0 = 0).

Nonuniform Shifted Displacement Transfer Functions

The depth factors are not equal (𝑐𝑖−1 ≠ 𝑐𝑖), (refs. 1, 3). The slope equation (in recursive form) is

shown as equation (3a):

; (𝑖 = 1,2,3, … , 𝑛)

(3a)

The vertical deflection equation (in recursive form) is shown as equation (3b):

 ; (𝑖 = 1,2,3, … , 𝑛)

(3b)

Equations (3a) and (3b) are used for structure types 1, 3, and 4.

Slightly Nonuniform Shifted Displacement Transfer Functions

The depth factors are almost equal , (refs. 1, 3). The slope equation (in recursive form) is

shown as equation (4a):

 ; (𝑖 = 1,2,3, … , 𝑛)

(4a)

The vertical deflection equation (in recursive form) is shown as equation (4b):

 ; (𝑖 = 1,2,3, … , 𝑛)

(4b)

Equations (4a) and (4b) are used for structure types 1, 3, and 4.

Uniform Shifted Displacement Transfer Functions

The depth factors are equal , (ref. 1). The slope equation (in recursive form) is shown as

equation (5a):

(ci-1® ci)

(ci-1 = ci = c)

6

 ; (𝑖 = 1,2,3, … , 𝑛)

(5a)

The vertical deflection equation (in recursive form) is shown as equation (5b):

 ; (𝑖 = 1,2,3, … , 𝑛)

(5b)

Vertical Deflection for Two-End Supported Embedded Beams

The vertical deflection of the two-end supported embedded beam (simply supported or fixed) can

be calculated from equation (6) (ref. 1):

 ; (𝑖 = 1,2,3, … , 𝑛)

(6)

In equation (6), is the vertical deflection of the slightly nonuniform cantilever embedded beam

(applicable to the limit case of uniform embedded beams). The mathematical expression of in equation

(6) was obtained by combining the slope equation (4a) and the deflection equation (4b) into a single

equation. The shift factor (𝑥𝑖/𝑙)𝑦𝑛 appearing in equation (6) is to proportionally shift the cantilever

deflection curve of and convert it to the deflection curve of the two-end supported beam with zero

deflection 𝑦𝑖
𝐵 = 0 at the beam tip 𝑖 = 𝑛 (second support point).

List of Curved Displacement Transfer Functions

For large bending deformations of highly flexible slender structures, one must understand that the actual

(true) deflection yi of a material point at is a curved distance traced by the same material point

from its initial un-deformed position to its final deformed position. Thus, the conventional vertical

deflection is merely the vertical component of the curved true deflection yi (refs. 3, 11). The Curved

Displacement Transfer Functions have the following different mathematical forms for different types of

structures (nonuniform, slightly nonuniform, and uniform).

yi
B

yi
yi

yi

x = xi

yi

7

Large Deflection for Cantilever Embedded Beam

Just like the small bending deformations, the large bending deformations have three Curved

Displacement Transfer Functions for a cantilever embedded beam for which yi= 𝜃0 = 0.

Nonuniform Curved Displacement Transfer Functions

The depth factors are not equal (𝑐𝑖−1 ≠ 𝑐𝑖), (ref. 11). The slope equation (in recursive form) is shown

in equation (7a):

 ; (𝑖 = 1,2,3, … , 𝑛)

(7a)

The curved deflection equation (in recursive form) is shown in equation (7b):

 ; (𝑖 = 1,2,3, … , 𝑛)

(7b)

Slightly Nonuniform Curved Displacement Transfer Functions

The depth factors are almost equal , (ref. 3). The slope equation (in recursive form) is shown

in equation (8a):

 ; (𝑖 = 1,2,3, … , 𝑛)

(8a)

The curved deflection equation (in recursive form) is shown in equation (8b):

 ; (𝑖 = 1,2,3, … , 𝑛)

(8b)

Uniform Curved Displacement Transfer Functions

The depth factors are equal , (ref. 11). The slope equation (in recursive form) is shown

in equation (9a):

(ci-1® ci)

(ci-1 = ci = c)

8

 ; (𝑖 = 1,2,3, … , 𝑛)
(9a)

The curved deflection equation (in recursive form) is shown in equation (9b):

 ; (𝑖 = 1,2,3, … , 𝑛)

(9b)

Large Deflection for Two-end Supported Embedded Beam

The curved deflection y

𝑖

𝐵
 of the two-end supported embedded beam (simply supported or fixed) can

be calculated from equation (10), which enforces zero deflection at the beam tip (i = n) of the cantilever

embedded beam using shifting factor (ref. 1):

 ; (𝑖 = 1,2,3, … , 𝑛)

(10)

In equation (10), y

𝑖

𝐵
 is the curved deflection of a slightly nonuniform cantilever embedded beam.

Equation (10) was obtained by combining the slope angle equation (8a) and the curved deflection equation

(8b) into a single equation, and is applicable to the limit case of uniform embedded beams.

It is important to mention that, if in equations (3) − (5) are replaced respectively with

{𝜃𝑖 , yi}, then equations (3) − (5) become equations (7) − (9) for the shape calculations of structures under

geometrical nonlinear large deformations (ref. 11).

Cross-Sectional Twist Angle

For structure types 3 and 4 that have front and rear strain-sensing lines, the cross-sectional twist angle

at the strain-sensing station i, 𝑥 = 𝑥𝑖 , is calculated using equation (11).

 ; (𝑖 = 1,2,3, … , 𝑛)

(11)

 (xi l)
⌢
yn

{tanqi ,yi}

9

Procedure to Use the Program

In order to use the Structure Deformation Calculation Program, users are required to have Microsoft

Visual Studio software (Microsoft Corporation, Redmond, Washington) or any server that can compile

C/C++ to compile this program. Users need to create two input files, a strain data file and a geometry file

in the required formats. The arrangements of the data in these files are different depending on the structure

type as defined in the next section.

Preparation of the Strain Data File

The strain data file must be in csv format with the first line containing the header of “time” and names

of the strain-sensing stations. The second line to the last line should contain the time and the measured

surface strains 𝜀𝑖 of each strain-sensing station i on each strain-sensing line from the fixed end 𝜀0 to the

free end 𝜀𝑛. The time format in this file will be copied to the output files. If there are multiple strain-sensing

lines, strain data on one line must finish before starting strain data on the next line.

Preparation of the Geometry file

The geometry file must be prepared in txt format with spaces or tab delimiters between two values.

This file contains the geometry data that the program will use to calculate deformations. The distances in

this report are measured in inches, but users can use any units they want as long as they are consistent. This

file has some or all of the following elements.

1. Structure type from 1 to 7.

2. Total length of the structure in inches l.

3. Domain length in inches. The domain length, (∆𝑙)𝑖 = ∆𝑙𝑖, is the distance between two adjacent

strain sensors 𝑖-1 and i on a strain-sensing line; can be constant or variable.

4. Total number of strain-sensing stations installed on the structure. If the structure has multiple strain-

sensing lines, the number of stations installed on each strain-sensing line must be the same. The

domain lengths between two adjacent sensors 𝑖-1 and i on each strain-sensing line must also be

the same; for example, on line 1 = on line 2 = on line k: ∆𝑙1𝑖 = ∆𝑙2𝑖 = ∆𝑙𝑘𝑖.

5. Depth factors in inches (can be known or unknown).

6. Chord-wise distances in inches (for structures that have front and rear strain-sensing lines).

7. Depths in inches (at the fixed end and at the free end for structures that have lower and upper

strain-sensing lines).

Running the program

After creating two required input files, users can run this the Structure Deformation Calculation

Program. The program will prompt the user for three following inputs.

$ Enter strain data filename:

$ Enter geometry filename:

$ Enter structure type:

Users must enter inputs to the above prompts in order to run the program. The program will always

calculate vertical deflections , slopes 𝜃𝑖, and determine the maximum and minimum deflections for each

strain-sensing station. Different structure configurations in the formulations of the Displacement Theory

and Displacement Transfer Functions (refs. 1-12) are categorized into seven structure types in this program.

il

il

il il il

ci

di
h0 hn

yi

10

Depending on the structure type, the program will also calculate the depth factors and/or the cross-

sectional twist angles .

Output files created by the program

The program will use the name of the strain data file to create the names of the output files in csv format

by appending it with _Deflections, _Slopes, _Deflections_MaxMin, _DepthFactors, and _TwistedAngles.

For example, if the strain data filename is N13.csv, the output files are N13_Deflections.csv,

N13_Slopes.csv, N13_Deflections_MaxMin.csv, N13_DepthFactors.csv, and N13_TwistAngles.csv. The

first row in the deflection file and slope file is labeled exactly the same as the first row in the strain data

file. The first column in the deflection file and slope file is exactly the same as the first column in the strain

data file. All structure types will have the deflection and maximum minimum deflection files. The

deflections are measured in inches and the slopes and twist angles are measured in degrees. When finishing,

the program will print out a complete message and also the names of the output files.

Structure Types

With the intention to make the Structure Deformation Calculation Program easy to use, one-line, two-

line, and four-line systems, with known and unknown depth factors, with vertical and curved deflections,

and with short and long lengths are categorized into seven structure types. The structure types cover the

range from the simplest one-line uniform cantilever beam with known depth factors to a complicated four-

line doubly tapered wing with unknown depth factors. Each structure type requires different formats of the

strain and geometry files and has different output files. Dependent on the structure type, a correct Transfer

Function is used in the program to calculate deflections, slopes, cross-sectional twist angles, and depth

factors if applicable.

Type 1 – Cantilever Embedded Beam

For a cantilever embedded beam with strain-sensing stations distributed along the bottom strain-sensing

line, the depth factors are known, and no torsion is involved. The one-line system can be used for shape

prediction analysis. The cantilever embedded beam is the simplest structure type.

Type 1 Structure

Figure 1(a) shows a uniform cantilever beam with 𝑐0 = 𝑐𝑛 , and figure 1(b) shows a tapered cantilever

or nonuniform beam with 𝑐0 > 𝑐𝑛.

cn

i

11

Figure 1(a). Type 1 structure of a uniform cantilever beam.

Figure 1(b). Type 1 structure of a tapered cantilever or nonuniform beam.

Type 1 Strain Data File

For type 1 strain data file, recorded strains must be arranged as shown in figure 1(c). The SG_0 is

always the strain-sensing station at the fixed end, and SG_n is always the strain-sensing station at the free-

end. In figure 1(c), SG_n is SG_16.

