NASA/TM-2019-220221

Structure Deformation Calculation Program
Based on Displacement Theory for Shape
Predictions

Van Tran Fleischer, and William L. Ko
Armstrong Flight Research Center
Edwards, California 93523

Deformed \

/ Fixed end [Undeformed

0 1 2 3 4 5 /6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

! |
Typical strain- /
sensing station

PATENT PROTECTION NOTICE
The method for structure deformed shape predictions using Displacement Theory to transform distributed
surface strains into structure deformed shapes described in this NASA technical report is protected under
Method for Real-Time Structure-Shape Sensing, U.S. Patent No. 7,520,176, issued April 21, 2009. Therefore,
those interested in using the method (with the accompanying program) should contact NASA Technology
Transfer Office at NASA Armstrong Flight Research Center, Edwards, California for more information.

August 2019

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space science.
The NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report

types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compila-
tions of significant scientific and technical data
and information deemed to be of continuing
reference value. NASA counter-part of peer-
reviewed formal professional papers but has less
stringent limitations on manuscript length and
extent of graphic presentations.

e TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain minimal
annotation. Does not contain extensive analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

e CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or
co-sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

e TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI program,
see the following:

e Access the NASA STI program home page at
http://www.sti.nasa.gov

o E-mail your question to help@sti.nasa.gov

e Phone the NASA STI Information Desk at
757-864-9658

e Write to:
NASA STI Information Desk
Mail Stop 148

NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TM-2019-220221

Structure Deformation Calculation Program
Based on Displacement Theory for Shape
Predictions

Van Tran Fleischer, and William L. Ko
Armstrong Flight Research Center
Edwards, California 93523

National Aeronautics and
Space Administration

Armstrong Flight Research Center
Edwards, California 93523-0273

August 2019

This report is available in electronic form at

http://ntrs.nasa.gov

Table of Contents
DS ACT ..o et e e —teeee et e e e e ———aaaee e e e e ——————aaaaaa

NOMENCIATUIE ..ottt ettt ettt se e s e s e s e ssesseeseeseeseessensensesensenns
INEFOAUCTION ...ttt sttt e et e seese e b e s e sesseebeeseesaeseessensensensennes
Shape Prediction Technical BaCkgroundcccvoveeiiiieiiieiceeceeeeeeeeeeee e
KEY TEIMINOIOGIES.ottt ettt ettt e e ae e re e e e ta e teesbe e s e eaeeseeanens
Theoretical BaCKgrOUNG...........coviiviiiiieeeeee ettt eva e
DEPIN FACIOIS ...ttt ettt et e s be e esae e beesbeetaesseenseeneans
Depth FACIOrs KNOWNo.viiiiiieieeecee ettt ettt
Depth FACtors UNKNOWNocviiiiiiieie ettt ettt

List of the Shifted Displacement Transfer FUNCLIONScccoeouieiiiieiiieieeeeeeeeee e
Vertical Deflection for Cantilever Embedded Beamsccceovevierenininieinieieieee
Nonuniform Shifted Displacement Transfer FUNCHIONS...........ccccoveiieiiiieiicieeceee,
Slightly Nonuniform Shifted Displacement Transfer FUNCtionscccccceevveevveenenee.
Uniform Shifted Displacement Transfer FUNCHIONS...........c.ccooeieieieieieiececeeee e
Vertical Deflection for Two-End Supported Embedded Beams.............cccccoeveeeievveniennenene.
List of Curved Displacement Transfer FUNCLIONS...........cccveieieieieieececeeeeeeeeeeee e
Large Deflection for Cantilever Embedded Beam............ccccooveieiiiiinieiceeicieeeee
Nonuniform Curved Displacement Transfer FUNCLIONS...........ccccoveveiecievieniceeeceeeeee
Slightly Nonuniform Curved Displacement Transfer FUNCEIONS...........cccocevvereveneennnen.
Uniform Curved Displacement Transfer FUNCLIONS..........c..ccooieiiieiiiieeieieceeeee e
Large Deflection for Two-end Supported Embedded Beamcccocoeeieiieieieecieeieenee,
Cross-Sectional TWIST ANGIEoouiiiieieeeee ettt
Procedure t0 USE the PrOGIamc.ooouioiiiuieieeieeieeee ettt ettt et eveeaeeaeeas

Preparation of the Strain Data File.............coooiiiiiiiiicceceee e

Preparation of the GEOMELrY file.........ccoooiiiiiieee e 9

RUNNING the PrOQIaM ...ttt ettt ettt eae et eaeeas 9
Output files created by the Program............cceocvieiiieeiiieeeceeee et 10
SETUCTUIE TYPES ettt ettt et e et e et e et e et e e e aaeessaeesssseesssseesssseesssaeeasseeessseeessseeensseennns 10
Type 1 — Cantilever Embedded Beamc.ooviiieiiiieiiceceee et 10
TYPE L SEIUCTUI ...ttt ettt ettt e st e e b e e saeenseessaeenseenenas 10
Type 1 Strain Data Filecooviiiiieieceeeeeee et 11
TYPe 1 GEOMELIY FIlE ..ottt 12
Type 1 DeflECtiON Fleoovieeiieieeee et 12
TYPE L SIOPE FlE ..ottt eas 12
Max Min Deflection File for All Structure TYPESccvevveeveeieeieeieeieeveeeeeee e, 13
TYPE L OULPUL FIIES ..ottt 13
Type 2 — Two-end SUPPOrted BEAMc.ocviiuiiiieiieteeeeeeeeeeete ettt 13
TYPE 2 STTUCTUIE. ...ttt ettt et e e e e e et e e beeesaseeensaeesseeensseeesseeennns 13
Type 2 Strain Data Filec.ccoeiiieieieiecieeceeeee et 14
TYPE 2 GEOMELIY FlE ...t 15
Type 2 DefleCtion FIlec.ooueeiieieeeeeee e 15
TYPE 2 OULPUL FIIES ..ottt 15
Type 3 — Tapered Wing Box and TWO-1iNe SYSeMccuevieiiieiiiieieeieeeeieeeeie e 15
TYPE 3 SEIUCTUIE....ceeieee ettt ettt sttt ettt e e ae e e b e e saeenseesraeessaenenas 15
Type 3 Strain Data File..........coviiiiiieiiceeeeeeee e 16
TYPe 3 GEOMELIY FIlE ..ottt 16
Type 3 DEFIECtION Fileooviieieieeee e 17
TYPE 3 SIOPE FlE ..ottt 17

Type 3 Cross-sectional Twist Angle File..........cooviiiiiiiieeee e 18

TYPE 3 OULPUL FIIES ...ttt 18

Type 4 — Doubly Tapered Wing and Four-line SYStemcccceeveeieeiiicieecieeeeeeeeee 18
TYPE 4 STTUCTUIE. ...ttt ettt e et e e sbe e e s taeeesaseeessaeenseeennseeensseeennns 18
Type 4 Strain Data File..........covooiiiieeieeeeeeeeee e 19
TYPe 4 GEOMELIY FIlE ...ttt 20
Type 4 DEflECtION FlEoovieeiieieeeeeee et 20
TYPE 4 SIOPE FlE ..ottt e eas 21
Type 4 Depth FACtOr Filec.oooeeieieeeeeeeee e 21
Type 4 TWISE ANGIE FIlE ..o 22
TYPE 4 OUIPUL FIIES ..ottt et eas 22

Type 5 — Thin UNIfOrM PIALEccveoiiiieieeeeee ettt 22
TYPE 5 SHUCTUIE. ...ttt et e e e e sab e e e abeeeaseeensseeensseeennns 22
Type 5 Strain Data File..........cooooiiiiiiceeeeeeeeee e 23
TYPE 5 GEOMELIY FIlE ...t 23
Type 5 DEfleCtion FIlec.oouieiieieeeeeee e 24
TYPE 5 OULPUL FIIES ..ttt st 24

Type 6 — Long Beam with Known Depth FaCtors..........ccccveveieievienieeieeeceeieieeeeiee 24
TYPE B SEIUCTUIE....ceeiiie ettt et ettt e b e e teeesbe e saesasaessaaensaensnas 24
Type 6 Strain Data File..........cooooiiiieiececeeeee e 25
TYPe 6 GEOMELIY FIlE ...t 25
Type 6 DEflECtiON Filecvooiieieeeeeee e 25
TYPE 6 SIOPE FIE ..ot 26
TYPE 6 OULPUL FIIES ...ttt e 26

Type 7 — Long Beam with Unknown Depth Factorsc.cccoevvieiiiieciiciiceeeceeeee e 26
TYPE 7 SHUCTUIE. ...ttt ettt e e e b e e e eabeeeaseeeaseeenssesensseeennns 26

viii

Type 7 Strain Data File..........coviiiiieeceeeeee et 27

TYpe 7 GEOMELIY FIlE ...t 27
Type 7 DElECtION Fileoovieeieeeeeeee e 28
TYPE 7 SIOPE FIE ..ottt 28
Type 7 Depth FACtOr Filecvooeieeieeeeeeeee et 28
TYPE 7 OULPUL FIIES ...ttt ettt eas 29
FINAL REMAIKS ..ottt 29
Appendix A: Program FIOWCNAIT............c.ooiiiiiiiiieieeeeseee et 30
Appendix B: Program Header Filecooovioiiiieeceeeeee e 32
Appendix C: Program Code iN CH ...t 34
RETEIEICES ...ttt ettt b et a et e e st s et e st ne b eneenes 67

Abstract

Separated programs were written in C/C++ to validate the Displacement Transfer Functions. The
Structure Deformation Calculation Program was written to combine all of the programs to calculate
deformed shapes of a structure using surface strain data and structural geometrical parameters. Users do
not need to know the material properties, nor the complex internal structures geometry because the
Displacement Theory is purely geometrical in nature. Users only need to know the structure types as defined
in this report and information such as the structure length, depth factors, number of strain sensors, and the
surface strains measured at the strain-sensing stations installed on the structures. Depending on the structure
type, an applicable Displacement Transfer Function will be used. This program requires two input files
created by users; the recorded strain data file in comma-separated values format and the structure geometry
data file in text format. The program will output the out-of-plane deflections, slopes, cross-sectional twist
angles, and depth factors if applicable. All output files are created in comma-separated values format. A
section in this report describes step-by-step procedures on how to use the Structure Deformation Calculation
Program for structure deformed shape calculations.

Nomenclature

c constant depth factor (vertical distance from the neutral axis to the lower surface of the
uniform embedded beam), in.

C; lower depth factor at x = x; (distance from the embedded beam neutral axis to the i-th
strain-sensing station on the lower surface of the embedded beam), in.

C, upper depth factor at x = x;, (distance from the embedded beam neutral axis to the i-th

strain-sensing station on the upper surface of the embedded beam, in.

n value of ¢, at freeend, x = x, = L in.
C, value of ¢, at fixed end, x = x, =0, in.
Ccsv comma-separated values format
d; chord-wise separation distance of two strain-sensing lines at x = x, in.
d, value of d; atwingtip, x = x,, = L, in.
dy value of d; at wing root, x = xo = 0, in.
h; depth of the front embedded beam at x = x,, in.
h, value of /4, atfreeend, x =x, =/, in.
hy value of /, at fixed end, x = x, =0, in.
| length of an embedded beam, in.
n number of domains or index for the last span-wise strain-sensing station
NASA National Aeronautics and Space Administration
P applied load, Ib
SG strain gauge
txt text format
w, wing tip chord length (width), in.
wo wing root chord length (width), in.
X, Y Cartesian coordinates (x in axial direction, y in lateral direction), in.
X; axial coordinate of i-th strain sensor, in.
Xn axial coordinate at wing tip x = x,, = [, in.
Vi vertical deflection at x = x,, in.
Y, curved deflection at x = x;, in.

v, vertical deflectionat x = x, = L, in.

y curved deflectionatx = x,, = [, in.
n
y? vertical deflection at x = x, of a two-end supported embedded beam, in.
B
y. curved deflection at x = x, of a two-end supported embedded beam, in.
l
(AD); = Al; ©(x, - x,,), i-th domain length (distance between two adjacent strain-sensing
stations), in.
Aly domain length at the tip, x,, — x,,_1, in.
& lower surface bending strain at strain-sensing station i, in/in
& upper surface bending strain at strain-sensing station i, in/in
&, lower surface bending strain at the tip, strain-sensing station n, in/in
& lower surface bending strain at the root, strain-sensing station 0, in/in
e(x) surface bending strain at axial location x, in/in
0; slope angle of a cantilever embedded beam at x = x, rad
0, slope angle of a cantilever embedded beam at x = x, =/ (free end), rad
0 slope angle of a cantilever embedded beam at x = x, =0 (fixed end), rad
¢ cross-sectional twist angle of a cantilever embedded beam at x = x, rad
O guantity associated with the rear strain-sensing lines

Introduction

Traditionally, the wing deflections can be measured during ground testing by using position transducers
or a photogrammetry system. For in-flight deflection measurements, those methods cannot be used. One
technique is to use the electro-optical flight deflection measurement systems, which are composed of on-
board cameras and several wing mounted targets. Such systems can provide wing deflection information
during the flight, but can be too heavy for lightweight flying vehicle applications.

After the invention of the Displacement Theory which contains different Displacement Transfer
Functions (refs. 1-12), a patented technology called, “Method for Real-Time Structure Shape-Sensing,”
U.S. Patent Number 7,520,176 (ref. 2), was granted. The shape-sensing technology is to use the
Displacement Transfer Functions to transform distributed surface strains into structure deformed shapes.
This structure shape-sensing technology is quite attractive for the in-flight deformed shape monitoring of
flight vehicles for flight control and maintaining flight safety. In addition, the real time wing shape
monitored could then be input to the aircraft control system for aero-elastic wing shape control.

The objective of this technical memorandum is to provide users some guidance on how to use the
Structure Deformation Calculation Program to calculate the deformed shape of a structure based on the
Displacement Theory and Displacement Transfer Functions (refs. 1-12). Users need to prepare two files,
the recorded measured surface strain data in a comma-separated values (csv) file and the required
geometrical information in a text (txt) file. Depending on the structure type, the program will create several

csv output files that contain the out-of-plane deflections y,, slopes 8;, cross-sectional twist angles ¢, and
depth factors c; if applicable.

Shape Prediction Technical Background

The structure shape prediction using the Displacement Transfer Functions to transform the distributed
surface strains into structure deformed shapes was reported in many National Aeronautic and Space
Administration (NASA) technical reports (refs. 1-12). The following sections only cover what are related

2

to the Structure Deformation Calculation Program. To understand more about the Displacement Theory
and Displacement Transfer Functions, users can read the NASA technical reports listed in the reference
section.

Key Terminologies

A surface line, along which the strain-sensing stations are to be discretely distributed, is called a strain-
sensing line. The surface strains are to be measured at those strain-sensing stations and recorded. The region
between any two adjacent strain-sensing stations is called the domain. The structure depth-wise cross
section along the strain-sensing line is called the embedded beam (not to be confused with the traditional
isolated Euler-Bernoulli beam). The distances from the embedded beam neutral axis to the strain-sensing
stations along the lower strain-sensing line are called the depth factors. When the data of bending surface
strains, domain lengths, depth factors, and number of strain-sensing stations are input into the appropriate
Displacement Transfer Functions, the deformed shape of each embedded beam can be calculated.

Theoretical Background

In the formulations of the Displacement Transfer Functions (refs. 1-12), each embedded beam was first
discretized into multiple small domains with domain junctures matching the strain-sensing stations. Such a
discretization approach allowed the surface strain distribution along each strain-sensing line to be
represented with a piecewise-linear function. The piecewise-linear approach enabled piecewise integrations
of the embedded-beam curvature equation to yield the Displacement Transfer Functions, which
geometrically relate the surface strains to the out-of plane deflections along the embedded beam.

For structure shape calculations using the Displacement Transfer Functions, surface strain data and
depth factors of an embedded beam are needed. Based on the type of structure geometry and loading
conditions, users can select the proper strain-sensing line system and structure type for their structures. If
the depth factors are unknown, extra strain-sensing line(s) is/are required. The Structure Deformation
Calculation Program covers seven structure types that have depth factors known and depth factors
unknown.

Depth Factors

The depth factors of a structure are important variables in Displacement Transfer Functions. The depth
factors C;, along with strains &; and domain lengths Ali, are used in the calculations of the vertical

deflections y;, slopes 6;, and cross-sectional twist angles ¢ if applicable at the i-th strain-sensing location.
For some structures, it is difficult to know the depth factors; therefore, extra strain-sensing lines are needed.

Depth Factors Known

Structure types 1 and 6 for a one-line system applied to a cantilever beam are shown in the type 1 and
type 6 sections of this report. Structure type 2 for a two-end supported tubular beam is shown in the type 2
section. Since the depth factors are known, only one strain-sensing line on the lower surface is needed for
bending shape prediction analysis.

Structure type 3 for a two-line system on the lower surface for combined bending and torsion or on the
side and lower surfaces for combined horizontal and vertical bending is shown in the type 3 section. The
two-line system includes tapered un-swept and swept wing boxes. If the depth factor is known, only two
strain-sensing lines along the lower front and lower rear edges are needed. For this type of structure, the
local cross-sectional twist angles can be calculated.

Structure type 5 for a square thin plate (finite-element model) subjected to a point load at the plate
center, inducing two-dimensional bending under different edge conditions (four edges clamped or simply

supported) is shown in the type 5 section. Because the depth factors are known, only the multi parallel
strain-sensing lines on the lower surface are needed.
Depth Factors Unknown

Structure type 4 of a four-line system with two lines on the lower surface and two lines on the upper
surface for shape calculations of structures under combined bending and torsion is shown in the type 4
section. The four-line system is the most suitable sensing system for slender aircraft wings, for which the
two neutral axes are unknown and are always subjected to both bending and torsion loadings. Two upper
strain-sensing lines are needed for calculations of unknown depth factors. If the depth factors are known,
the upper surface lines are not required.

The depths at the beam root and beam tip {h,, .} at the front of the embedded beam are known, and
the local depth h; can be calculated as shown in equation (1a).

h, =h, —(h, — hn)? ; (i=123,..,n) (1a)

The depths at the beam root and beam tip {h(;, hr']} at the rear of the embedded beam are known, and
the local depth h/ can be calculated as shown in equation (1b).

h'=h; —(h: - hr;)? S ((=123,..,m) (1b)

The values of calculated h, and the bending strains {&;, &} where & are the bending strains of the
front upper surface are used to calculate C; as shown in equation (2a).

i _Lt i c_:l :hi _Ci > (l = 1I2I3P"'Pn) (Za)
le |+1& |
The values of calculated h/ at the rear and the bending strains {&/, &} where & are the bending strains

of the rear upper surface are used to calculate C/ as shown in equation (2b).

& ~ .
PIEILE G=h-¢ P ((=123,.,m) (2b)
1 I

For a nonuniform large bending structure of a two-line system on lower and upper surfaces, an extra
upper strain-sensing line is required to calculate the depth factors as shown in type 7 section.

List of the Shifted Displacement Transfer Functions

Based on the piecewise-linear representations of both depth factor ¢, and surface strain &; where

i=1,2,3,...,n, the Shifted Displacement Transfer Functions (refs. 1, 3) were formulated to transform the
surface strains ¢; into slopes and vertical deflections {tan®;, y;} along the embedded beam. The Shifted

Displacement Transfer Functions for vertical deflections have the following different mathematical forms
formulated for different types of structures (nonuniform, slightly nonuniform, and uniform).

Vertical Deflection for Cantilever Embedded Beams
There are three Shifted Displacement Transfer Functions for a cantilever embedded beam where
(yo = tanb, = 0).
Nonuniform Shifted Displacement Transfer Functions

The depth factors are not equal (c;_; # c;), (refs. 1, 3). The slope equation (in recursive form) is
shown as equation (3a):

tand, = (Al), { Ca =8 GG o log i} +tand, (33)

2
¢=¢ (eq=c) G S (=123,..,1)
The vertical deflection equation (in recursive form) is shown as equation (3b):

& =& &,_.C.—&.C. C.
y, = (Al | -2 ”.l(c.lo —+(c, —c.J +y.,+(Al),tan @
Ji ()z I:Z(CII —Cl) (Ci_l _Ci)) i gc (i-1 !) Ji-1 ()1 i-1 (3b)

i-1

; (=123, ...,n)

Equations (3a) and (3b) are used for structure types 1, 3, and 4.
Slightly Nonuniform Shifted Displacement Transfer Functions

The depth factors are almost equal (Cl-_1 - Ci), (refs. 1, 3). The slope equation (in recursive form) is
shown as equation (4a):

tan@i = &{(2 - i] &, + 8]}4— t;an@i_l (48.)
2 Cig
; (i=1,23,..,n)

The vertical deflection equation (in recursive form) is shown as equation (4b):

2
B %[[3_ i] &+ gi} Yia+(AD) tand), (4b)

6ci—1 Cia
(i=123,..,1n)

Equations (4a) and (4b) are used for structure types 1, 3, and 4.
Uniform Shifted Displacement Transfer Functions

The depth factors are equal (¢, ; = ¢, =c¢), (ref. 1). The slope equation (in recursive form) is shown as

equation (5a):
5

tan@, = (

Al),
» (¢, ,+¢)+tand, (52)
C (=123, ..,n)

The vertical deflection equation (in recursive form) is shown as equation (5b):

i (2& +&)+y,, +(A) tan6,_,

(A}
- b (5b)

c (=123,..,n)

Vertical Deflection for Two-End Supported Embedded Beams

The vertical deflection yl-B of the two-end supported embedded beam (simply supported or fixed) can
be calculated from equation (6) (ref. 1):

X:
le :yi_ TIyn

—
Shift factor

6
é p e){3(21—1) (3j-2) "“}8 +(3j-2)e, ,H} x7y ©)

1'—‘/' i—j

(=123, ..,n)

In equation (6), y, is the vertical deflection of the slightly nonuniform cantilever embedded beam
(applicable to the limit case of uniform embedded beams). The mathematical expression of y, in equation
(6) was obtained by combining the slope equation (4a) and the deflection equation (4b) into a single
equation. The shift factor (x;/l)y, appearing in equation (6) is to proportionally shift the cantilever
deflection curve of y, and convert it to the deflection curve of the two-end supported beam with zero

deflection y? = 0 at the beam tip i = n (second support point).

List of Curved Displacement Transfer Functions

For large bending deformations of highly flexible slender structures, one must understand that the actual
(true) deflection y, of a material point at x = x; is a curved distance traced by the same material point
from its initial un-deformed position to its final deformed position. Thus, the conventional vertical
deflection y, is merely the vertical component of the curved true deflection ¥, (refs. 3, 11). The Curved

Displacement Transfer Functions have the following different mathematical forms for different types of
structures (nonuniform, slightly nonuniform, and uniform).

Large Deflection for Cantilever Embedded Beam

Just like the small bending deformations, the large bending deformations have three Curved
Displacement Transfer Functions for a cantilever embedded beam for which y,= 6, = 0.