 The first line is the header containing the title “time” and names of the strain-sensing station starting

from the fixed end.

 The second line to the last line must contain the times and measured strains at stations SG_0, SG_1,

…, SG_n.

 The first column contains the times that can be in any time format.

 The columns after the first column contain the measured strains at stations SG_0, SG_1, …, SG_n.

Figure 1(c). Type 1 strain data file.

12

Type 1 Geometry File

For type 1 geometry files, users must prepare the geometry file in txt format as shown in figure 1(d) or

figure 1(e).

Figure 1(d). Type 1 geometry file of a uniform cantilever beam constant domains.

Figure 1(e). Type 1 geometry file of a tapered cantilever beam variable domains.

This file has two lines:

Line 1:

 The first field is the structure type.

 The second field is the structure length.

 The third field is the number of strain-sensing stations counting from the fixed end.

 The fourth field is the depth factor 𝑐0 at the fixed end.

 The fifth field is the depth factor 𝑐𝑛 at the free end.
Line 2 for Δli domain:

 1 is for constant domain; after 1 is nothing as shown in figure 1(d).

 2 is for variable domain; after 2 are Δl1, Δl2, …, Δln as shown in figure 1(e).

Type 1 Deflection File

After starting the program, users need to enter the strain data filename, the geometry filename, and

structure type as 1. The program will compare the entered structure type 1 with the structure type

programmed in the geometry file. If they are equal to 1, the program will calculate the deflections and save

the results in a deflection file as shown in figure 1(f).

Figure 1(f). Type 1 deflection file.

Type 1 Slope File

Similar to the deflections, the program will calculate the slopes. The results will be saved in a slope file

as shown in figure 1(g).

13

Figure 1(g). Type 1 slope file.

Max Min Deflection File for All Structure Types

After calculating deflections for all strain-sensing stations, the max min deflections are determined and

written in the output max min deflection file. Users should center the data columns so that the data are more

readable. This file is always created for all structure types with the format as shown in figure 1(h).

Figure 1(h). Maximum and minimum deflection file.

Type 1 Output Files

Type 1 does not have depth factors nor twist angles. Type 1 output files are a deflection file, a slope

file, and a max min deflection file.

Type 2 – Two-end Supported Beam

A cantilever beam with a two-end supported beam is installed with strain-sensing stations distributed

along the bottom strain-sensing line. In this case, the load P is applied in the middle of the structure. The

slopes will not be calculated.

Type 2 Structure

Figure 2(a) shows a two-end simply supported beam and figure 2(b) shows a two-end fixed beam. An

additional case is one end fixed and other end simply supported.

14

Figure 2(a). Type 2 structure of a beam with two-end simply supported.

Figure 2(b). Type 2 structure of a beam with two-end fixed beam.

Type 2 Strain Data File

The strain data file is prepared in csv format similar to type 1 as shown in figure 2(c).

Figure 2(c). Type 2 strain data file.

15

Type 2 Geometry File

The geometry file is prepared in txt format similar to the type 1 above. The geometry file is shown in

figures 1(d) and 1(e).

Type 2 Deflection File

After starting the program, users need to enter the strain data filename, the geometry filename, and the

structure type as 2. The program will compare the entered structure type 2 with the structure type

programmed in the geometry file. If they are equal to 2, the program will calculate the deflections and save

the results in a deflection file as shown in figure 2(d).

Figure 2(d). Type 2 deflection file.

Type 2 Output Files

Type 2 only have deflections. Type 2 output files are a deflection file and a max min deflection file.

Type 3 – Tapered Wing Box and Two-line System

A tapered wing box with two strain-sensing lines where strain-sensing stations are distributed along

front and rear bottom lines. Twist angles will be calculated in this case. Any two strain-sensing lines can

be used as long as they are in the same vertical or horizontal plane. The domain lengths for strain-sensing

station i on two strain-sensing lines must be the same; for example, Δli = Δl1i on line 1 = Δl2i on line 2.

Type 3 Structure

Figure 3(a) shows a wing box with two lower strain-sensing lines.

16

Figure 3(a). Type 3 Structure of a tapered wing box two-line system.

Type 3 Strain Data File

Users need to prepare the strain data file in csv format as shown in figure 3(b). The strain values on one

line must be completed before starting on the other line.

Figure 3(b). Type 3 strain data file.

Type 3 Geometry File

Users need to prepare the geometry file as shown in figures 3(c) and 3(d). This file has three lines.

Figure 3(c). Type 3 geometry file constant domains.

17

Figure 3(d). Type 3 geometry file variable domains.

Line 1:

 The first field is the structure type.

 The second field is the structure length.

 The third field is the total number of strain-sensing stations.

 The fourth field is the chore-wise distance 𝑑0 at the fixed end.

 The fifth field is the chore-wise distance 𝑑𝑛 at the free end.
Line 2 for Δli domain:

 1 is for constant domain; after 1 is nothing as shown in figure 3(c).

 2 is for variable domain; after 2 are Δl1, Δl2, …, Δln as shown in figure 3(d).
Line 3 for depth factors:

 If the beam depth tapers down linearly from the fixed end to the free end, enter 1. After 1, enter the

depth factor 𝑐0 and 𝑐𝑛 for the front line, 𝑐0′ and 𝑐𝑛′ for the rear line as shown in figure 3(c).

 If the beam depth does not taper down linearly from the fixed end to the free end, enter 2. After 2,

enter the depth factors in the order of the strain sensors in the strain data file as shown in figure 3(d),

𝑐0 for lf_sg0, …, 𝑐𝑛 for lf_sg8, 𝑐0′ for lr_sg0, …, 𝑐𝑛′ for lr_sg8.

Type 3 Deflection File

After starting the program, users need to enter the strain data filename, the geometry filename, and the

structure type as 3. The program will compare the entered structure type 3 with the structure type

programmed in the geometry file. If they are equal to 3, the program will calculate the deflections and save

the results in a deflection file as shown in figure 3(e).

Figure 3(e). Type 3 deflection file.

Type 3 Slope File

Similar to the deflections, the program will calculate the slopes. The results will be saved in a slope file

as shown in figure 3(f).

18

Figure 3(f). Type 3 slope file.

Type 3 Cross-sectional Twist Angle File

Similar to the deflections and slopes, the program will calculate the twist angles. The results will be

saved in a twist angle file as shown in figure 3(g).

Figure 3(g). Type 3 twist angle file.

Type 3 Output Files

Type 3 does not have depth factors. Type 3 output files are a deflection file, a slope file, a twist angle

file, and a max min deflection file.

Type 4 – Doubly Tapered Wing and Four-line System

A doubly tapered wing with four strain-sensing lines where strain-sensing stations are distributed along

two front lines and two rear lines. Depth factors and twist angles will be calculated in this case. The domain

lengths for strain-sensing station i on four strain-sensing lines must be the same; for example, Δli = Δl1i on

line 1 = Δl2i on line 2 = Δl3i on line 3 = Δl4i on line 4. Type 4 is the most complicated type; users need to

prepare the strain data file and the geometry file carefully.

Type 4 Structure

Figure 4(a) shows a doubly tapered wing with a four-line system. The two extra lines must be added to

determine depth factors 𝑐𝑖. After running this structure type one time, users have the depth factors 𝑐𝑖 created

by this program. Then, users can use structure type 3 with a two-line system.

The lower front strains are (𝜀0, 𝜀1, 𝜀2, … , 𝜀𝑛).

The upper front strains are (𝜀0̅, 𝜀1̅, 𝜀2̅, … , 𝜀�̅�).

The lower rear strains are (𝜀0
′ , 𝜀1

′ , 𝜀2
′ , … , 𝜀𝑛

′).

The upper rear strains are (𝜀0̅
′ , 𝜀1̅

′ , 𝜀2̅
′ , … , 𝜀�̅�

′).

19

Figure 4(a). Type 4 structure of a doubly tapered wing four-line system.

Type 4 Strain Data File

Users need to prepare a single strain data file in csv format as shown in figure 4(b). The first strain

sensor on each line must always be located at the fixed end. The strain values on one line must be completed

before starting on the next line. The order of strains need to be exactly as shown in figure 4(b). The top half

containing strain data for the front starts from column B and the bottom half containing strain data for the

rear starts from column T.

20

Figure 4(b). Type 4 strain data file.

Type 4 Geometry File

Users need to prepare the Geometry file in txt format as shown in figure 4(c).

Figure 4(c). Type 4 geometry File.

Line 1:

 The first field is the structure type.

 The second field is the structure length.

 The third field is the total number of strain-sensing stations.

 The fourth field is the separation distance from the front and the rear at the fixed end, 𝑑0.

 The fifth field is the separation distance from the front and the rear at the free end, 𝑑𝑛.

 The sixth field is the beam depth at the front fixed end, ℎ0.

 The seventh field is the beam depth at the front free end, ℎ𝑛.

 The eighth field is the beam depth at the rear fixed end, ℎ0′.
 The ninth field is the beam depth at the rear free end, ℎ𝑛′.

Line 2 for Δli domain:

 1 is for constant domain; nothing after 1 as shown in figure 1(d).

 2 is for variable domain; after 2 are Δl1, Δl2, …, Δln as shown in figure 4(c).

Type 4 Deflection File

After starting the program, users need to enter the strain data filename, the geometry filename, and the

structure type as 4. The program will compare the entered structure type 4 with the structure type

programmed in the geometry file. If they are equal to 4, the program will calculate the deflections and save

the results in a deflection file as shown in figure 4(d).

21

Figure 4(d). Type 4 deflection file.

Type 4 Slope File

Similar to the deflections, the program will calculate the slopes. The results will be saved in a slope file

as shown in figure 4(e).

Figure 4(e). Type 4 slope file.

Type 4 Depth Factor File

The program will calculate the depth factors for type 4. The results will be saved in a depth factor file

as shown in figure 4(f). Structure type 4 does not have depth factors 𝑐𝑖; therefore, a four-line system is

used. After the 𝑐𝑖 are calculated from this program, users can use structure type 3 with a two-line system.

Figure 4(f). Type 4 depth factor file.

22

Type 4 Twist Angle File

The program will also calculate the twist angles for type 4. The results will be saved in a twist angle

file as shown in figure 4(g). Users can change the title names LwrStation_0, …, UprStation_8 to whatever

names that make sense to them.

Figure 4(g). Type 4 twist angle file.

Type 4 Output Files

The program creates the most output files for this type. Type 4 output files are a deflection file, a slope

file, a depth factor file, a twist angle file, and a max min deflection file.

Type 5 – Thin Uniform Plate

For a uniform plate (𝑐0 = 𝑐𝑛), the strain sensor system requires multiple parallel strain-sensing lines

across the two opposite edges as shown in figure 5(a). The four edges of the plate can be either fixed or

simply supported. The load is applied somewhere in the center of the plate. The plate must be very thin and

the depth factor is very small compared to the length. The domain lengths for strain-sensing station i on

every strain-sensing line must be the same; for example, Δli = Δl1i on line 1 = Δl2i on line 2 = Δl3i on line

3 = Δl ki on line k. Similar to type 2, the slopes will not be calculated.

Type 5 Structure

Figure 5(a) shows a thin uniform plate with parallel strain-sensing lines with undeformed and deformed

shapes.

23

Figure 5(a). Type 5 structure of a very thin plate.

Type 5 Strain Data File

Users need to prepare the strain data file in csv format with strain values on one line which must be

completed before starting on the next line. Lines must start from one end across to the other end as shown

in figure 5(b); for example, line 1, line 2, …, line k. For more details of how to arrange the type 5 strain

data file, users can refer to the type 1 strain data file and the type 4 strain data file in the report.

Figure 5(b). Type 5 strain data file for three lines.

Type 5 Geometry File

The geometry file should be prepared in txt format as shown in figure 5(c). This file has two lines:

Line 1:

 The first field is the structure type.

 The second field is the length of the strain-sensing line.

 The third field is the number of strain-sensing stations.

 The fourth field is the plate thickness.

 The fifth field is the number of strain-sensing lines on the plate.

24

Line 2 for Δli domain:

 1 is for constant domain; after 1 is nothing as shown in figure 1(d).

 2 is for variable domain; after 2 are Δl1, Δl2, …, Δln as shown in figure 5(c).

Figure 5(c). Type 5 geometry file.

Type 5 Deflection File

After starting the program, users need to enter the strain data filename, the geometry filename, and the

structure type as 5. The program will compare the entered structure type 5 with the structure type

programmed in the geometry file. If they are equal to 5, the program will calculate the deflections and save

the results in a deflection file as shown in figure 5(d).

Figure 5(d). Type 5 deflection file for three lines.

Type 5 Output Files

Type 5 does not have slopes, nor twist angles. The output files are a deflection file and a max min

deflection file.

Type 6 – Long Beam with Known Depth Factors

Type 6 is the same as type 1 where the length of the structure is very long compared to the width and

known depth factors 𝑐𝑖. For large deformations, 𝑡𝑎𝑛𝜃𝑖 is replaced by 𝜃𝑖 in the Displacement Transfer

Function used for type 1.

Type 6 Structure

Figure 6(a) shows a nonuniform long cantilever beam with undeformed and deformed shapes.

25

Figure 6(a). Type 6 structure of a long beam with known 𝑐𝑖.

Type 6 Strain Data File

For type 6, recorded strains must be arranged as type 1 and is shown in figure 6(b). For more details,

refer to the type 1 strain data file in the report.

Figure 6(b). Type 6 strain data file.

Type 6 Geometry File

For type 6, users need to prepare the geometry file in txt format similar to type 1. For more details, refer

to the type 1 geometry file shown in figures 1(d) and 1(e).

Type 6 Deflection File

After starting the program, users need to enter the strain data filename, the geometry filename, and the

structure type as 6. The program will compare the entered structure type 6 with the structure type

programmed in the geometry file. If they are equal to 6, the program will calculate the deflections and save

the results in a deflection file as shown in figure 6(c).

26

Figure 6(c). Type 6 deflection file.

Type 6 Slope File

Similar to the deflections, the program will calculate the slopes. The results will be saved in a slope file

as shown in figure 6(d).

Figure 6(d). Type 6 slope file.

Type 6 Output Files

Type 6 does not have depth factors, nor twist angles. Type 6 output files are a deflection file, a slope

file, and a max min deflection file.

Type 7 – Long Beam with Unknown Depth Factors

Type 7 is the same as type 1 where the length of the structure is very long compared to the width and

unknown depth factors 𝑐𝑖. For this type, an extra strain-sensing line on the upper surface is needed to

calculate the depth factors 𝑐𝑖. For large deformations, 𝑡𝑎𝑛𝜃𝑖 is replaced by 𝜃𝑖 in the Displacement Transfer

Function used for type 1.

Type 7 Structure

Figure 7(a) shows a long cantilever beam with two strain-sensing lines.

Figure 7(a). Type 7 Structure of a long beam with unknown 𝑐𝑖.

27

Type 7 Strain Data File

Users need to prepare the strain data file in csv format as shown in figure 7(b). The two strain sensors

lf_sg0 and uf_sg0 are always at the fixed end. The strain values on one line must be completed before

starting on the other line; normally the lower front strain-sensing line is first followed by the upper front

strain-sensing line.

Figure 7(b). Type 7 strain data file.

Type 7 Geometry File

For type 7, users need to prepare the Geometry file in txt format as shown in figures 7(c) and 7(d). This

file has two lines:

Line 1:

 The first field is the structure type.

 The second field is the structure length.

 The third field is the number of strain-sensing stations.

 The fourth field is the wing root depth ℎ0 at the front.
 The fifth field is wing tip depth ℎ𝑛 at the front.

Line 2 for Δli domain:

 1 is for constant domain; after 1 is nothing as shown in figure 7(c).

 2 is for variable domain; after 2 are Δl1, Δl2, …, Δln as shown in figure 7(d).

Figure 7(c). Type 7 geometry file constant domains.

28

Figure 7(d). Type 7 geometry file variable domains.

Type 7 Deflection File

After starting the program, users need to enter the strain data filename, the geometry filename, and the

structure type as 7. The program will compare the entered structure type 7 with the structure type

programmed in the geometry file. If they are equal to 7, the program will calculate the deflections and save

the results in a deflection file as shown in figure 7(e).

Figure 7(e). Type 7 deflection file.

Type 7 Slope File

Similar to the deflections, the program will calculate the slopes. The results will be saved in a slope file

as shown in figure 7(f).

Figure 7(f). Type 7 slope file.

Type 7 Depth Factor File

Similar to the deflections and slopes, the program will calculate the depth factors. The results will be

saved in a depth factor file as shown in figure 7(g). After the 𝑐𝑖 are calculated from this program, users can

use structure type 6 with only one strain-sensing line.

29

Figure 7(g). Type 7 depth factor file.

Type 7 Output Files

Type 7 does not have twist angles. Type 7 output files are a deflection file, a slope file, a depth factor

file, and a max min deflection file.

Final Remarks

There have been many NASA/TPs and NASA/TMs written and published about the Displacement

Theory throughout the years. The Displacement Transfer Functions were derived for many structure types.

The shape prediction accuracy of the Displacement Theory was analytically validated by finite-element

analysis of the Ikhana wing (General Atomics Aeronautical Systems Inc., Poway, California) (ref. 13). The

Displacement Theory was also experimentally validated using real-time strain data recorded from the

ground loads tests performed in the Flight Load Laboratory at the NASA Armstrong Flight Research Center

with full-scale Global Observer (AeroVironment Inc., Monrovia, California) aircraft wings (ref.14) and the

GIII (Gulfstream Aerospace, Savannah, Georgia) swept wing structure (ref. 15). In order for users to apply

the Displacement Transfer Functions without requiring deep knowledge of the Displacement Theory, the

Structure Deformation Calculation Program was written and completed. This program will output the out-

of-plane deflections, slopes, cross-sectional twist angles, and depth factors based on the structure type. The

outputs of this program can be plotted for all strain-sensing stations in one time slice, one strain-sensing

station in all time slices, or all strain-sensing stations in all time slices. This program is versatile and can be

applied to a wide range of structures such as aircraft and spacecraft (wing, tail, and fuselage), ships (slab,

plate, beam, and truss), skyscrapers, radio towers, bridges, and windmills. The data outputs by the program

can be used to monitor the integrity of a structure, and appropriate actions would be made if the structure

shows weakness that may cause serious safety issues.

30

Appendix A: Program Flowchart

The Structure Deformation Calculation Program is written for 7 structure types, it is important that

users know their structure types. Each structure type requires different geometry information and different

strain arrangement. The program flowchart is displayed in figures A1 and A2.

Figure A1. Flowchart of the start of the Structure Deformation Calculation Program.

31

Figure A2. Flowchart of the end of the Structure Deformation Calculation Program.

32

Appendix B: Program Header File

/***

* TITLE: DisplacementCalculation.h - Structure Deformation Calculation Program Header *

* *

* Written by: Van Tran Fleischer *

* Title: Electronics Engineer *

* Date: September 13, 2017 *

* Version: 1 *

* Organization: Advanced Systems Development Branch, Code 540 *

* Center: NASA Armstrong Flight Research Center *

* *

* INTRODUCTION: *

 * *

* This file contains C++ include files, functions, constants and variables used *

* in DisplacementCalculation.cpp. *

* *

***/

#include <iostream>

#include <fstream>

#include <string>

#include <cmath>

#include <iomanip>

#include <vector>

using namespace std;

double asin(double x);

double tan(double x);

double atan(double x);

double sqrt(double x);

double log(double x);

double pow(double x, double y);

int GetUserInputs();

int ReadGeometryFile();

int ReadType1_2_6();

int ReadType3();

int ReadType4();

int ReadType5();

int ReadType7();

int CreateOutputFiles();

int CalcDisplacement();

void CalculateC();

void CalcTwistAngles();

void DetermineMaxMin();

void WriteMaxMinFile();

void CloseFiles_ClearVectors();

ifstream inFile;