Nonuniform Curved Displacement Transfer Functions

The depth factors are notequal (c;—; # c¢;), (ref. 11). The slope equation (in recursive form) is shown
in equation (7a):

L . =g & 6= Ee (&
i1 Py i-1%i i 17—1 logl}“ez-_l (78)

C.—6G (ci—l =G)~ Ciy . (i —123 n)

ei:(A])i|:

The curved deflection equation (in recursive form) is shown in equation (7b):

i AL i~i=1

2(01'71 - cx) (ci—l - ci)3

By =8 G & —&L [

i-1

y, = (Al)f[¢ log—+(c,, —c,-)ﬂ+?,-_1 +(A),0,,

(7b)

; (i=1,23,...,n)

Slightly Nonuniform Curved Displacement Transfer Functions

The depth factors are almost equal (ci_1 - ci), (ref. 3). The slope equation (in recursive form) is shown
in equation (8a):

_@n, [_iJ
0, = 2 { 2 ” gil+€i}+9il (8a)

i-1 i-1

; (i=123,..,n)

The curved deflection equation (in recursive form) is shown in equation (8b):

~ (Al _ ~
3= Q[{3_ i} £+ 5}}'%’1 (AT} E.
Ciy

6c. | (8b)

; (1=123,..,n)

Uniform Curved Displacement Transfer Functions

The depth factors are equal (c,, = ¢, =c), (ref. 11). The slope equation (in recursive form) is shown
in equation (9a):

Al).
0 = (2, (&1 +8)+0,, (9a)
- ; (i=123,..,n)

The curved deflection equation (in recursive form) is shown in equation (9b):

~ (Ai)
yi (2‘91 1+g)+y1 1+(A])1 i-1 (gb)
; (i=123,...,n)

Large Deflection for Two-end Supported Embedded Beam

_B
The curved deflection Y = of the two-end supported embedded beam (simply supported or fixed) can

l
be calculated from equation (10), which enforces zero deflection at the beam tip (i = n) of the cantilever
embedded beam using shifting factor (x, /)y, (ref. 1):

B_~ X
yl yi ly
1 (A Cii
==Y 32j-D)=(3j-2)=LL e, +(3j-2)e . =27, (10)
611 C z—j [

; (i=1,23,...,n)

B
In equation (10), Y . is the curved deflection of a slightly nonuniform cantilever embedded beam.
l

Equation (10) was obtained by combining the slope angle equation (8a) and the curved deflection equation
(8b) into a single equation, and is applicable to the limit case of uniform embedded beams.

It is important to mention that, if {tanql.,yl.} in equations (3) — (5) are replaced respectively with

{Hi, fi}, then equations (3) — (5) become equations (7) — (9) for the shape calculations of structures under
geometrical nonlinear large deformations (ref. 11).

Cross-Sectional Twist Angle

For structure types 3 and 4 that have front and rear strain-sensing lines, the cross-sectional twist angle
at the strain-sensing station i, x = x; , is calculated using equation (11).

e
= sin 1. i lor i i
& { d d } ()

; (1=123,..,n)

Procedure to Use the Program

In order to use the Structure Deformation Calculation Program, users are required to have Microsoft
Visual Studio software (Microsoft Corporation, Redmond, Washington) or any server that can compile
C/C++ to compile this program. Users need to create two input files, a strain data file and a geometry file
in the required formats. The arrangements of the data in these files are different depending on the structure
type as defined in the next section.

Preparation of the Strain Data File

The strain data file must be in csv format with the first line containing the header of “time” and names
of the strain-sensing stations. The second line to the last line should contain the time and the measured
surface strains &; of each strain-sensing station i on each strain-sensing line from the fixed end &, to the
free end &,. The time format in this file will be copied to the output files. If there are multiple strain-sensing
lines, strain data on one line must finish before starting strain data on the next line.

Preparation of the Geometry file

The geometry file must be prepared in txt format with spaces or tab delimiters between two values.
This file contains the geometry data that the program will use to calculate deformations. The distances in
this report are measured in inches, but users can use any units they want as long as they are consistent. This
file has some or all of the following elements.

1. Structure type from 1to 7.

2. Total length of the structure in inches I.

3. Domain length in inches. The domain length, (Al); = Al;, is the distance between two adjacent

strain sensors i-1 and i on a strain-sensing line; Al; can be constant or variable.

4. Total number of strain-sensing stations installed on the structure. If the structure has multiple strain-
sensing lines, the number of stations installed on each strain-sensing line must be the same. The

domain lengths Al, between two adjacent sensors i-1 and i on each strain-sensing line must also be
the same; for example, Al, on line 1 = Al, on line 2 = Al, on line k: Aly; = Aly; = Aly;.

Depth factors in inches (¢, can be known or unknown).

Chord-wise distances in inches (d; for structures that have front and rear strain-sensing lines).
Depths in inches (/, at the fixed end and £, at the free end for structures that have lower and upper
strain-sensing lines).

Running the program

After creating two required input files, users can run this the Structure Deformation Calculation
Program. The program will prompt the user for three following inputs.

$ Enter strain data filename:

$ Enter geometry filename:

$ Enter structure type:

Users must enter inputs to the above prompts in order to run the program. The program will always

calculate vertical deflections);, slopes 6;, and determine the maximum and minimum deflections for each

strain-sensing station. Different structure configurations in the formulations of the Displacement Theory
and Displacement Transfer Functions (refs. 1-12) are categorized into seven structure types in this program.

Depending on the structure type, the program will also calculate the depth factors ¢, and/or the cross-

sectional twist angles ¢..

Output files created by the program

The program will use the name of the strain data file to create the names of the output files in csv format
by appending it with _Deflections, _Slopes, _Deflections_MaxMin, _DepthFactors, and _TwistedAngles.
For example, if the strain data filename is N13.csv, the output files are N13_Deflections.csv,
N13_Slopes.csv, N13_Deflections_ MaxMin.csv, N13_DepthFactors.csv, and N13_TwistAngles.csv. The
first row in the deflection file and slope file is labeled exactly the same as the first row in the strain data
file. The first column in the deflection file and slope file is exactly the same as the first column in the strain
data file. All structure types will have the deflection and maximum minimum deflection files. The
deflections are measured in inches and the slopes and twist angles are measured in degrees. When finishing,
the program will print out a complete message and also the names of the output files.

Structure Types

With the intention to make the Structure Deformation Calculation Program easy to use, one-line, two-
line, and four-line systems, with known and unknown depth factors, with vertical and curved deflections,
and with short and long lengths are categorized into seven structure types. The structure types cover the
range from the simplest one-line uniform cantilever beam with known depth factors to a complicated four-
line doubly tapered wing with unknown depth factors. Each structure type requires different formats of the
strain and geometry files and has different output files. Dependent on the structure type, a correct Transfer
Function is used in the program to calculate deflections, slopes, cross-sectional twist angles, and depth
factors if applicable.

Type 1 — Cantilever Embedded Beam

For a cantilever embedded beam with strain-sensing stations distributed along the bottom strain-sensing
line, the depth factors are known, and no torsion is involved. The one-line system can be used for shape
prediction analysis. The cantilever embedded beam is the simplest structure type.

Type 1 Structure

Figure 1(a) shows a uniform cantilever beam with ¢, = ¢, , and figure 1(b) shows a tapered cantilever
or nonuniform beam with ¢, > c,,.

10

Al e Al, > AL = 4], - l - Al -
1900869
Figure 1(a). Type 1 structure of a uniform cantilever beam.
A Domain i
P =6 Strain-sensing line -\ < >
' A 1,
- - - - T . - - » C. c
< | & gl 82 & & \ i-1 i - é
+ 7 _J Typical strain- il ! "
< (Al)) = (Al)y e (Al) 3 >t (Al)4 sensing station < (Al); | (A1), -
%o X X *3 % X * Y
< X >
- l >

190070

Figure 1(b). Type 1 structure of a tapered cantilever or nonuniform beam.

Type 1 Strain Data File

For type 1 strain data file, recorded strains must be arranged as shown in figure 1(c). The SG_0 is
always the strain-sensing station at the fixed end, and SG_n is always the strain-sensing station at the free-
end. In figure 1(c), SG_nis SG_16.

The first line is the header containing the title “time” and names of the strain-sensing station starting
from the fixed end.

The second line to the last line must contain the times and measured strains at stations SG_0, SG_1,
..., 5G n.

The first column contains the times that can be in any time format.

The columns after the first column contain the measured strains at stations SG_0,SG 1, ..., SG n.

A B
time SG_0

G D E F G H I) K L M N o P
61 SG2 SG3 SG4 SG5 SG6 SG7 SG8 SG9 SG_10 SG_11 SG_12 SG_13 SG_14

R -
SG_16

Q
$G_15

A v B W e

8:23:15:101 0.00083
8:23:15:301 0.000872
8:23:15:501 0.000664
8:23:15:701 0.000822
8:23:15:901 0.000802

N1 ®

0.00005
0.000049
4.8E-05
4.95E-05
6.50E-05

0.000784 0.000731 0.000676 0.000626 0.000576 0.000522 0.000467 0.000418 0.000367 0.000313 0.000259 0.000209 0.000159 0.000105
0.000769 0.000717 0.000662 0.000614 0.000564 0.000574 0.000458 0.000409 0.00036 0.000307 0.000264 0.000204 0.000155 0.000103
0.000863 0.000602 0.000649 0.000501 0.000553 0.000501 0.000486 0.000401 0.000353 0.000301 0.000248 0.000229 0.000152 0.000101
0.000776 0.000804 0.00057 0.00062 0.00057 0.000517 0.000462 0.000455 0.000363 0.00031 0.000256 0.000206 0.000174 0.000104
0.000941 0.000706 0.000737 0.000605 0.000556 0.000504 0.000451 0.000403 0.000404 0.000345 0.00025 0.000201 0.000153 0.000126

v oolooo

190071

Figure 1(c). Type 1 strain data file.

11

Type 1 Geometry File

For type 1 geometry files, users must prepare the geometry file in txt format as shown in figure 1(d) or
figure 1(e).

File Edit Format View Help Co

1 100.5 17- 4.0
IR\Structure typfx =y

Constant domains

/—CH

4.0
Number of strain stations

Structure length

190072

Figure 1(d). Type 1 geometry file of a uniform cantilever beam constant domains.

[File Edit Format View Help Co Ow

il 100.5 17 4.0 3.0
2 6.21125 6.22125 6.23125 6.24125 6.25125 6.26125 6.27125 6.28125 6.29125 6.30125 6.31125 6.32125 6.33125 6.32125 6.33125 6.32125

Variable domains \’-A/1 e Alz N Alp

— — e - —

190073

Figure 1(e). Type 1 geometry file of a tapered cantilever beam variable domains.

This file has two lines:

Line 1:
e The first field is the structure type.
e The second field is the structure length.
The third field is the number of strain-sensing stations counting from the fixed end.
e The fourth field is the depth factor ¢, at the fixed end.
e The fifth field is the depth factor c¢,, at the free end.

Line 2 for Ali domain:
1 is for constant domain; after 1 is nothing as shown in figure 1(d).
2 is for variable domain; after 2 are AL, AL, ..., Al as shown in figure 1(e).

Type 1 Deflection File

After starting the program, users need to enter the strain data filename, the geometry filename, and
structure type as 1. The program will compare the entered structure type 1 with the structure type
programmed in the geometry file. If they are equal to 1, the program will calculate the deflections and save
the results in a deflection file as shown in figure 1(f).