33

ifstream geoFile;

ofstream outFile;

ofstream thetaFile;

ofstream phiFile;

ofstream maxminFile;

ofstream cFile;

string inputFile;

string ingeoFile;

string outputFile;

string outthetaFile;

string outphiFile;

string outmaxminFile;

string outcFile;

vector<string> stationNames, tMax, tMin;

vector<double> epsilon, deltaL, x, y, yB, yMax, yMin;

vector<double> theta, tan_theta, phi, sin_phi;

vector<double> c, d, h;

const int MAX_LINE = 500000;

const int TRUE = 1;

const int FALSE = 0;

const int ERROR = -1;

const int OK = 0;

const int VAR_DOMAIN = 2;

const int TAPERED = 1;

const double TPR_RATIO = 0.9;

const double PI = 3.1415926535897932;

char *token, *t;

char *nextToken = NULL;

char inBuff[MAX_LINE];

double C, C0, Cn, C0_prime, Cn_prime, D0, Dn, H0, Hn, H0_prime, Hn_prime,

 strain, length, const_deltaL, H_ratio, Hprime_ratio;

int calC = FALSE, checked = OK;

unsigned int i, j, k, n, structureType, structType, cType, domainType, numLines,

 nStations, numStations, noStations, first_time = 1, phiCreated = 0,

 cCreated = 0, lineNum = 0;

34

Appendix C: Program Code in C++

/***

* TITLE: DisplacementCalculation.cpp – Structure Deformation Calculation Program *

* *

* Written by: Van Tran Fleischer *

* Title: Electronics Engineer *

* Date: September 13, 2017 *

* Version: 1 *

* Organization: Advanced Systems Development Branch, Code 540 *

* Center: NASA Armstrong Flight Research Center *

* *

* INTRODUCTION: *

* *

* In order to use this program, users must prepare a .csv file that *

* contains time and strain values with the following format: *

* *

* The 1st line of the .csv file should contain the headers that contains *

* Time and Strain-sensing stations names. *

* *

* The second line and thereafter should have time and strain data for *

* each strain-sensing station on the structure. *

* *

* -- *

* | Time | SG1 Name | SG2 Name | SG.. Name | SGn Name | *

* -- *

* |076 09:04:15.313 | 0.01155 | 0.01173 | | 0.01125 | *

* -- *

* |076 09:04:15.363 | 0.01164 | 0.01181 | | 0.01137 | *

* -- *

* |076 09:04:15.413 | 0.01172 | 0.01187 | | 0.01146 | *

* -- *

* |076 09:04:15.463 | 0.01187 | 0.01194 | | 0.01158 | *

* --- *

* *

* Users must prepare a .txt file that contains the data about structure. *

* The format of this file is different based on structure type. *

* *

* This program will prompt users for the names of two files and structure type. *

* *

* 1. Strain data input filename in .csv extension. This file must be located in the same *

* directory as the DisplacementCalculation.exe. *

* *

* 2. Geometry input filename in .txt format. This file must be located in the same *

* directory as the DisplacementCalculation.exe program. *

* *

* 3. Enter structure type: *

* 1 for uniform or tapered cantilever embedded beam with 1 strain line *

* 2 for two-end supported embedded beam *

* 3 for wing box with 2 strain lines & known c *

35

* 4 for doubly wing box with four-line system & unknown c *

* 5 for thin uniform plate *

* 6 for curved deformation of long tapered cantilever beam *

* 7 for curved deformation of long nonlinear beam *

* *

* NOMENCLATURE used in the program: *

* *

* C: depth factor of uniform beam, in. *

* c[i]: depth factors at strain-sensing station i, x=xi, in. *

* C0, c[0]: value of c[i] at fixed end (beam root) strain-sensing station, in. *

* Cn, c[n]: value of c[i] at free end (beam tip) strain-sensing station, in. *

* d: chord-wise distance between two span-wise parallel strain lines, in. *

* d[i]: chord-wise distance between front strain-sensing stations i and rear strain-sensing *

* stations i', in. *

* deltaL[i]: distance between strain-sensing stations on a same strain-sensing line i-1 & i , in. *

* x[i]: distance from the fixed end to the i-th strain-sensing station, in. *

* y[i]: deflection at strain-sensing station i, in. *

* theta[i], θ[i]: slope of deformed beam at strain-sensing station i, deg *

* phi[i], Φ[i]: cross-sectional twist angle at strain-sensing station i, deg *

* *

* REVISION HISTORY: *

* *

* Initial Release: September 13, 2017 *

* *

* Revisions: *

* *

***/

#include "DisplacementCalculation.h"

int CalcDisplacement()

{

 double term1, term2, term3, term4;

 // Clear epsilon arrays

 epsilon.clear();

 // Read a line of data in the Strain input file

 while (inFile.getline(inBuff, MAX_LINE))

 {

 // Read time for the current time slice

 token = strtok_s(inBuff, " ,\t\n", &nextToken);

 // First value is time

 if (token)

 {

 // Save time

 t = token;

 // Write time to deflection output file

 outFile << t << ",";

36

 // Write time to slope output file

 if ((structureType != 2) && (structureType != 5))

 {

 thetaFile << t << ",";

 }

 // Write time to twist angle output file

 if ((structureType == 3) || (structureType == 4))

 phiFile << t << ",";

 }

 // Read the input strains for the current time slice

 while (token)

 {

 token = strtok_s(0, " ,\t\n", &nextToken);

 if (token)

 {

 strain = atof(token);

 epsilon.push_back(strain);

 y.push_back(0);

 yB.push_back(0);

 if ((structureType != 2) && (structureType != 5))

 {

 theta.push_back(0);

 tan_theta.push_back(0);

 }

 if ((structureType == 3) || (structureType == 4))

 {

 phi.push_back(0);

 sin_phi.push_back(0);

 }

 }

 }

 switch (structureType)

 {

 case 1: // uniform or tapered cantilever beam

 // Set deflection and slope at the fixed end

 y[0] = 0.0;

 theta[0] = 0.0;

 // Write to deflection and slope output files

 outFile << fixed << setprecision(6) << y[0];

 thetaFile << fixed << setprecision(6) << theta[0];

37

 // Uniform

 if (C0 == Cn)

 {

 for (i = 1; i < numStations; i++)

 {

 // Eq. (5a) in this paper or Eq. (24) in NASA/TP-2009-214643

 term1 = epsilon[i - 1] + epsilon[i];

 tan_theta[i] = (deltaL[i] / (2.0*C0)) * term1 + tan_theta[i - 1];

 theta[i] = atan(tan_theta[i]) * 180.0 / PI;

 // Eq. (5b) in this paper or Eq. (26) in NASA/TP-2009-214643

 term2 = (2.0*epsilon[i - 1]) + epsilon[i];

 y[i] = (deltaL[i] * deltaL[i] / (6.0*C0)) * term2 + y[i - 1] +

 deltaL[i] * tan_theta[i - 1];

 // Write to deflection and slope output files

 outFile << "," << fixed << setprecision(6) << y[i];

 thetaFile << "," << fixed << setprecision(6) << theta[i];

 }

 }

 else if ((c[1] / C0 > TPR_RATIO) && (Cn / c[n-1] > TPR_RATIO))

{

 // Slightly Tapered

 for (i = 1; i < numStations; i++)

 {

 // Eq. (4a) in this paper or Eq. (14a) in NASA/TP-2015-218464

 term1 = (2.0 - (c[i] / c[i - 1])) * epsilon[i - 1] + epsilon[i];

 tan_theta[i] = (deltaL[i] / (2.0*c[i - 1])) * term1 + tan_theta[i - 1];

 theta[i] = atan(tan_theta[i]) * 180.0 / PI;

 // Eq. (4b) in this paper or Eq. (14b) in NASA/TP-2015-218464

 term2 = (3.0 - (c[i] / c[i - 1])) * epsilon[i - 1] + epsilon[i];

 y[i] = (deltaL[i] * deltaL[i] / (6.0*c[i - 1])) * term2 + y[i - 1] +

 deltaL[i] * tan_theta[i - 1];

 // Write to deflection and slope output files

 outFile << "," << fixed << setprecision(6) << y[i];

 thetaFile << "," << fixed << setprecision(6) << theta[i];

 }

}

else

 {

 // Nonuniform

 for (i = 1; i < numStations; i++)

 {

 // Eq. (3a) in this paper or Eq. (13a) in NASA/TP-2015-218464

 term1 = (epsilon[i - 1] - epsilon[i]) / (c[i - 1] - c[i]);

 term2 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) *

 log(c[i] / c[i - 1]) / pow((c[i - 1] - c[i]), 2);

 tan_theta[i] = deltaL[i] * (term1 + term2) + tan_theta[i - 1];

 theta[i] = atan(tan_theta[i]) * 180.0 / PI;

38

 // Eq. (3b) in this paper or Eq. (13b) in NASA/TP-2015-218464

 term3 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) /

 pow((c[i - 1] - c[i]), 3);

 term4 = c[i] * log(c[i] / c[i - 1]) + (c[i - 1] - c[i]);

 y[i] = deltaL[i] * deltaL[i] * ((term1 / 2.0) - term3*term4) +

 y[i - 1] + deltaL[i] * tan_theta[i - 1];

 // Write to deflection and slope output files

 outFile << "," << fixed << setprecision(6) << y[i];

 thetaFile << "," << fixed << setprecision(6) << theta[i];

 }

 }

 break;

 case 2: // two-end supported

 // Set values at the selected fixed end

 y[0] = 0.0;

 yB[0] = 0.0;

 // Write to deflection output file

 outFile << fixed << setprecision(6) << yB[0];

 // Calculate deflection y

 for (i = 1; i < numStations; i++)

 {

 term1 = 0.0;

 term2 = 0.0;

 // Eq. (6) in this paper or Eq. (36) in NASA/TP-2009-214643

 for (j = 1; j <= i; j++)

 {

 term2 = (1.0 / c[i - j]) *

 ((3.0 * (2.0*j - 1.0) - ((3.0*j - 2.0)* c[i - j + 1] / c[i - j])) * epsilon[i - j]

 + (3.0*j - 2.0) * epsilon[i - j + 1]);

 term1 += term2;

 }

 y[i] = deltaL[i] * deltaL[i] * term1 / 6.0;

 }

 // Calculate deflection yB

 for (i = 1; i < numStations; i++)

 {

 // yB = y - the correction term

 yB[i] = y[i] - (x[i] / length * y[n]);

 // Write to deflection output file

 outFile << "," << fixed << setprecision(6) << yB[i];

39

 }

 break;

 case 3: // two-line system

 // Calculate deflections and slopes

 for (j = 0; j < 2; j++)

 {

 // Set values at the fixed end

 y[j*nStations] = 0.0;

 theta[j*nStations] = 0.0;

 // Write to deflection and slope output files

 outFile << fixed << setprecision(6) << y[j*nStations];

 thetaFile << fixed << setprecision(6) << theta[j*nStations];

 for (i = j*nStations + 1; i < (j*nStations + nStations); i++)

 {

 // Eq. (3a) in this paper or Eq. (13a) in NASA/TP-2015-218464

 term1 = (epsilon[i - 1] - epsilon[i]) / (c[i - 1] - c[i]);

 term2 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1])*log(c[i] / c[i - 1]) /

pow((c[i - 1] - c[i]), 2);

 tan_theta[i] = deltaL[i - j*nStations] * (term1 + term2) + tan_theta[i - 1];

 theta[i] = atan(tan_theta[i]) * 180.0 / PI;

// Eq. (3b) in this paper or Eq. (13b) in NASA/TP-2015-218464

 term3 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) / pow((c[i - 1] - c[i]), 3);

 term4 = c[i] * log(c[i] / c[i - 1]) + (c[i - 1] - c[i]);

 y[i] = deltaL[i - j*nStations] * deltaL[i - j*nStations] * ((term1 / 2.0) -

term3*term4) + y[i - 1] + deltaL[i - j*nStations] * tan_theta[i - 1];

 // Write to deflection and slope output files

 outFile << "," << fixed << setprecision(6) << y[i];

 thetaFile << "," << fixed << setprecision(6) << theta[i];

 }

 // Write "," in output files

 outFile << ",";

 thetaFile << ",";

 }

 // Calculate twist angles

 CalcTwistAngles();

 break;

 case 4: // 4-line system

 // Calculate c[i]

 if (calC == FALSE)

 {

 CalculateC();

40

 }

 // Calculate deflections and slopes

 for (j = 0; j < 4; j++)

 {

 // Set values at the fixed end

 y[j*nStations] = 0.0;

 theta[j*nStations] = 0.0;

 // Write to deflection and slope output files

 outFile << fixed << setprecision(6) << y[j*nStations];

 thetaFile << fixed << setprecision(6) << theta[j*nStations];

 for (i = j*nStations + 1; i < (j*nStations + nStations); i++)

 {

 // Eq. (3a) in this paper or Eq. (13a) in NASA/TP-2015-218464

 term1 = (epsilon[i - 1] - epsilon[i]) / (c[i - 1] - c[i]);

 term2 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1])*log(c[i] / c[i - 1]) /

pow((c[i - 1] - c[i]), 2);

 tan_theta[i] = deltaL[i - j*nStations] * (term1 + term2) + tan_theta[i - 1];

 theta[i] = atan(tan_theta[i]) * 180.0 / PI;

 // Eq. (3b) in this paper or Eq. (13b) in NASA/TP-2015-218464

 term3 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) / pow((c[i - 1] - c[i]), 3);

 term4 = c[i] * log(c[i] / c[i - 1]) + (c[i - 1] - c[i]);

 y[i] = deltaL[i - j*nStations] * deltaL[i - j*nStations] * ((term1 / 2.0) -

term3*term4) + y[i - 1] + deltaL[i - j*nStations] * tan_theta[i - 1];

 // Write to deflection and slope output files

 outFile << "," << fixed << setprecision(6) << y[i];

 thetaFile << "," << fixed << setprecision(6) << theta[i];

 }

 // Write "," in output files

 outFile << ",";

 thetaFile << ",";

 }

 // Calculate twist angles

 CalcTwistAngles();

 break;

 case 5: // Thin uniform plate

 // Calculate deflections

 for (j = 0; j < numLines; j++)

 {

 // Set values at the selected fixed end

 y[j*nStations] = 0.0;

 yB[j*nStations] = 0.0;

41

 // Write to deflection output file

 outFile << fixed << setprecision(6) << yB[j*nStations];

 // Calculate y deflections

 for (i = j*nStations + 1; i < (j*nStations + nStations); i++)

 {

 term1 = 0.0;

 term2 = 0.0;

 // Eq. (6) in this paper or Eq. (36) in NASA/TP-2009-214643

 for (k = 1; k <= (i-j*nStations); k++)

 {

 term2 = (1.0 / C) *

 ((3.0 * (2.0*k - 1.0) - (3.0*k - 2.0)) * epsilon[i - k]

 + (3.0*k - 2.0) * epsilon[i - k + 1]);

 term1 += term2;

 }

 y[i] = deltaL[i - j*nStations] * deltaL[i - j*nStations] * term1 / 6.0;

 }

 // Calculate yB deflections

 for (i = j*nStations + 1; i < (j*nStations + nStations); i++)

 {

 // yB = y - the correction term

 yB[i] = y[i] - (x[i-j*nStations] / length * y[n + j*nStations]);

 // Write to deflection output file

 outFile << "," << fixed << setprecision(6) << yB[i];

 }

 // Write "," in output file

 outFile << ",";

 }

 break;

 case 6: // curved deformation of 1 line long tapered beam

 // Set deflection and slope at the fixed end

 y[0] = 0.0;

 theta[0] = 0.0;

 // Write to deflection and slope output files

 outFile << fixed << setprecision(6) << y[0];

 thetaFile << fixed << setprecision(6) << theta[0];

 // Calculate curved deflections of tapered beam

// Uniform

 if (C0 == Cn)

42

 {

 for (i = 1; i < numStations; i++)

 {

 // Eq. (9a) in this paper or Eq. (18a) in NASA/TP-2017-219406

 term1 = epsilon[i - 1] + epsilon[i];

 theta[i] = (deltaL[i] / (2.0*C0)) * term1 + theta[i - 1];

 // Eq. (9b) in this paper or Eq. (18b) in NASA/TP-2017-219406

 term2 = (2.0*epsilon[i - 1]) + epsilon[i];

 y[i] = (deltaL[i] * deltaL[i] / (6.0*C0)) * term2 + y[i - 1] +

 deltaL[i] * theta[i - 1];

 // Write to deflection and slope output files

 outFile << "," << fixed << setprecision(6) << y[i];

 thetaFile << "," << fixed << setprecision(6) << theta[i] * 180.0 / PI;

 }

 }

 else if ((c[1] / C0 > TPR_RATIO) && (Cn / c[n - 1] > TPR_RATIO))

 {

 // Slightly Nonuniform Tapered

 for (i = 1; i < numStations; i++)

 {

 // Eq. (8a) in this paper or Eq. (18) in NASA/TP-2009-214643

 term1 = (2.0 - (c[i] / c[i - 1])) * epsilon[i - 1] + epsilon[i];

 tan_theta[i] = (deltaL[i] / (2.0*c[i - 1])) * term1 + theta[i - 1];

 // Eq. (8b) in this paper or Eq. (21) in NASA/TP-2009-214643

 term2 = (3.0 - (c[i] / c[i - 1])) * epsilon[i - 1] + epsilon[i];

 y[i] = (deltaL[i] * deltaL[i] / (6.0*c[i - 1])) * term2 + y[i - 1] +

 deltaL[i] * theta[i - 1];

 // Write to deflection and slope output files

 outFile << "," << fixed << setprecision(6) << y[i];

 thetaFile << "," << fixed << setprecision(6) << theta[i] * 180.0 / PI;

 }

 }

 else

 {

 // Nonuniform Curved Deformation

 for (i = 1; i < numStations; i++)

 {

 // Eq. (7a) in this paper or Eq. (18a) in NASA/TP-2017-219406

 term1 = (epsilon[i - 1] - epsilon[i]) / (c[i - 1] - c[i]);

 term2 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1])*log(c[i] / c[i - 1]) /

pow((c[i - 1] - c[i]), 2);

 theta[i] = deltaL[i] * (term1 + term2) + theta[i - 1];

 // Eq. (7b) in this paper or Eq. (18b) in NASA/TP-2017-219406

 term3 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) / pow((c[i - 1] - c[i]), 3);

 term4 = c[i] * log(c[i] / c[i - 1]) + (c[i - 1] - c[i]);

43

 y[i] = deltaL[i] * deltaL[i] * ((term1 / 2.0) - term3*term4) + y[i - 1] +

deltaL[i] * theta[i - 1];

 // Write to deflection and slope output files

 outFile << "," << fixed << setprecision(6) << y[i];

 thetaFile << "," << fixed << setprecision(6) << theta[i] * 180.0 / PI;

 }

 }

 break;

 case 7: // curved deformation for 2 lines, lower and upper; unknown c

 // Calculate c[i]

 if (calC == FALSE)

 {

 CalculateC();

 }

 // Calculate nonlinear large deflections and slopes for a long nonuniform structure

 for (j = 0; j < 2; j++)

 {

 // Set values at the fixed end

 y[j*nStations] = 0.0;

 theta[j*nStations] = 0.0;

 // Write to deflection and slope output files

 outFile << fixed << setprecision(6) << y[j*nStations];

 thetaFile << fixed << setprecision(6) << theta[j*nStations];

 for (i = j*nStations + 1; i < (j*nStations + nStations); i++)

 {

 // Eq. (7a) in this paper or Eq. (18a) in NASA/TP-2017-219406

 term1 = (epsilon[i - 1] - epsilon[i]) / (c[i - 1] - c[i]);

 term2 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1])*log(c[i] / c[i - 1]) /

pow((c[i - 1] - c[i]), 2);

 theta[i] = deltaL[i - j*nStations] * (term1 + term2) + theta[i - 1];

 // Eq. (7b) in this paper or Eq. (18b) in NASA/TP-2017-219406

 term3 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) / pow((c[i - 1] - c[i]), 3);

 term4 = c[i] * log(c[i] / c[i - 1]) + (c[i - 1] - c[i]);

 y[i] = deltaL[i - j*nStations] * deltaL[i - j*nStations] * ((term1 / 2.0) –

term3*term4) + deltaL[i - j*nStations] * theta[i - 1] + y[i - 1];

 // Write to deflection and slope output files

 outFile << "," << fixed << setprecision(6) << y[i];

 thetaFile << "," << fixed << setprecision(6) << theta[i] * 180.0 / PI;

 }

 // Write "," in output files

 outFile << ",";

 thetaFile << ",";

44

 }

 break;

 } // switch

 // Put the end of line to output files

 outFile << endl;

 if ((structureType != 2) && (structureType != 5))

 {

 thetaFile << endl;

 }

 if ((structureType == 3) || (structureType == 4))

 phiFile << endl;