A B € D E F G H 1 J K L M N o P Q R

1 [time Is60 SG_1 SG_2 SG_3 SG_4 SG_S SG_6 SG_7 SG_8 SG_9 SG_10 SG_11 SG_12 SG_13 SG_14 SG_15 SG_16
2 8:23:15:101 0 0.00402 0.015764 0.034716 0.060343 0.092144 0.129619 0.17224 0.219477 0.270832 0.325803 0.383862 0.44448 0.507155 0.571388 0.636653 0.702419
3 8:23:15:301 0 0.004131 0.015927 0.034786 0.060187 0.091639 0.128754 0.171324 0.218521 0.269753 0.324529 0.382349 0.442744 0.505172 0.569127 0.634093 0.69955
4 8:23:15:501 0 0.003603 0.01496 0.032763 0.056647 0.085804 0.120245 0.159689 0.203812 0.25195 0.303561 0.358139 0.415221 0.474471 0.535264 0.597049 0.659314
5 8:23:15:701 0 0.00398 0.015739 0.034999 0.06035 0.091651 0.128568 0.17058 0.21723 0.268232 0.322882 0.38059 0.440831 0.503138 0.567101 0.632114 0.697623
6 8:23:15:901 0 0.004184 0.017035 0.037286 0.064534 0.097883 0.13671 0.180506 0.228759 0.281069 0.337264 0.3968 0.458875 0.522936 0.588542 0.655334 0.722759
N1_Deflections @ o »

190074
Figure 1(f). Type 1 deflection file.

Type 1 Slope File

Similar to the deflections, the program will calculate the slopes. The results will be saved in a slope file
as shown in figure 1(g).

12

A B C D E F G H 1 J K L M N (o] P Q R A
1 [time Is6_0 5G_1 SG_2 5G_3 SG_4 SG_S SG_6 SG_7 SG_8 5G_9 SG_10 SG_11 SG_12 SG_13 SG_14 SG_15 SG_16
8:23:15:101 0 0.072642 0.140815 0.204103 0.26267 0.316738 0.366114 0.410605 0.450405 0.485706 0.516315 0.542041 0.563054 0.579569 0.591414 0.598375 0.600624
8:23:15:301 0 0.073804 0.140614 0.202637 0.260032 0.313018 0.364224 0.410643 0.449647 0.484242 0.514239 0.539915 0.560973 0.577158 0.588766 0.595588 0.597792
8:23:15:501 0 0.068698 0.134598 0.190882 0.242631 0.290059 0.33748 0.381883 0.42178 0.455683 0.485081 0.509788 0.531279 0.548449 0.550825 0.566511 0.568671
8:23:15:701 0 0.071915 0.143025 0.204847 0.258376 0.311903 0.360785 0.404832 0.446112 0.482939 0.513243 0.538711 0.559514 0.576648 0.589159 0.596051 0.598277
8:23:15:901 0 0.078411 0.152507 0.217399 0.27773 0.329935 0.37761 0.420569 0.458997 0.495302 0.528973 0.555707 0.575996 0.591942 0.604483 0.613062 0.615986 .

N1 _Slopes o) i«

o nswN

190075

Figure 1(g). Type 1 slope file.

Max Min Deflection File for All Structure Types

After calculating deflections for all strain-sensing stations, the max min deflections are determined and
written in the output max min deflection file. Users should center the data columns so that the data are more
readable. This file is always created for all structure types with the format as shown in figure 1(h).

A B & D E -
1 |SGName Time at Max Deflection Max Deflection Time at Min Deflection Min Deflection
2 ; SG_0 8:23:15:101 0 8:23:15:101 0
3 56 1 8:23:15:901 0.00418357 8:23:15:501 0.00360261
4 | SG_2 8:23:15:901 0.0170345 8:23:15:501 0.0149603
5 : SG_3 8:23:15:901 0.0372856 8:23:15:501 0.0327629
6 SG_4 8:23:15:901 0.0645343 8:23:15:501 0.056647
7 SG_5 8:23:15:901 0.0978834 8:23:15:501 0.0858039
8 SG_6 8:23:15:901 0.13671 8:23:15:501 0.120245
9 SG_7 8:23:15:901 0.180506 8:23:15:501 0.159689
10 SG_8 8:23:15:901 0.228759 8:23:15:501 0.203812
Bl 569 8:23:15:901 0.281069 8:23:15:501 0.25195
12 | SG_10 8:23:15:901 0.337264 8:23:15:501 0.303561
13| sG_11 8:23:15:901 0.3968 8:23:15:501 0.358139
14 | SG_12 8:23:15:901 0.458875 8:23:15:501 0.415221
45)| SG_13 8:23:15:901 0.522936 8:23:15:501 0.474471
16 | SG_14 8:23:15:901 0.588542 8:23:15:501 0.535264
17 | SG_15 8:23:15:901 0.655334 8:23:15:501 0.597049
18| SG_16 8:23:15:901 0.722759 8:23:15:501 0.659314 -
: N1_Deflections_MaxMin @ - B i >

190076

Figure 1(h). Maximum and minimum deflection file.

Type 1 Output Files

Type 1 does not have depth factors nor twist angles. Type 1 output files are a deflection file, a slope
file, and a max min deflection file.

Type 2 — Two-end Supported Beam

A cantilever beam with a two-end supported beam is installed with strain-sensing stations distributed
along the bottom strain-sensing line. In this case, the load P is applied in the middle of the structure. The
slopes will not be calculated.

Type 2 Structure

Figure 2(a) shows a two-end simply supported beam and figure 2(b) shows a two-end fixed beam. An
additional case is one end fixed and other end simply supported.

13

Simply supported

pl Undeformed 7

Simply supported /

J‘c‘,,
T

\— Deformed

190077

Figure 2(a). Type 2 structure of a beam with two-end simply supported.

K Fixed P l Undeformed 7

\— Deformed

Y

190078

Figure 2(b). Type 2 structure of a beam with two-end fixed beam.

Type 2 Strain Data File
The strain data file is prepared in csv format similar to type 1 as shown in figure 2(c).

A B C D E F G H I J -
1 |time _|SG_0 5G_1 SG_2 5G_3 SG_4 SG_5 SG_6 SG_7 SG_8
2 (8:23:15:101 -0.00044 -0.00035 -0.00021 2.95E-05 0.00042 0.000397 0.000292 0 -0.00084
3 (8:23:15:301 -0.00042 -0.00033 -0.00019 2.97E-05 0.000433 0.000399 0.000301 0 -0.00083
4 |8:23:15:501 -0.00031 -0.00022 -7.8E-05 3.08E-05 0.000446 0.0004 0.000309 0 -0.00084
5 (8:23:15:701 -0.00029 -0.0002 -5.8E-05 0.000031 0.000459 0.000402 0.000317 0 -0.00084
6 (8:23:15:901 -0.00023 -0.00014 1.9E-06 3.16E-05 0.000472 0.000403 0.000326 0 -0.00084 | .
~[@ - »

190079

Figure 2(c). Type 2 strain data file.

14

Type 2 Geometry File

The geometry file is prepared in txt format similar to the type 1 above. The geometry file is shown in
figures 1(d) and 1(e).

Type 2 Deflection File

After starting the program, users need to enter the strain data filename, the geometry filename, and the
structure type as 2. The program will compare the entered structure type 2 with the structure type
programmed in the geometry file. If they are equal to 2, the program will calculate the deflections and save
the results in a deflection file as shown in figure 2(d).

A B & D E F G H I J -
1 |time _]se_o SG_1 SG_2 SG_3 SG_4 SG_5 SG_6 SG_7 SG_8
2 [8:23:15:101 0 -0.00776 -0.0305 -0.06269 -0.09205 -0.09973 -0.07899 -0.03464 0
3 /8:23:15:301 0 -0.0099 -0.03391 -0.06655 -0.09605 -0.1033 -0.08179 -0.03616 0
4 18:23:15:501 0 -0.01877 -0.04687 -0.07915 -0.10702 -0.11209 -0.08803 -0.03934 0
5 18:23:15:701 0 -0.0209 -0.05026 -0.08299 -0.111 -0.11563 -0.09079 -0.04081 0
6 [8:23:15:901 0 -0.02603 -0.05791 -0.09074 -0.11809 -0.12151 -0.09511 -0.04305 0|+
N2_Deflections @ P b

190080

Figure 2(d). Type 2 deflection file.

Type 2 Output Files
Type 2 only have deflections. Type 2 output files are a deflection file and a max min deflection file.

Type 3 — Tapered Wing Box and Two-line System

A tapered wing box with two strain-sensing lines where strain-sensing stations are distributed along
front and rear bottom lines. Twist angles will be calculated in this case. Any two strain-sensing lines can
be used as long as they are in the same vertical or horizontal plane. The domain lengths for strain-sensing
station i on two strain-sensing lines must be the same; for example, A/; = Al;; on line 1 = Al>; on line 2.
Type 3 Structure

Figure 3(a) shows a wing box with two lower strain-sensing lines.

15

P
7 (‘ Sy
7 \ .
7 &N
Deformed P / 4
Lower front (If) strains are (g, &, &, ..., €) wing box % & T
n-

Lower rear (Ir) strains are (&g, £/, &, ..., &) ¢
n

Front strain-

sensing line s
; ~ &

¢. =sin! " Y
! d.

& l
1% —_— & Undeformed locations of
“ d - 1 ing box | d

= 0 & Rear strain- wing box lower edges
+ sensing line
If_sg0 Fixed end Ir_sg0
190081

Figure 3(a). Type 3 Structure of a tapered wing box two-line system.

Type 3 Strain Data File

Users need to prepare the strain data file in csv format as shown in figure 3(b). The strain values on one
line must be completed before starting on the other line.

Start of the first strain-sensing line Start of next strain-sensing line

A B C D E F G H 1 J K L M N (o] B Q R S -
1 time If_sg0 If_sgl If_sg2 If_sg3 If_sg4 If_sg5 If_sg6 If_sg7 If_sg8 |Ir_sg0 Ir_sgl Ir_sg2 Ir_sg3 Ir_sg4 Ir_sg5 Ir_sg6 Ir_sg7 Ir_sg8
2 8:23:15:101 0.000516 0.0005 0.00049 0.00048 0.000463 0.000428 0.00036 0.00024 0 0.0004 0.0005 0.0005 0.000446 0.000428 0.00039 0.00033 0.0002 0
3 8:23:15:301 0.000526 0.00051 0.0005 0.00049 0.000473 0.000438 0.00037 0.00025 0 0.0004 0.0005 0.0005 0.000456 0.000438 0.0004 0.00034 0.00021 0
4 8:23:15:501 0.000535 0.00052 0.00051 0.0005 0.000483 0.000448 0.00038 0.00026 0 0.0005 0.0005 0.0005 0.000466 0.000448 0.00041 0.00035 0.00022 0
5 8:23:15:701 0.000521 0.00053 0.00052 0.00051 0.000493 0.000458 0.00039 0.00027 0 0.0005 0.0005 0.0005 0.000476 0.000458 0.00042 0.00036 0.00023 0
6 8:23:15:901 0.000555 0.00054 0.00053 0.00052 0.000503 0.000468 0.0004 0.00028 0 0.0005 0.0005 0.0005 0.000486 0.000468 0.00043 0.00037 0.00024 0 v
<« ﬂ ® HER] »
190082

Figure 3(b). Type 3 strain data file.

Type 3 Geometry File
Users need to prepare the geometry file as shown in figures 3(c) and 3(d). This file has three lines.

I =

Eile Edit Format View Help
3 360.0 18 18.0 8.0

1 5.29802 2.35444 5.11089 2.27128

Co at lower front Cn at lower front En at lower rear\Cn at lower rear

< 1 »

190083

Figure 3(c). Type 3 geometry file constant domains.

16

[|N3Geoxt - Notepad RN - T e s

File Edit Format View Help —Do Dn ‘
; 12000 }3_0 %?g 3405 45.0 45.5 46.0 45.0 — Cn at lower front Cn at lower rear—, &
1 5.29802 4.97504 4.59052 4.21504 3.83774 3.479 3.10436 2.66489 2.35444 5.11089 4.83074 4.43625 4.07339 3.71404 3.34848 2.97874 2.59727 2.27128

“—Co at lower front “—Co at lower rear v
|
190084

Figure 3(d). Type 3 geometry file variable domains.
Line 1:

e The first field is the structure type.
e The second field is the structure length.
e The third field is the total number of strain-sensing stations.
e The fourth field is the chore-wise distance d, at the fixed end.
e The fifth field is the chore-wise distance d,, at the free end.
Line 2 for A/; domain:
e 1 isfor constant domain; after 1 is nothing as shown in figure 3(c).
e 2is for variable domain; after 2 are A/, AL, ..., Al.as shown in figure 3(d).
Line 3 for depth factors:
e |f the beam depth tapers down linearly from the fixed end to the free end, enter 1. After 1, enter the
depth factor ¢, and c,, for the front line, ¢, and c,," for the rear line as shown in figure 3(c).
e If the beam depth does not taper down linearly from the fixed end to the free end, enter 2. After 2,
enter the depth factors in the order of the strain sensors in the strain data file as shown in figure 3(d),
co for If sg0, ..., ¢, for If_sg8, ¢,’ for Ir_sg0, ..., ¢, for Ir_sg8.

Type 3 Deflection File

After starting the program, users need to enter the strain data filename, the geometry filename, and the
structure type as 3. The program will compare the entered structure type 3 with the structure type
programmed in the geometry file. If they are equal to 3, the program will calculate the deflections and save
the results in a deflection file as shown in figure 3(e).

A B G D E F G H 1 J K 15 M N (0] P Q R S
1 ILng If_sgl If_sg2 If_sg3 If_sga If_sg5 If_sg6 If_sg7 If_sg8 Ir_sg0 Ir_sgl Ir_sg2 Ir_sg3 Ir_sg4 Ir_sg5 Ir_sg6 Ir_sg7 Ir_sg8
2 |8:23:15:101 0 0.09934 0.401551 0.918432 1.66528 2.654888 3.890361 5.355409 6.986058 0 0.088368 0.365393 0.848541 1.552623 2.488751 3.65915 5.044658 6.575871
3 8:23:15:301 0 0.10127 0.409483 0.936782 1.698858 2.708974 3.970791 5.468748 7.138524 0 0.090386 0.373641 0.867585 1.587439 2.544802 3.742496 5.16212 6.733856
4 18:23:15:501 0 0.103141 0.417267 0.954892 1.732107 2.762641 4.050713 5.58149 7.290301 0 0.092405 0.38189 0.886628 1.622255 2.600852 3.825842 5.279583 6.89184
5 |8:23:15:701 0 0.101991 0.417473 0.960869 1.748666 2.795063 4.104834 5.663875 7.407166 0 0.094423 0.390139 0.905672 1.657071 2.656903 3.909189 5.397046 7.049825
6 8:23:15:901 0 0.10705 0.433252 0.991784 1.799527 2.87115 4.211983 5.80865 7.595786 0 0.096441 0.398387 0.924716 1.691886 2.712954 3.992535 5.514509 7.207809 | ~
N3 _Deflections @ i ¢ »
190085

Figure 3(e). Type 3 deflection file.

Type 3 Slope File

Similar to the deflections, the program will calculate the slopes. The results will be saved in a slope file
as shown in figure 3(f).

17

A B C D E F G H 1 J K L M N o P Q R S
1 [time Iifsg0 Ifsgl 1fse2 Ifsgd Ifsed I sg5 Ifsg6 Ifsg7 I sg8 Irsg0 Irsgl I se2 Irsg3 Irsgd Irsg5 Irsg6 I sg7 Ir_sg8
2 8:23:15:101 0 0.253873 0.518375 0.801251 1.103337 1.417189 1.72506 1.994052 2.117184 0 0.228823 0.480439 0.752939 1.042369 1.341897 1.634618 1.879095 1.984902
3 8:23:15:301 0 0.258854 0.52875 0.817482 1.125972 1.446867 1.762563 2.040488 2.168643 0 0.234011 0.491194 0.769755 1.065807 1.372634 1.673499 1.927217 2.038197
4 |8:23:15:501 0 0.263721 0.53901 0.833599 1.148492 1.476429 1.79995 2.086806 2.219983 0 0.2392 0.50195 0.786572 1.089245 1.40337 1.712378 1.975337 2.091488
5 18:23:15:701 0 0.262788 0.543469 0.843917 1.165213 1.500195 1.831541 2.12733 2.265529 0 0.244388 0.512705 0.803388 1.112682 1.434105 1.751256 2.023453 2.144776
6 8:23:15:901 0 0.273776 0.55985 0.866154 1.193851 1.535873 1.87504 2.179756 2.322974 0 0.249576 0.52346 0.820204 1.136119 1.464839 1.790131 2.071567 2.19806 -
N3 _Slopes ©) :

190086

Figure 3(f). Type 3 slope file.
Type 3 Cross-sectional Twist Angle File

Similar to the deflections and slopes, the program will calculate the twist angles. The results will be
saved in a twist angle file as shown in figure 3(g).

A B € D E F G H I J -
5 4 ltime _lStation_O Station_1 Station_2 Station_3 Station_4 Station_5 Station_6 Station_7 Station_8
2 |8:23:15:101 0 0.034924 0.115095 0.22247 0.358602 0.528836 0.735988 0.989201 1.305778
3 8:23:15:301 0 0.034644 0.114089 0.220261 0.354661 0.522582 0.726705 0.976075 1.288206
4 18:23:15:501 0 0.034175 0.112608 0.217291 0.349672 0.514996 0.715805 0.961045 1.268445
5 |8:23:15:701 0 0.024088 0.087007 0.175699 0.29156 0.439782 0.622771 0.849373 1.137528
6 8:23:15:901 0 0.033768 0.110978 0.213484 0.342631 0.50356 0.698541 0.936324 1.235064 =
B N3_TwistAngles ©) P »

190087
Figure 3(g). Type 3 twist angle file.

Type 3 Output Files

Type 3 does not have depth factors. Type 3 output files are a deflection file, a slope file, a twist angle
file, and a max min deflection file.

Type 4 — Doubly Tapered Wing and Four-line System

A doubly tapered wing with four strain-sensing lines where strain-sensing stations are distributed along
two front lines and two rear lines. Depth factors and twist angles will be calculated in this case. The domain
lengths for strain-sensing station i on four strain-sensing lines must be the same; for example, 4/; = Al;; on

line 1 = 4/ online 2 = Al3; on line 3 = Al4 on line 4. Type 4 is the most complicated type; users need to
prepare the strain data file and the geometry file carefully.

Type 4 Structure

Figure 4(a) shows a doubly tapered wing with a four-line system. The two extra lines must be added to

determine depth factors c;. After running this structure type one time, users have the depth factors c; created
by this program. Then, users can use structure type 3 with a two-line system.

The lower front strains are (&g, €1, €2, -+, En)-
The upper front strains are (&g, &1, &3, -+, &n)-
The lower rear strains are (&g, €1, £, .., &).
The upper rear strains are (&), &1, &, ..., &,).

18

Fixed end = g

Upper strain-

\\ensing lines
¥
"

C

Lower strain-
sensing lines

~
N

B Ea
a

Free end

190088

Figure 4(a). Type 4 structure of a doubly tapered wing four-line system.

Type 4 Strain Data File

Users need to prepare a single strain data file in csv format as shown in figure 4(b). The first strain
sensor on each line must always be located at the fixed end. The strain values on one line must be completed
before starting on the next line. The order of strains need to be exactly as shown in figure 4(b). The top half

containing strain data for the front starts from column B and the bottom half containing strain data for the
rear starts from column T.

19

A B c D E F G H 1) K L ™ N o P Q R S -
1(tme |sg0 Mgl sg2 lsg3 lsgd lses I sg6 I sg7 M sg8 ufsgd ufsgl ufsg2 ufsgl ufsgd ufsgS ufsge ufsg? ufsgd
2 8:23:15:101 0.000516 0.000495 0.000486 0.00048 0.000463 0.000428 0.00036 0.000245 0 -0.00064 -0.00061 -0.0006 -0.00059 -0.00057 -0.00053 -0.00044 -0.00032 0
3 8:23:15:301 0.000526 0.000505 0.000496 0.00049 0.000473 0.000438 0.00037 0.000255 0 -0.00055 -0.00059 -0.00061 -0.0006 -0.00058 -0.00054 -0.00045 -0.00033 0
4 18:23:15:501 0.000536 0.000515 0.000506 0.0005 0.000483 0.000448 0.00038 0.000265 0 -0.00056 -0.0006 -0.00062 -0.00061 -0.00059 -0.00055 -0.00046 -0.00034 0
5 8:23:15:701 0.000546 0.000525 0.000516 0.00051 0.000493 0.000458 0.00039 0.000275 0 -0.00057 -0.00061 -0.00063 -0.00062 -0.0006 -0.00056 -0.00047 -0.00035 0
6 8:23:15:901 0.000556 0.000535 0.000526 0.00052 0.000503 0.000468 0.0004 0.000285 0 -0.00058 -0.00062 -0.00064 -0.00063 -0.00061 -0.00057 -0.00048 -0.00036 o
« N4 @ i« »
A T u v w X v z A A8 AC AD AE AF AG | AH Al A AK
1 [time I sg0 Irsgl Irsg2 Irsg3 Irsgd Irsg5 Irsg6 Irsg7 Irsg8 ursgdD wursgl ursg2 ursgd ursgd ursgS ursg6 ur_sg? ur_sg8
2 8:23:15:101 0.000431 0.00045 0.000453 0.000446 0.000428 0.000392 0.000327 0.000204 0 -0.00062 -0.00063 -0.00065 -0.00064 -0.00061 -0.00056 -0.00047 -0.0003 0
3 8:23:15:301 0.000441 0.00046 0.000463 0.000456 0.000438 0.000402 0.000337 0.000214 0 -0.00062 -0.00064 -0.00066 -0.00065 -0.00062 -0.00057 -0.00048 -0.00031 0
4 8:23:15:501 0.000451 0.00047 0.000473 0.000466 0.000448 0.000412 0.000347 0.000224 0 -0.00063 -0.00065 -0.00067 -0.00066 -0.00063 -0.00058 -0.00049 -0.00032 0
5 8:23:15:701 0.000461 0.00048 0.000483 0.000476 0.000458 0.000422 0.000357 0.000234 0 -0.00064 -0.00066 -0.00068 -0.00067 -0.00064 -0.00059 -0.0005 -0.00033 0
6 8:23:15:901 0.000471 0.00049 0.000493 0.000486 0.000468 0.000432 0.000367 0.000244 0 -0.00065 -0.00067 -0.00069 -0.00068 -0.00065 -0.0006 -0.00051 -0.00034 0 -
‘ N4 @ i »
190089
Figure 4(b). Type 4 strain data file.
Type 4 Geometry File

Users need to prepare the Geometry file in txt format as shown in figure 4(c).