 // Initialize vectors yMax, yMin, tMax and tMin for the first time

 if (first_time == 1)

 {

 if ((structureType != 2) && (structureType != 5))

 {

 for (i = 0; i < numStations; i++)

 {

 yMax[i] = y[i];

 yMin[i] = y[i];

 tMax[i] = t;

 tMin[i] = t;

 }

 }

 else

 {

 for (i = 0; i < numStations; i++)

 {

 yMax[i] = yB[i];

 yMin[i] = yB[i];

 tMax[i] = t;

 tMin[i] = t;

 }

 }

 first_time = 0;

 }

 // Determin max and min deflections

 DetermineMaxMin();

 // Clear vectors

 epsilon.clear();

45

 y.clear();

 yB.clear();

 theta.clear();

 phi.clear();

 }

 return(OK);

}

int GetUserInputs()

{

 // Get required data from user

 cout << "$ Enter Strain Data filename: ";

 cin >> inputFile;

 // Open input file

 inFile.open(inputFile.c_str(), ios::in);

 if (inFile.fail())

 {

 cerr << "Could not open " << inputFile << "!\n";

 cerr << "Please check your Strain Data filename!\n\n";

 checked = ERROR;

 return(ERROR);

 }

 cout << "$ Enter Geometry filename: ";

 cin >> ingeoFile;

 // Open geometry input file

 geoFile.open(ingeoFile.c_str(), ios::in);

 if (geoFile.fail())

 {

 cerr << "Could not open " << ingeoFile << "!\n";

 cerr << "Please check your Geometry filename!\n\n";

 checked = ERROR;

 return(ERROR);

 }

 cout << "\nStructure Type:\n";

 cout << "1 for uniform or tapered beam with 1-line system.\n";

 cout << "2 for two-end supported.\n";

 cout << "3 for 2-line system.\n";

 cout << "4 for 4-line system.\n";

 cout << "5 for thin uniform plate.\n";

 cout << "6 for curved deformation of long tapered beam.\n";

cout << "7 for curved deformation of long nonlinear beam.\n";

// Prompt for structure type from user

 cout << "\n$ Enter structure type: ";

 cin >> structureType;

 if ((structureType < 1) || (structureType > 7))

46

 {

 cout << "\nThe entered structure type is not valid! Must be from 1 to 7!\n";

 cerr << "Please rerun the program and enter a valid structure type!\n\n";

 checked = ERROR;

 return(ERROR);

 }

 return(OK);

}

int ReadGeometryFile()

{

 // Check structureType to load geometry data correctly

 switch (structureType)

 {

 case 1: // uniform & tapered

 case 2: // two-end supported

 case 6: // curved deformation of long tapered beam

 ReadType1_2_6();

 break;

 case 3: // 2 lines and known c

 ReadType3();

 break;

 case 4: // 4 lines and unknown c

 ReadType4();

 break;

 case 5: // 2-point supported

 ReadType5();

 break;

 case 7: // nonuniform curved deflection, 2 lines, lower and upper, unknown c

 ReadType7();

 break;

 } // switch structureType

 // Check structure type

 if (structType != structureType)

 {

 cerr << "\nThe entered structure type is different from the one in the Geometry file!\n";

 cerr << "Please Check Geometry File " << ingeoFile << "!\n\n";

 checked = ERROR;

 return(ERROR);

47

 }

 // Initialize vectors yMax, yMin, tMax, and tMin

 for (i = 0; i < numStations; i++)

 {

 yMax.push_back(0);

 yMin.push_back(0);

 tMax.push_back("0");

 tMin.push_back("0");

 }

 return(OK);

}

int ReadType1_2_6()

{

 lineNum = 0;

 // Read the 1st line of geometry file

 while (geoFile.getline(inBuff, MAX_LINE))

 {

 lineNum++;

 switch (lineNum)

 {

 // Read data

 case 1: // Read line No. 1

 // Read structure type

 token = strtok_s(inBuff, " ,\t\n", &nextToken);

 structType = atoi(token);

 // Read structure length

 token = strtok_s(0, " ,\t\n", &nextToken);

 length = atof(token);

 // Read number of strain-sensing stations

 token = strtok_s(0, " ,\t\n", &nextToken);

 numStations = atoi(token);

 // Read depth factor at the fixed end C0

 token = strtok_s(0, " ,\t\n", &nextToken);

 C0 = atof(token);

 // Read depth factor at the free end Cn

 token = strtok_s(0, " ,\t\n", &nextToken);

 Cn = atof(token);

 // Calculate n

 n = numStations - 1;

 break;

48

 case 2: // Read line No. 2

 // Read domain type

 token = strtok_s(inBuff, " ,\t\n", &nextToken);

 domainType = atoi(token);

 // Push the index of c, deltaL, and x

 c.push_back(C0);

 deltaL.push_back(0);

 x.push_back(0);

 if (domainType == VAR_DOMAIN)

 {

 // Read deltaL

 token = strtok_s(0, " ,\t\n", &nextToken);

 while (token)

 {

 deltaL.push_back(atof(token));

 c.push_back(0);

 x.push_back(0);

 // read next deltaL

 token = strtok_s(0, " ,\t\n", &nextToken);

 }

 // Calculate Xi and Ci for variable domain

 for (i = 1; i < numStations; i++)

 {

 x[i] = x[i - 1] + deltaL[i];

 c[i] = C0 - (C0 - Cn)* (x[i] / length);

 }

 }

 else

 {

 const_deltaL = length / double(n);

 for (i = 1; i < numStations; i++)

 {

 deltaL.push_back(const_deltaL);

 x.push_back(0);

 c.push_back(0);

 }

 // Calculate Xi and Ci for constant domain

 for (i = 1; i < numStations; i++)

 {

 x[i] = (double) i * const_deltaL;

 c[i] = C0 - (C0 - Cn)* (x[i] / length);

 }

 }

49

 break;

 } // switch (lineNum)

 } // while

 // Close geoFile

 geoFile.close();

 return(OK);

}

int ReadType3()

{

 lineNum = 0;

 // read the 1st line of geometry file

 while (geoFile.getline(inBuff, MAX_LINE))

 {

 lineNum++;

 switch (lineNum)

 {

 // Read data

 case 1: // Read line No. 1

 // Read structure type

 token = strtok_s(inBuff, " ,\t\n", &nextToken);

 structType = atoi(token);

 // Read structure length

 token = strtok_s(0, " ,\t\n", &nextToken);

 length = atof(token);

 // Read number of strain-sensing stations

 token = strtok_s(0, " ,\t\n", &nextToken);

 numStations = atoi(token);

 // Read chord-wise distant at root D0

 token = strtok_s(0, " ,\t\n", &nextToken);

 D0 = atof(token);

 // Read chord-wise distant at tip Dn

 token = strtok_s(0, " ,\t\n", &nextToken);

 Dn = atof(token);

 // Calculate n

 nStations = numStations / 2;

 n = nStations - 1;

 break;

 case 2: // Read line No. 2

50

 // Read domain type

 token = strtok_s(inBuff, " ,\t\n", &nextToken);

 domainType = atoi(token);

 // Push the index of deltaL and x

 deltaL.push_back(0);

 x.push_back(0);

 if (domainType == VAR_DOMAIN)

 {

 // Read deltaL

 token = strtok_s(0, " ,\t\n", &nextToken);

 while (token)

 {

 deltaL.push_back(atof(token));

 x.push_back(0);

 // read next deltaL

 token = strtok_s(0, " ,\t\n", &nextToken);

 }

 // Calculate Xi for variable domain

 x[0] = 0.0;

 for (i = 1; i < nStations; i++)

 {

 x[i] = x[i - 1] + deltaL[i];

 }

 }

 else

 {

 const_deltaL = length / double(n);

 for (i = 1; i < nStations; i++)

 {

 deltaL.push_back(const_deltaL);

 x.push_back(0);

 }

 // Calculate Xi for constant domain

 x[0] = 0.0;

 for (i = 1; i < nStations; i++)

 {

 x[i] = ((double)i) * const_deltaL;

 }

 }

 break;

 case 3: // Read line No. 3

 // Read cType

 token = strtok_s(inBuff, " ,\t\n", &nextToken);

51

 cType = atoi(token);

 // Check if tapered

 if (cType == TAPERED)

 {

 // Read C0

 token = strtok_s(0, " ,\t\n", &nextToken);

 C0 = atof(token);

 // Read Cn

 token = strtok_s(0, " ,\t\n", &nextToken);

 Cn = atof(token);

 // Read C0_prime

 token = strtok_s(0, " ,\t\n", &nextToken);

 C0_prime = atof(token);

 // Read Cn_prime

 token = strtok_s(0, " ,\t\n", &nextToken);

 Cn_prime = atof(token);

 // Initialize c, & x vectors

 for (i = 0; i < numStations; i++)

 {

 c.push_back(0);

 x.push_back(0);

 }

 // Calculate Ci for the front

 c[0] = C0;

 for (i = 1; i < nStations; i++)

 {

 c[i] = C0 - (C0 - Cn)* (x[i] / length);

 }

 // Calculate Ci for the rear

 c[nStations] = C0_prime;

 for (i = nStations + 1; i < numStations; i++)

 {

 c[i] = C0_prime - (C0_prime - Cn_prime)* (x[i-nStations] / length);

 }

 }

 else

 {

 // Read c[i]

 token = strtok_s(0, " ,\t\n", &nextToken);

 while (token)

 {

 c.push_back(atof(token));

 // read next c

52

 token = strtok_s(0, " ,\t\n", &nextToken);

 }

 }

 break;

 } // switch (lineNum)

 } // while getline

 // Close geoFile

 geoFile.close();

 // Initialize vectors d & phi

 for (i = 0; i < nStations; i++)

 {

 d.push_back(0);

 phi.push_back(0);

 }

 return(OK);

}

int ReadType4()

{

 lineNum = 0;

 // Read the 1st line of geometry file

 while (geoFile.getline(inBuff, MAX_LINE))

 {

 lineNum++;

 switch (lineNum)

 {

 // Read data

 case 1: // Read line No. 1

 // Read structure type

 token = strtok_s(inBuff, " ,\t\n", &nextToken);

 structType = atoi(token);

 // Read structure length

 token = strtok_s(0, " ,\t\n", &nextToken);

 length = atof(token);

 // Read number of strain-sensing stations

 token = strtok_s(0, " ,\t\n", &nextToken);

 numStations = atoi(token);