I oo orns T
File Edit Format View Help
4 360.0 36 18.0 8.0 11.9059 5.29098 12.5008 5.555355 -
2 45.0 45.5 44 .5 45.3 45.4 45.2 \ 44 .5 44.6

Ij 4 (s | I »

. . ‘_ ki ki
variable domain do dn “ho “ha ho Lha
190090
Figure 4(c). Type 4 geometry File.
Line 1:

e The first field is the structure type.
e The second field is the structure length.
The third field is the total number of strain-sensing stations.
The fourth field is the separation distance from the front and the rear at the fixed end, d,,.
The fifth field is the separation distance from the front and the rear at the free end, d,,.
The sixth field is the beam depth at the front fixed end, h,.
The seventh field is the beam depth at the front free end, h,,.
The eighth field is the beam depth at the rear fixed end, h,'.
The ninth field is the beam depth at the rear free end, h,,".
Line 2 for 4/; domain:
e 1isfor constant domain; nothing after 1 as shown in figure 1(d).
e 2is for variable domain; after 2 are 4/, AL, ..., Al. as shown in figure 4(c).

Type 4 Deflection File

After starting the program, users need to enter the strain data filename, the geometry filename, and the
structure type as 4. The program will compare the entered structure type 4 with the structure type
programmed in the geometry file. If they are equal to 4, the program will calculate the deflections and save
the results in a deflection file as shown in figure 4(d).

20

Type 4 Slope File

Figure 4(d). Type 4 deflection file.

A B o D E BTG H 1 J K L M | N (0] P Q RS -
1 [time _ILng If_sgl If_sg2 If_sg3 If_sg4 If_sg5 If_sg6 If_sg7 If_sg8 uf_sg0 uf_sgl uf_sg2 uf_sg3 uf_sg4 uf_sg5 uf_sg6 uf_sg7 uf_sg8
2 8:23:15:101 0 0.09934 0.406064 0.918278 1.670733 2.671672 3.916812 5.369012 6.986921 0 -0.09933 -0.40605 -0.91827 -1.67073 -2.67168 -3.91683 -5.36886 -6.98697
3 |8:23:15:301 0 0.101291 0.414139 0.936707 1.704535 2.726251 3.997975 5.482817 7.139541 0 -0.08847 -0.37615 -0.87183 -1.61137 -2.60371 -3.84505 -5.29852 -6.92285
4 8:23:15:501 0 0.103242 0.422214 0.955136 1.738337 2.78083 4.079139 5.596623 7.292161 0 -0.09004 -0.38268 -0.88676 -1.63875 -2.6479 -3.91076 -5.39061 -7.04614
5 |8:23:15:701 0 0.105193 0.430289 0.973565 1.772139 2.835408 4.160303 5.710429 7.44478 0 -0.09162 -0.38922 -0.90169 -1.66613 -2.6921 -3.97647 -5.48269 -7.16943
6 8:23:15:901 0 0.107144 0.438364 0.991994 1.805942 2.889987 4.241467 5.824235 7.5974 0 -0.09319 -0.39575 -0.91661 -1.69351 -2.73629 -4.04219 -5.57478 -7.29272
7 8:23:16:101 0 0.109095 0.446439 1.010422 1.839744 2.944565 4.322631 5.93804 7.75002 0 -0.09476 -0.40229 -0.93154 -1.72089 -2.78049 -4.1079 -5.66687 -7.41601 ~
A i u v w X Y z AA AB AC AD AE AF AG AH Al A AK -
1 [time .|r7530 Ir_sgl Ir_sg2 Ir_sg3 Ir_sg4 Ir_sg5 Ir_sgb Ir_sg7 Ir_sg8 ur_sg0 ur_sgl ur_sg2 ur_sg3 ur_sg4 ur_sg5 ur_sg6 ur_sg7 ur_sg8
2 8:23:15:101 0 0.088368 0.369564 0.848353 1.557702 2.504549 3.684109 5.057507 6.576918 0 -0.08833 -0.36947 -0.84822 -1.55753 -2.50435 -3.68387 -5.05713 -6.57655
3 8:23:15:301 0 0.090387 0.377906 0.867393 1.592631 2.560958 3.76803 5.175235 6.734814 0 -0.08849 -0.37189 -0.85595 -1.57416 -2.53377 -3.7303 -5.12494 -6.67007
4 8:23:15:501 0 0.092405 0.386248 0.886432 1.627561 2.617367 3.851952 5.292964 6.892709 0 -0.0899 -0.37775 -0.86932 -1.59868 -2.57335 -3.78913 -5.20735 -6.78041
5 8:23:15:701 0 0.094423 0.39459 0.905471 1.66249 2.673776 3.935874 5.410693 7.050605 0 -0.09131 -0.3836 -0.88269 -1.62321 -2.61293 -3.84796 -5.28977 -6.89076
6 |8:23:15:901 0 0.096441 0.402932 0.924511 1.69742 2.730185 4.019796 5.528422 7.2085 0 -0.09272 -0.38945 -0.89606 -1.64773 -2.65251 -3.90678 -5.37218 -7.0011
7 8:23:16:101 0 0.09846 0.411274 0.94355 1.73235 2.786594 4.103717 5.646151 7.366396 0 -0.09412 -0.39531 -0.90943 -1.67225 -2.69208 -3.96561 -5.4546 -7.11145| ~
<« N4 _Deflections [©) « »
190091

Similar to the deflections, the program will calculate the slopes. The results will be saved in a slope file
as shown in figure 4(e).

Type 4 Depth Factor File

Figure 4(e). Type 4 slope file.

A B < D E F G H 1 J K L M N o P Q R S A
1 |time If_sg0 If_sg1 If_sg2 If_sg3 If_sg4 If_sg5 If_sg6 If_sg7 If_sg8 uf_sg0 uf_sgl uf_sg2 uf_sg3 uf_sg4 uf_sg5 uf_sg6 uf_sg7 uf_sg8
2 |8:23:15:101 0 0.253873 0.521314 0.801046 1.105146 1.421786 1.731025 1.997027 2.119064 0 -0.25386 -0.52131 -0.80105 -1.10516 -1.4218 -1.73103 -1.99656 -2.12009
3 18:23:15:301 0 0.258894 0.531788 0.817312 1.127858 1.451604 1.768702 2.043537 2.170553 0 -0.23138 -0.49771 -0.78215 -1.09147 -1.41385 -1.72946 -2.00198 -2.1294
4 8:23:15:501 0 0.263915 0.542262 0.833578 1.150569 1.481421 1.806378 2.090045 2.222038 0 -0.23544 -0.5062 -0.79533 -1.10986 -1.43799 -1.75995 -2.03945 -2.17076
5 18:23:15:701 0 0.268936 0.552736 0.849844 1.17328 1.511237 1.844052 2.13655 2.273519 0 -0.2395 -0.51469 -0.80851 -1.12824 -1.46212 -1.79044 -2.07692 -2.21212
6 8:23:15:901 0 0.273957 0.56321 0.86611 1.195991 1.541052 1.881725 2.183053 2.324997 0 -0.24355 -0.52319 -0.82169 -1.14663 -1.48625 -1.82093 -2.11439 -2.25347
7 18:23:16:101 0 0.278978 0.573683 0.882375 1.218701 1.570867 1.919396 2.229552 2.376471 0 -0.24761 -0.53168 -0.83488 -1.16502 -1.51038 -1.85142 -2.15186 -2.29483| v
A ¥ U \ w X Y z AA AB AC AD AE AF AG AH Al A AK x
1 |time Ir_sg0 Ir_sg1 Ir_sg2 Ir_sg3 Ir_sg4 Ir_sg5 Ir_sg6 Ir_sg7 Ir_sg8 ur_sg0 ur_sgl ur_sg2 ur_sg3 ur_sg4 ur_sg5s ur_sgé ur_sg7 ur_sg8
2 8:23:15:101 0 0.228823 0.483235 0.752707 1.044066 1.346256 1.640277 1.882036 1.986902 0 -0.22872 -0.48318 -0.75266 -1.04403 -1.34622 -1.64021 -1.88175 -1.98724
3 |8:23:15:301 0 0.234012 0.494052 0.769518 1.067543 1.377096 1.679297 1.930195 2.040188 0 -0.22982 -0.48794 -0.76162 -1.05764 -1.36497 -1.66464 -1.91243 -2.02142
4 8:23:15:501 0 0.2392 0.504869 0.786329 1.091019 1.407936 1.718315 1.978351 2.09347 0 -0.23345 -0.49555 -0.77343 -1.07411 -1.38657 -1.69191 -1.94596 -2.05845
5 18:23:15:701 0 0.244388 0.515686 0.80314 1.114495 1.438774 1.757332 2.026505 2.146749 0 -0.23709 -0.50316 -0.78523 -1.09057 -1.40818 -1.71919 -1.97949 -2.09548
6 |8:23:15:901 0 0.249576 0.526503 0.81995 1.137971 1.469612 1.796348 2.074655 2.200024 0 -0.24072 -0.51077 -0.79704 -1.10704 -1.42978 -1.74646 -2.01302 -2.13251
7 18:23:16:101 0 0.254764 0.537321 0.836761 1.161446 1.500448 1.835362 2.122803 2.253295 0 -0.24436 -0.51837 -0.80884 -1.12351 -1.45138 -1.77373 -2.04655 -2.16954 ~
« N4 _Slopes @ P4 »
190092

The program will calculate the depth factors for type 4. The results will be saved in a depth factor file
as shown in figure 4(f). Structure type 4 does not have depth factors c;; therefore, a four-line system is
used. After the ¢; are calculated from this program, users can use structure type 3 with a two-line system.

A B C D E F G H 1 J K L M N o P Q R -
1 If_sg0 If_sg1 If_sg2 If_sg3 If_sg4 If_sg5 If_sgb If_sg7 If_sg8 uf_sg0 uf_sgl uf_sg2 uf_sg3 uf_sgd uf_sg5 uf_sgb uf_sg7 uf_sg8
2 5.29802 4.97504 4.59052 4.21504 3.83774 3.479 3.10436 2.66489 2.35444 6.60788 6.10399 5.66165 5.21026 4.7607 4.29257 3.84035 3.45295 2.93654 ~
S T U v w X ¥ z AA AB AC AD AE AF AG AH Al A -
1 Ir_sg0 Ir_sgl Ir_sg2 Ir_sg3 Ir_sg4 Ir_sg5 Ir_sg6 Ir_sg7 Ir_sg8 ur_sg0 ur_sgl ur_sg2 ur_sg3 ur_sg4 ur_sgs ur_sgb ur_sg7 ur_sg8
2 5.11089 4.83074 4.43625 4.07339 3.71404 3.34848 2.97874 2.59727 2.27128 7.38991 6.80188 6.32819 5.82287 5.31404 4.81141 4.31298 3.82627 3.28408
> N4_DepthFactors ® K »

Figure 4(f). Type 4 depth factor file.

190093

21

Type 4 Twist Angle File

The program will also calculate the twist angles for type 4. The results will be saved in a twist angle
file as shown in figure 4(g). Users can change the title names LwrStation_0, ..., UprStation_8 to whatever
names that make sense to them.

A B C D E F G H I J K L M N [5) P Q R s
1 Eltwliulmn,ﬂ LwrStation_1 LwrStation_2 LwrStation_3 LwrStation_4 LwrStation_5 LwrStation_6 LwrStation_7 LwrStation_8 UprStation_0 UprStation_1 UprStation_2 UprStation_3 UprStation_4 UprStation_5 UprStation_6 UprStation_7 UprStation_8
2 |8:23:15:101 0 0.034923 0.115094 0.222468 0.358599 0.528832 0.735983 0.989195 1.305771 0 0.035029 0.11537 0.222871 0.35914 0.52951 0.736809 0.989891 1.30708
3 |8:23:15:301 0 0.03471 0.114253 0.220524 0.355022 0.523041 0.727263 0.976731 1.288961 0 0.000068 0.013298 0.050638 0.118045 0.220974 0.362442 0.55148 0.806163
4 8:23:15:501 0 0.034496 0.113412 0.218579 0.351444 0.517251 0.718543 0.964267 1.272151 0 0.000457 0.01544 0.055593 0.127114 0.235582 0.384204 0.582198 0.847397
5 |8:23:15:701 0 0.034282 0.112572 0.216634 0.347866 0.51146 0.709823 0.951803 1.255341 0 0.000981 0.017583 0.060548 0.136184 0.250189 0.405967 0.612916 0.888632
6 |8:23:15:901 0 0.034069 0.111731 0.21469 0.344289 0.50567 0.701103 0.939339 1.238532 0 0.001506 0.019725 0.065504 0.145254 0.264797 0.42773 0.643634 0.929867
7 |8:23:16:101 0 0.033855 0.110891 0.212745 0.340711 0.499879 0.692383 0.926875 1.221722 0 0.00203 0.021867 0.070459 0.154323 0.279405 0.449493 0.674352 0.971103 | .
N4_TwistAngles @ O

190094

Figure 4(g). Type 4 twist angle file.

Type 4 Output Files

The program creates the most output files for this type. Type 4 output files are a deflection file, a slope
file, a depth factor file, a twist angle file, and a max min deflection file.

Type 5 - Thin Uniform Plate

For a uniform plate (c, = c,,), the strain sensor system requires multiple parallel strain-sensing lines
across the two opposite edges as shown in figure 5(a). The four edges of the plate can be either fixed or
simply supported. The load is applied somewhere in the center of the plate. The plate must be very thin and
the depth factor is very small compared to the length. The domain lengths for strain-sensing station i on
every strain-sensing line must be the same; for example, 4/; = Al;; on line 1 = A/ on line 2 = A/3; on line
3 =41 i on line k. Similar to type 2, the slopes will not be calculated.

Type 5 Structure

Figure 5(a) shows a thin uniform plate with parallel strain-sensing lines with undeformed and deformed
shapes.

22

L] Strain sensor

—mmm— Strain-sensing line

Undeformed

Deformed

Flat panel
Very thin plate

190095

Figure 5(a). Type 5 structure of a very thin plate.

Type 5 Strain Data File

Users need to prepare the strain data file in csv format with strain values on one line which must be
completed before starting on the next line. Lines must start from one end across to the other end as shown
in figure 5(b); for example, line 1, line 2, ..., line k. For more details of how to arrange the type 5 strain
data file, users can refer to the type 1 strain data file and the type 4 strain data file in the report.

A B ¢ D E F G H 1 J K L M N o P Q R s
1 [time Linel SGO Linel_SG1 Linel SG2 Linel SG3 Linel SGA Linel SGS Linel SG6 Linel SG7 Linel SG8 Line2_SGO Line2_SG1 Line2_SG2 Line2_SG3 Line2_SG4 Line2_SGS5 Line2_SG6 Line2_SG7 Line2_SG8
2 [8:23:15:101 0 0.0000200 0.0000520 0.0001240 0.0003480 0.0001240 0.0000520 0.0000200 0 0 0.0000201 0.0000523 0.0001248 0.0003502 0.0001248 0.0000523 0.0000201 0
3 |8:23:15:301 0 0.0000201 0.0000523 0.0001247 0.0003500 0.0001247 0.0000523 0.0000201 0 0 0.0000202 0.0000526 0.0001255 0.0003523 0.0001255 0.0000526 0.0000202 0
4 8:23:15:501 0 0.0000201 0.0000524 0.0001249 0.0003504 0.0001249 0.0000524 0.0000201 0 0 0.0000203 0.0000527 0.0001257 0.0003527 0.0001257 0.0000527 0.0000203 0
5 |8:23:15:701 0 0.0000203 0.0000527 0.0001256 0.0003524 0.0001256 0.0000527 0.0000203 0 0 0.0000204 0.0000530 0.0001264 0.0003548 0.0001264 0.0000530 0.0000200 0
6 8:23:15:901 0 0.0000203 0.0000527 0.0001257 0.0003528 0.0001257 0.0000527 0.0000203 0 0 0.0000204 0.0000531 0.0001265 0.0003551 0.0001265 0.0000531 0.0000200 0|

A u v w X Y Z AA AB AC AD AE AF AG AH Al Y] AK AL
1 [time ILine3_sGO Line3_SG1 Line3_SG2 Line3_SG3 Line3_SG4 Line3_SGS Line3_SG6 Line3_SG7 Line3_SG8
2 [8:23:15:101 0 0.0000200 0.0000521 0.0001242 0.0003486 0.0001242 0.0000521 0.0000200 0
3 |8:23:15:301 0 0.0000200 0.0000523 0.0001247 0.0003500 0.0001247 0.0000523 0.0000201 0
4 8:23:15:501 0 0.0000200 0.0000523 0.0001248 0.0003502 0.0001248 0.0000523 0.0000201 0
5 |8:23:15:701 0 0.0000200 0.0000525 0.0001253 0.0003516 0.0001253 0.0000525 0.0000200 0
6 8:23:15:901 0 0.0000200 0.0000526 0.0001254 0.0003519 0.0001254 0.0000526 0.0000200 0

NS ® i <
190096

Figure 5(b). Type 5 strain data file for three lines.

Type 5 Geometry File
The geometry file should be prepared in txt format as shown in figure 5(c). This file has two lines:
Line 1:
The first field is the structure type.
The second field is the length of the strain-sensing line.
The third field is the number of strain-sensing stations.
The fourth field is the plate thickness.
The fifth field is the number of strain-sensing lines on the plate.

23

Line 2 for 4/; domain:
e 1 isfor constant domain; after 1 is nothing as shown in figure 1(d).
o 2isfor variable domain; after 2 are Al1, Al, ..., Al as shown in figure 5(c).

| N5Geo.txt - Notepad / m'cm/_ Miribor of Bhas N [E\M
File Edit Format View Help /
5 24 27 9.1 ¥ -
2 3.0 2.95 2.85 2.95 3.05 2 i B 3.05 3.05
Al _Al, v
<4)
— — —
190097

Figure 5(c). Type 5 geometry file.

Type 5 Deflection File

After starting the program, users need to enter the strain data filename, the geometry filename, and the
structure type as 5. The program will compare the entered structure type 5 with the structure type
programmed in the geometry file. If they are equal to 5, the program will calculate the deflections and save
the results in a deflection file as shown in figure 5(d).

A B £ D E F G H 1 J K L M N o P Q R S s
1 [time ILine1_SGO Line1_SG1 Line1_SG2 Line1_SG3 Line1_SG4 Line1_SGS Line1_SG6 Line1_SG7 Line1_SG8 Line2_SGO Line2_SG1 Line2_SG2 Line2_SG3 Line2_SG4 Line2_SGS Line2_SG6 Line2_SG7 Line2_SG8
2 8:23:15:101 0 0.033 -0.06402 -0.08976 -0.10206 -0.08976 -0.06402 -0.033 0 0 -0.0345 -0.06665 -0.09306 -0.10559 -0.09306 -0.06665 -0.0345 [
3 |8:23:15:301 0 -0.033 -0.06403 -0.08977 -0.10207 -0.08977 -0.06403 -0.033 0 0 -0.0345 -0.06665 -0.09307 -0.1056 -0.09307 -0.06665 -0.0345 0
4 18:23:15:501 0 -0.03302 -0.06405 -0.08981 -0.10211 -0.08981 -0.06405 -0.03302 0 0 -0.03451 -0.06667 -0.09309 -0.10562 -0.09309 -0.06667 -0.03451 0
S |8:23:15:701 0 -0.03302 -0.06406 -0.08981 -0.10212 -0.08981 -0.06406 -0.03302 0 0 -0.03451 -0.06667 -0.0931 -0.10563 -0.0931 -0.06667 -0.03451 0
6 8:23:15:901 0 -0.03302 -0.06407 -0.08982 -0.10213 -0.08982 -0.06407 -0.03302 0 0 -0.03452 -0.06668 -0.09311 -0.10564 -0.09311 -0.06668 -0.03452 0~
A T u v w X ih Z AA AB AC AD AE AF AG AH Al Al AK
1 [time ILine3_SGO Line3_SG1 Line3_SG2 Line3_SG3 Line3_SG4 Line3_SGS Line3_SG6 Line3_SG7 Line3_SG8
2 8:23:15:101 0 -0.0336 -0.06507 -0.09108 -0.10347 -0.09108 -0.06507 -0.0336 0
3 8:23:15:301 0 -0.03361 -0.06508 -0.09109 -0.10349 -0.09109 -0.06508 -0.03361 0
4 8:23:15:501 0 -0.03361 -0.06509 -0.09111 -0.10351 -0.09111 -0.06509 -0.03361 0
5 8:23:15:701 0 -0.03362 -0.06511 -0.09113 -0.10353 -0.09113 -0.06511 -0.03362 0
6 8:23:15:901 0 -0.03362 -0.06511 -0.09114 -0.10354 -0.09114 -0.06511 -0.03362 0
« N5_Deflections ®

190098

Figure 5(d). Type 5 deflection file for three lines.

Type 5 Output Files
Type 5 does not have slopes, nor twist angles. The output files are a deflection file and a max min

deflection file.
Type 6 — Long Beam with Known Depth Factors

Type 6 is the same as type 1 where the length of the structure is very long compared to the width and
known depth factors c;. For large deformations, tan®; is replaced by 8; in the Displacement Transfer
Function used for type 1.

Type 6 Structure
Figure 6(a) shows a nonuniform long cantilever beam with undeformed and deformed shapes.

24

Deformed —\

/ Fixed end [Undeformed

iZIO 1 2 3 4 5/6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

|

4= — ! !
Typical strain-

sensing station

190099

Figure 6(a). Type 6 structure of a long beam with known c;.

Type 6 Strain Data File

For type 6, recorded strains must be arranged as type 1 and is shown in figure 6(b). For more details,

refer to the type 1 strain data file in the report.

A B ¢ D E F G H 1) K L M N o P Q R s T u v
time S60 S61 S62 563 S64 SG5 S66 S67 SG8 S69 S610 SG11 SG12 S6.13 S614 SG_15 SG_16 SG6_17 SG18 SG_19 SG_20
8:23:15:101 0.011550 0.011670 0.011770 0.011850 0.011910 0.011950 0.011940 0.011900 0.011820 0.011680 0.011480 0.011200 0.010840 0.010380 0.009800 0.009090 0.008190 0.007060 0.005590 0.003550 0.000370
8:23:15:301 0.011552 0.011672 0.011772 0.011852 0.011912 0.011952 0.011942 0.011902 0.011822 0.011682 0.011481 0.011201 0.010841 0.010381 0.009801 0.009091 0.008191 0.007061 0.005591 0.003550 0.000370
8:23:15:501 0.011554 0.011674 0.011774 0.011854 0.011914 0.011954 0.011944 0.011904 0.011824 0.011684 0.011483 0.011203 0.010843 0.010383 0.009803 0.009093 0.008192 0.007062 0.005592 0.003551 0.000370
8:23:15:701 0.011565 0.011685 0.011785 0.011865 0.011925 0.011966 0.011956 0.011915 0.011835 0.011695 0.011495 0.011215 0.010854 0.010393 0.009813 0.009102 0.008201 0.007069 0.005597 0.003555 0.000370
8:23:15:901 0.011567 0.011687 0.011787 0.011867 0.011927 0.011967 0.011957 0.011917 0.011837 0.011697 0.011497 0.011216 0.010856 0.010395 0.009814 0.009103 0.008202 0.007070 0.005598 0.003555 0.000371

Jovn s W

NG N

190100

Figure 6(b). Type 6 strain data file.
Type 6 Geometry File

For type 6, users need to prepare the geometry file in txt format similar to type 1. For more details, refer

to the type 1 geometry file shown in figures 1(d) and 1(e).