 // Read chord-wise distant at root D0

 token = strtok_s(0, " ,\t\n", &nextToken);

 D0 = atof(token);

53

 // Read chord-wise distant at tip Dn

 token = strtok_s(0, " ,\t\n", &nextToken);

 Dn = atof(token);

 // Read wing root depth at front H0

 token = strtok_s(0, " ,\t\n", &nextToken);

 H0 = atof(token);

 // Read wing tip depth at front Hn

 token = strtok_s(0, " ,\t\n", &nextToken);

 Hn = atof(token);

 // Read wing root depth at rear H0_prime

 token = strtok_s(0, " ,\t\n", &nextToken);

 H0_prime = atof(token);

 // Read wing tip depth at rear Hn_prime

 token = strtok_s(0, " ,\t\n", &nextToken);

 Hn_prime = atof(token);

 // Initialize variables

 nStations = numStations / 4;

 noStations = numStations / 2;

 n = nStations - 1;

 break;

 case 2: // Read line No. 2

 // Read domain type

 token = strtok_s(inBuff, " ,\t\n", &nextToken);

 domainType = atoi(token);

 // Push the index of deltaL and x

 deltaL.push_back(0);

 x.push_back(0);

 if (domainType == VAR_DOMAIN)

 {

 // Read deltaL

 token = strtok_s(0, " ,\t\n", &nextToken);

 while (token)

 {

 deltaL.push_back(atof(token));

 x.push_back(0);

 // read next deltaL

 token = strtok_s(0, " ,\t\n", &nextToken);

 }

 // Calculate Xi for variable domain

 for (i = 1; i < nStations; i++)

54

 {

 x[i] = x[i - 1] + deltaL[i];

 }

 }

 else

 {

 const_deltaL = length / double(n);

 for (i = 1; i < nStations; i++)

 {

 deltaL.push_back(const_deltaL);

 x.push_back(0);

 }

 // Calculate Xi for constant domain

 for (i = 1; i < nStations; i++)

 {

 x[i] = ((double)i) * const_deltaL;

 }

 }

 break;

 } // switch lineNum

 } // while getline

 // Close geoFile

 geoFile.close();

 // Initialize vectors h and c

 for (i = 0; i < numStations; i++)

 {

 h.push_back(0);

 c.push_back(0);

 }

 // Initialize vectors d and phi

 for (i = 0; i < noStations; i++)

 {

 d.push_back(0);

 phi.push_back(0);

 }

 return(OK);

}

int ReadType5()

{

 lineNum = 0;

 // read the 1st line of geometry file

 while (geoFile.getline(inBuff, MAX_LINE))

 {

55

 lineNum++;

 switch (lineNum)

 {

 // Read data

 case 1: // Read line No. 1

 // Read structure type

 token = strtok_s(inBuff, " ,\t\n", &nextToken);

 structType = atoi(token);

 // Read structure length

 token = strtok_s(0, " ,\t\n", &nextToken);

 length = atof(token);

 // Read number of strain-sensing stations

 token = strtok_s(0, " ,\t\n", &nextToken);

 numStations = atoi(token);

 // Read depth factor of the thin plate

 token = strtok_s(0, " ,\t\n", &nextToken);

 C = atof(token);

 // Read number of lines

 token = strtok_s(0, " ,\t\n", &nextToken);

 numLines = atoi(token);

 // Calculate n

 nStations = numStations / numLines;

 n = nStations - 1;

 break;

 case 2: // Read line No. 2

 // Read domain type

 token = strtok_s(inBuff, " ,\t\n", &nextToken);

 domainType = atoi(token);

 // Push the index of deltaL and x

 deltaL.push_back(0);

 x.push_back(0);

 if (domainType == VAR_DOMAIN)

 {

 // Read deltaL

 token = strtok_s(0, " ,\t\n", &nextToken);

 while (token)

 {

 deltaL.push_back(atof(token));

 x.push_back(0);

56

 // Read next deltaL

 token = strtok_s(0, " ,\t\n", &nextToken);

 }

 // Calculate Xi for variable domain

 for (i = 1; i < nStations; i++)

 {

 x[i] = x[i - 1] + deltaL[i];

 }

 }

 else

 {

 const_deltaL = length / double(n);

 for (i = 1; i < nStations; i++)

 {

 deltaL.push_back(const_deltaL);

 x.push_back(0);

 }

 // Calculate Xi for constant domain

 for (i = 1; i < nStations; i++)

 {

 x[i] = (double)i * const_deltaL;

 }

 }

 break;

 } // switch (lineNum)

 } // while

 // Close geoFile

 geoFile.close();

 return(OK);

}

int ReadType7()

{

 lineNum = 0;

 // Read the 1st line of geometry file

 while (geoFile.getline(inBuff, MAX_LINE))

 {

 lineNum++;

 switch (lineNum)

 {

 // Read data

 case 1: // Read line No. 1

57

 // Read structure type

 token = strtok_s(inBuff, " ,\t\n", &nextToken);

 structType = atoi(token);

 // Read structure length

 token = strtok_s(0, " ,\t\n", &nextToken);

 length = atof(token);

 // Read number of strain-sensing stations

 token = strtok_s(0, " ,\t\n", &nextToken);

 numStations = atoi(token);

 // Read wing root depth at front H0

 token = strtok_s(0, " ,\t\n", &nextToken);

 H0 = atof(token);

 // Read wing tip depth at front Hn

 token = strtok_s(0, " ,\t\n", &nextToken);

 Hn = atof(token);

 // Initialize variables

 nStations = numStations / 2;

 n = nStations - 1;

 break;

 case 2: // Read line No. 2

 // Read domain type

 token = strtok_s(inBuff, " ,\t\n", &nextToken);

 domainType = atoi(token);

 // Push the index of deltaL and x

 deltaL.push_back(0);

 x.push_back(0);

 if (domainType == VAR_DOMAIN)

 {

 // Read deltaL

 token = strtok_s(0, " ,\t\n", &nextToken);

 while (token)

 {

 deltaL.push_back(atof(token));

 x.push_back(0);

 // read next deltaL

 token = strtok_s(0, " ,\t\n", &nextToken);

 }

 // Calculate Xi for variable domain

 for (i = 1; i < nStations; i++)

58

 {

 x[i] = x[i - 1] + deltaL[i];

 }

 }

 else

 {

 const_deltaL = length / double(n);

 for (i = 1; i < nStations; i++)

 {

 deltaL.push_back(const_deltaL);

 x.push_back(0);

 }

 // Calculate Xi for constant domain

 for (i = 1; i < nStations; i++)

 {

 x[i] = ((double)i) * const_deltaL;

 }

 }

 break;

 } // switch lineNum

 } // while getline

 // Close geoFile

 geoFile.close();

 // Initialize vectors h and c

 for (i = 0; i < numStations; i++)

 {

 h.push_back(0);

 c.push_back(0);

 }

 return(OK);

}

int CreateOutputFiles()

{

 unsigned int loc, loc1;

 // Create deflection output file

 outputFile = inputFile;

 loc = outputFile.find(".");

 outputFile.insert(loc, "_Deflections");

 // Open deflection output file

 outFile.open(outputFile.c_str(), ios::out);

59

 if (outFile.fail())

 {

 cerr << "Could not open " << outputFile << endl;

 return(ERROR);

 }

 // Create slope (angle theta) output file

 if ((structureType != 2) && (structureType != 5))

 {

 outthetaFile = inputFile;

 outthetaFile.insert(loc, "_Slopes");

 // Open slope output file

 thetaFile.open(outthetaFile.c_str(), ios::out);

 if (thetaFile.fail())

 {

 cerr << "Could not open " << outthetaFile << endl;

 return(ERROR);

 }

 }

 // Create max and min deflection output file

 outmaxminFile = outputFile;

 loc1 = outmaxminFile.find(".");

 outmaxminFile.insert(loc1, "_MaxMin");

 // Open max and min deflection output file

 maxminFile.open(outmaxminFile.c_str(), ios::out);

 if (maxminFile.fail())

 {

 cerr << "Could not open " << outmaxminFile << endl;

 return(ERROR);

 }

 maxminFile << "SG Name, Time at Max Deflection, Max Deflection, Time at Min Deflection,

Min Deflection\n";

 if ((structureType == 3) || (structureType == 4))

 {

 // Create twist angle (phi) output file

 outphiFile = inputFile;

 outphiFile.insert(loc, "_TwistAngles");

 // Open twist angle output file

 phiFile.open(outphiFile.c_str(), ios::out);

 if (phiFile.fail())

 {

 cerr << "Could not open " << outphiFile << endl;

 return(ERROR);

 }

 phiCreated = 1;

 }

60

 if ((structureType == 4) || (structureType == 7))

 {

 // Create depth factor output file

 outcFile = inputFile;

 outcFile.insert(loc, "_DepthFactors");

 // Open depth factor output file

 cFile.open(outcFile.c_str(), ios::out);

 if (cFile.fail())

 {

 cerr << "Could not open depth factor file " << outcFile << endl;

 checked = ERROR;

 return(ERROR);

 }

 // Initialize cCreated

 cCreated = 1;

 }

 // Read 1st line of input file

 inFile.getline(inBuff, MAX_LINE);

 // Write to output files

 outFile << inBuff << endl;

 if ((structureType != 2) && (structureType != 5))

 {

 thetaFile << inBuff << endl;

 }

 // Read the 1st name of the 1st line

 token = strtok_s(inBuff, " ,\t\n", &nextToken);

 if ((structureType == 3) || (structureType == 4))

 {

 phiFile << token << ",";

 }

 // Read strain-sensing station names

 token = strtok_s(0, " ,\t\n", &nextToken);

 while (token)

 {

 if ((structureType == 4) || (structureType == 7))

 {

 cFile << token << ", ";

 }

 stationNames.push_back(token);

 token = strtok_s(0, " ,\t\n", &nextToken);

61

 }

 // Done reading the first title line

 if (structureType == 3)

 {

 for (i = 0; i < nStations; i++)

 {

 phiFile << "Station_" << i << ",";

 }

 phiFile << endl;

 }

 else if (structureType == 4)

 {

 // Write names for lower strain-sensing stations

 for (i = 0; i < nStations; i++)

 {

 phiFile << "LwrStation_" << i << ",";

 }

 // Write names for upper strain-sensing stations

 for (i = nStations; i < noStations; i++)

 {

 phiFile << "UprStation_" << (i - nStations) << ",";

 }

 phiFile << endl;

 cFile << endl;

 }

 else if (structureType == 7)

 {

 cFile << endl;

 }

 return(OK);

}

void CalculateC()

{

 // Initialize h[0] and h[n]

 h[0] = H0;

 h[n] = Hn;

 H_ratio = Hn / H0;

 // Calculate front c[i] using Eqs. (1a & 2a)

 for (i = 0; i < n; i++)

 {

 // Lower front

 h[i] = H0 - (H0 - Hn)*(x[i] / length);

 c[i] = abs(epsilon[i]) * h[i] / (abs(epsilon[i]) + abs(epsilon[i + nStations]));

 // Upper front

 c[i + nStations] = h[i] - c[i];

 }

62

 c[n] = H_ratio*c[0];

 c[n + nStations] = H_ratio*c[nStations];

 // if structure type 4, need to do the rear

 if (structureType == 4)

 {

 // Calculate rear c[i] using Eqs. (1b & 2b)

 h[noStations] = H0_prime;

 h[noStations + n] = Hn_prime;

 Hprime_ratio = Hn_prime / H0_prime;

 for (i = noStations; i < (noStations + n); i++)

 {

 // Lower rear

 h[i] = H0_prime - (H0_prime - Hn_prime)*(x[i - noStations] / length);

 c[i] = abs(epsilon[i]) * h[i] / (abs(epsilon[i]) + abs(epsilon[i + nStations]));

 // Upper rear

 c[i + nStations] = h[i] - c[i];

 }

 c[noStations + n] = Hprime_ratio*c[noStations];

 c[noStations + n + nStations] = Hprime_ratio * c[noStations + nStations];

 }

 for (i = 0; i < numStations; i++)

 {

 cFile << c[i] << ", ";

 }

 cFile << endl;

 cFile.close();

 calC = TRUE;

}

void CalcTwistAngles()

{

 // Initialize d[0] and d[n]

 d[0] = D0;

 d[n] = Dn;

 switch (structureType)

 {

 case 3: // 2 lines

 {

 // Set twist angle at the root to 0.0

 phi[0] = 0.0;

 phiFile << fixed << setprecision(6) << phi[0];

 // Eq. (11) in this paper or Eq. (38) in NASA/TP-2009-214643

63

 // Calculate twist angle phi

 for (i = 1; i < nStations; i++)

 {

 d[i] = D0 - (D0 - Dn)*(x[i] / length);

 sin_phi[i] = (y[i] - y[i + nStations]) / d[i];

 phi[i] = asin(sin_phi[i])*180.0 / PI;

 phiFile << "," << fixed << setprecision(6) << phi[i];

 }

 break;

 }

 case 4: // 4 lines

 {

 // Set twist angle at lower root to 0.0

 phi[0] = 0.0;

 phiFile << fixed << setprecision(6) << phi[0];

 // Eq. (11) in this paper or Eq. (38) in NASA/TP-2009-214643

 // Calculate lower twist angle phi

 for (i = 1; i < nStations; i++)

 {

 d[i] = D0 - (D0 - Dn)*(x[i] / length);

 sin_phi[i] = (y[i] - y[i + noStations]) / d[i];

 phi[i] = asin(sin_phi[i])*180.0 / PI;

 phiFile << "," << fixed << setprecision(6) << phi[i];

 }

 // Set twist angle at upper root to 0.0

 phi[nStations] = 0.0;

 phiFile << "," << fixed << setprecision(6) << phi[nStations];

 // Calculate upper twist angle phi

 for (i = (1 + nStations); i < noStations; i++)

 {

 sin_phi[i] = (y[i] - y[i + noStations]) / d[i - nStations];

 phi[i] = asin(sin_phi[i])*180.0 / PI;

 phiFile << "," << fixed << setprecision(6) << phi[i];

 }

 break;

 } // case 4

 } // switch structureType

}

void DetermineMaxMin()

{

 for (i = 1; i < numStations; i++)

 {

 // Check for max and min deflections

 if ((structureType != 2) && (structureType != 5))

64

 {

 if (y[i] >= yMax[i])

 {

 tMax[i] = t;

 yMax[i] = y[i];

 }

 else if (y[i] < yMin[i])

 {

 tMin[i] = t;

 yMin[i] = y[i];

 }

 }

 else

 {

 if (yB[i] >= yMax[i])

 {

 tMax[i] = t;

 yMax[i] = yB[i];

 }

 else if (yB[i] < yMin[i])

 {

 tMin[i] = t;

 yMin[i] = yB[i];

 }

 }

 }

}

void WriteMaxMinFile()

{

 // Write yMax and yMin to file

 for (i = 0; i < numStations; i++)

 {

 maxminFile << fixed;

 maxminFile << stationNames[i] << "," << tMax[i] << "," << setprecision(6) << yMax[i]

 << "," << tMin[i] << "," << setprecision(6) << yMin[i] << endl;

 }

}

void PrintOutputFilenames()

{

 // Print out successful messages

 cout << "\n$ Displacement Calculation program completed successfully!\n" << endl;

 cout << "$ Output files are listed below:\n" << endl;

 cout << "$ Deflection file: " << outputFile << endl;

 if ((structureType != 2) && (structureType != 5))

 {

 cout << "$ Slope file: " << outthetaFile << endl;

 }

65

 if (cCreated == 1)

 {

 cout << "$ Depth Factor file: " << outcFile << endl;

 }

 if (phiCreated == 1)

 {

 cout << "$ Twist Angle file: " << outphiFile << endl;

 }

 cout << "$ Max and Min Deflection file: " << outmaxminFile << endl << endl;

}

void CloseFiles_ClearVectors()

{

 // Close all files

 outFile.close();

 maxminFile.close();

 if ((structureType != 2) && (structureType != 5))

 {

 thetaFile.close();

 }

 if ((structureType == 3) || (structureType == 4))

 {

 phiFile.close();

 }

 // Clear out all vectors

 epsilon.clear();

 x.clear();

 y.clear();

 yB.clear();

 yMax.clear();

 yMin.clear();

 tMax.clear();

 tMin.clear();

 theta.clear();

 tan_theta.clear();

 phi.clear();

 sin_phi.clear();

 c.clear();

 d.clear();

 h.clear();

 deltaL.clear();}

void main()

66

{

 GetUserInputs();

 if (checked != ERROR)

 {

 ReadGeometryFile();

 if (checked != ERROR)

 {

 CreateOutputFiles();

 if (checked != ERROR)

 {

 // Let user know the program is running

 cout << "\n$ Displacement Calculation program is running ..." << endl;

 CalcDisplacement();

 if (checked != ERROR)

 {

 WriteMaxMinFile();

 PrintOutputFilenames();

 }

 }

 }

 }

 CloseFiles_ClearVectors();

}

67

References

1. Ko, William L., W. L. Richards, and Van T. Tran., “Displacement Theories for In-Flight Deformed

Shape Predictions of Aerospace Structures,” NASA/TP-2007-214612, October 2007.

2. Ko, William L., and William Lance Richards, Method for Real-Time Structure Shape-Sensing, U.S.

Patent No. 7,520,176, issued April 21, 2009.

3. Ko, William L., and Van Tran Fleischer, “Further Development of Ko Displacement Theory for

Deformed Shape Predictions of Nonuniform Aerospace Structures,” NASA/TP-2009-214643,

September 2009.

4. Ko, William L., and Van Tran Fleischer, “Methods for In-Flight Wing Shape Predictions of Highly

Flexible Unmanned Aerial Vehicles: Formulation of Ko Displacement Theory,” NASA/TP-2010-

214656, August 2010.

5. Ko, William L., and Van Tran Fleischer, “First- and Second-Order Displacement Transfer

Functions for Structural Shape Calculations Using Analytically Predicted Surface Strains,”

NASA/TP-2012-215976, March 2012.

6. Ko, William L., and Van Tran Fleischer, “Improved Displacement Transfer Functions for Structure

Deformed Shape Predictions Using Discreetly Distributed Surface Strains,” NASA/TP-2012-

216060, November 2012.

7. Ko, William L., and Van Tran Fleischer, “Extension of Ko Straight-Beam Displacement Theory to

Deformed Shape Predictions of Slender Curved Structures,” NASA/TP-2011-214657, April 2011.

8. Ko, William L., and Van Tran Fleischer, “Large-Deformation Displacement Transfer Functions for

Shape Predictions of Highly Flexible Slender Aerospace Structures,” NASA/TP-2013-216550,

December, 2013.

9. Ko, William L., and Van Tran Fleischer, “Variable-Domain Displacement Transfer Functions for

Converting Surface Strains into Deflections for Structural Deformed Shape Predictions,”

NASA/TP-2015-218464, March 2015.

10. Ko, William L., and Van Tran Fleischer, “Modified Displacement Transfer Functions for Deformed

Shape Predictions of Slender Curved Structures with Varying Curvatures,” NASA/TM-2014-

216660, May 2014.

11. Ko, William L., Van Tran Fleischer, and Shun-Fat Lung, “Curved Displacement Transfer Functions

for Geometric Nonlinear Large Deformation Structure Shape Predictions,” NASA/TP-2017-

219406, March 2017.

12. Ko, William L., Van Tran Fleischer, and Shun-Fat Lung, “Curvilinear Displacement Transfer

Functions for Deformed Shape Predictions of Curved Structures Using Distributed Surface

Strains,” NASA/TP-2018-219692, September 2018.

13. Ko, William L., W. L. Richards, and Van Tran Fleischer, “Applications of Ko Displacement Theory

to the Deformed Shape Predictions of Doubly Tapered Ikhana Wing,” NASA/TP-2009-214652,

November 2009.

68

14. Jutte, Christine, William L. Ko, Craig A. Stephens, John A. Bakalyar, W. Lance Richards, and

Allen R. Parker, “Deformed Shape Calculations of a Full-Scale Wing Using Fiber Optic Strain

Data from a Ground Loads Test,” NASA/TP-2011-215975, November 2011.

15. Lung, Shun-Fat, and William L. Ko, “Applications of Displacement Transfer Functions to

Deformed Shape Predictions of the GIII Swept-Wing Structure,” Presented at the 30th Congress of

the International Council of the Aeronautical Sciences, Daejeon, Korea, September 25–30, 2016.