Type 6 Deflection File

After starting the program, users need to enter the strain data filename, the geometry filename, and the
structure type as 6. The program will compare the entered structure type 6 with the structure type
programmed in the geometry file. If they are equal to 6, the program will calculate the deflections and save

the results in a deflection file as shown in figure 6(c).

25

A B C D E F G H 1 J K L M N o P Q R S T v v
1 [time SG0 S61 S62 S63 S64 SG5 SG6 S67 SG8& SG9 S6.10 S611 SG12 S613 S614 S615 SG16 S6.17 SG18 SG19 $G_20
2 [8:23:15:101 0 0330129 134229 3.070225 554926 8.816516 12.9108 17.87167 23.74 3055773 38.36669 47.20806 57.1209 68.14105 80.29859 93.61429 108.0946 1237206 1404318 158.0903 176.3968
3 [8:23:15:301 0 0330169 1.342451 3.070593 5549926 8.817574 1291235 17.87381 23.74285 30.56139 383713 47.21373 5712776 68.14923 8030823 93.62552 108.1075 1237355 1404487 158.1093 176.418
4 18:23:15:501 0 0.330231 1342706 3.071177 555098 8.819249 1291481 17.87721 23.74736 30.5672 3837859 47.2227 57.13861 68.16218 80.32348 93.64331 108.1281 123.759 140.4754 158.1393 176.4515
5 18:23:15:701 0 0.330297 1342975 3.071791 5.552091 8.821013 12.91739 17.88078 23.75211 30.57331 38.38626 47.23214 57.15004 68.17581 80.33955 93.66204 108.1497 123.7837 140.5035 158171 176.4868
6 8:23:15:901 0 0.330354 1343203 3.072313 5.553034 8.822513 1291959 17.88382 23.75615 30.57851 38.39279 47.24017 57.15975 68.1874 80.35321 93.67796 108.1681 123.8048 140.5274 158.1979 176.5168 .
N6_Deflections |) ;

190101

Figure 6(c). Type 6 deflection file.

Type 6 Slope File

Similar to the deflections, the program will calculate the slopes. The results will be saved in a slope file
as shown in figure 6(d).

A B C D E F G H 1 J K L M N o P Q R S i u v
1 [time 56_0 SG_1 SG_2 SG_3 G4 SGS5 SG_6 S6_7 SG8 S6G9 SG10 SG11 SG12 SG13 SG_14 SG15 SG16 SG17 SG_18 SG_19 SG_20
2 8:23:15:101 0 2.542574 5.211239 8.011689 10.95036 14.03455 17.26852 20.65578 24.20184 27.9084 31.77413 35.79388 39.95771 44.24952 48.64077 53.08887 57.52154 61.81696 65.76593 68.96153 70.50141
3 8:23:15:301 0 2.542879 5.211864 8.01265 10.95167 14.03624 17.27059 20.65825 24.20474 27.91175 31.77794 35.79817 39.96251 44.25483 48.64661 53.09524 57.52844 61.82438 65.77382 68.96981 70.50987
4 8:23:15:501 0 2.543362 5.212855 8.014173 10.95375 14.03891 17.27388 20.66218 24.20934 27.91705 31.78308 35.80497 39.9701 44.26324 48.65585 53.10532 57.53037 61.83613 65.78632 68.98291 70.52326
5 8:23:15:701 0 2.543871 5.213897 8.015776 10.95594 14.04171 17.27733 20.66631 24.21418 27.92264 31.79034 3581213 39.97809 44.27209 48.66558 53.11595 57.55088 61.84849 65.79948 68.99671 70.53737
6 8:23:15:901 0 2.544303 5.214784 8.017138 10.95781 14.0441 17.28027 20.66983 24.2183 27.92738 31.79574 35.81822 30.98480 44.27961 48.67386 53.12498 57.56066 61.85001 65.81066 69.00844 70.54936
3 N6 Slopes | @) o
190102

Figure 6(d). Type 6 slope file.

Type 6 Output Files

Type 6 does not have depth factors, nor twist angles. Type 6 output files are a deflection file, a slope
file, and a max min deflection file.

Type 7 — Long Beam with Unknown Depth Factors

Type 7 is the same as type 1 where the length of the structure is very long compared to the width and
unknown depth factors c;. For this type, an extra strain-sensing line on the upper surface is needed to
calculate the depth factors c;. For large deformations, tan8; is replaced by 6; in the Displacement Transfer
Function used for type 1.

Type 7 Structure
Figure 7(a) shows a long cantilever beam with two strain-sensing lines.

y L.
“ ~ Upper strain-sensing line Domain
/ Lower strain-sensing line —\ - -
) I S B AU R A | 3
: e € G . Cn
% | & & g, 3 —j \ .sl = Gl
i1 i
Typical strain- /
+ a“- (A1), ":"' (Al)2 ""“ (Al)3 "x"' (A1) 4 g sensing station e (Al); et (Al);; -
‘© -l)CZ 3 "4 xl 1 | .Kl n
- X

190103
Figure 7(a). Type 7 Structure of a long beam with unknown c;.

26

Type 7 Strain Data File

Users need to prepare the strain data file in csv format as shown in figure 7(b). The two strain sensors
If_sg0 and uf _sgO are always at the fixed end. The strain values on one line must be completed before
starting on the other line; normally the lower front strain-sensing line is first followed by the upper front
strain-sensing line.

A B C D E F G H I J K L M N (o] P Q R S
1 time If_sg0 If_sg1 If_sg2 If_sg3 If_sg4 If_sg5 If_sgb If_sg7 If_sg8 uf_sg0 uf_sgl uf_sg2 uf_sg3 uf_sgd uf_sg5 uf_sg6 uf_sg7 uf_sg8
2 8:23:15:101 0.000516 0.000495 0.000486 0.00048 0.000463 0.000428 0.00036 0.000245 0 -0.00064 -0.00061 -0.0006 -0.00059 -0.00057 -0.00053 -0.00044 -0.00032 0
3 8:23:15:301 0.000526 0.000505 0.000496 0.00049 0.000473 0.000438 0.00037 0.000255 0 -0.00055 -0.00059 -0.00061 -0.0006 -0.00058 -0.00054 -0.00045 -0.00033 0
4 8:23:15:501 0.000536 0.000515 0.000506 0.0005 0.000483 0.000448 0.00038 0.000265 0 -0.00056 -0.0006 -0.00062 -0.00061 -0.00059 -0.00055 -0.00046 -0.00034 0
5 8:23:15:701 0.000546 0.000525 0.000516 0.00051 0.000493 0.000458 0.00039 0.000275 0 -0.00057 -0.00061 -0.00063 -0.00062 -0.0006 -0.00056 -0.00047 -0.00035 0
6 18:23:15:901 0.000556 0.000535 0.000526 0.00052 0.000503 0.000468 0.0004 0.000285 0 -0.00058 -0.00062 -0.00064 -0.00063 -0.00061 -0.00057 -0.00048 -0.00036 0
7 |8:23:16:101 0.000566 0.000545 0.000536 0.00053 0.000513 0.000478 0.00041 0.000295 0 -0.00059 -0.00063 -0.00065 -0.00064 -0.00062 -0.00058 -0.00049 -0.00037 of ~
‘ N7 ® i« »
190104
Figure 7(b). Type 7 strain data file.
Type 7 Geometry File

For type 7, users need to prepare the Geometry file in txt format as shown in figures 7(c) and 7(d). This
file has two lines:

Line 1:
e The first field is the structure type.
e The second field is the structure length.
e The third field is the number of strain-sensing stations.
e The fourth field is the wing root depth h, at the front.
e The fifth field is wing tip depth h,, at the front.

Line 2 for Al domain:
1 is for constant domain; after 1 is nothing as shown in figure 7(c).
2 is for variable domain; after 2 are AL, AL, ..., Al as shown in figure 7(d).

i N

| N7Geo.txt - Notepad == X
File Edit Format View Help rho h
7 360.0 18 11.9059 5.29098 7
1 L
F ;
190105

Figure 7(c). Type 7 geometry file constant domains.

27

PR —"

File Edit Format View Help

7 360.0 18
2 40.0 39.85 40.15

4
)

11.9059 5.29098
40.2 40.1 39.9 39.8 40.1 39.9

)

]
|

190106

Figure 7(d). Type 7 geometry file variable domains.

Type 7 Deflection File

After starting the program, users need to enter the strain data filename, the geometry filename, and the
structure type as 7. The program will compare the entered structure type 7 with the structure type
programmed in the geometry file. If they are equal to 7, the program will calculate the deflections and save

the results in a deflection file as shown in figure 7(e).

| A B c D E | F G H 1 o M N O P | @ | R s -
1 time If_sg0 If_sg1 If_sg2 If_sg3 If_sgd If_sg5 If_sg6 If_sg7 If_sg8 uf sg0 uf_sgl uf sg2 uf_sg3 uf_sg4 uf_sg5 uf sg6 uf_sg7 uf sg8
2 8:23:15:101 0 0.09934 0.401551 0.918432 1.66528 2.654886 3.890359 5.355407 6.986056 0 -0.09933 -0.40154 -0.91842 -1.66528 -2.6549 -3.89038 -5.35525 -6.9861
3 8:23:15:301 0 0.101291 0.409535 0.936864 1.698972 2.709118 3.970966 5.468954 7.13876 0 -0.08847 -0.37186 -0.87205 -1.60611 -2.58719 -3.81886 -5.28518 -6.92235
4 8:23:15:501 0 0.103242 0.41752 0.955297 1.732664 2.763349 4.051573 5.582502 7.291465 0 -0.09004 -0.37832 -0.88698 -1.6334 -2.6311 -3.88412 -5.37706 -7.0457
5 8:23:15:701 0 0.105193 0.425504 0.97373 1.766356 2.817581 4.13218 5.69605 7.44417 0 -0.09162 -0.38478 -0.90191 -1.66069 -2.67502 -3.94938 -5.46893 -7.16905
6 8:23:15:901 0 0.107144 0.433489 0.992163 1.800048 2.871812 4.212787 5.809597 7.596875 0 -0.09319 -0.39124 -0.91684 -1.68798 -2.71893 -4.01464 -5.56081 -7.29241
7 18:23:161101 0] 0.109095 0.441473 1.010595 1.833739 2.926044 4.293394 5.923145 7.74958 0 -0.09476 -0.3977 -0.93177 -1.71527 -2.76285 -4.0799 -5.65269 -7.41576 | ~
« > N7_Deflections @ i »
190107

Figure 7(e). Type 7 deflection file.

Type 7 Slope File

Similar to the deflections, the program will calculate the slopes. The results will be saved in a slope file

as shown in figure 7(f).

A B C D E F G H I J K £ M N o P Q R S A
1 time If sg0 If sgl Ifsg2 Ifsg3 Ifsgd Ifsgs Ifsge I sg7 Ifsg8 ufsgd ufsgl ufsg2 ufsgd ufsgd ufsgS ufsgs ufsg? ufsg8

2 8:23:15:1010.253874 0.518389 0.801302 1.103473 1.417477 1.725581 1.994857 2.118148 0 -0.25386 -0.51839 -0.80131 -1.10349 -1.41749 -1.72559 -1.99439 -2.11918
3 8:23:15:301 0 0.258896 0.528804 0.817577 1.126156 1.447213 1.763158 2.04139 2.169718 0 -0.23138 -0.4948 -0.78246 -1.08982 -1.40952 -1.72396 -1.99984 -2.12857
4 8:23:15:501 0 0.263917 0.539219 0.833852 1.148839 1.476949 1.800736 2.087923 2.221288 0 -0.23544 -0.50324 -0.79565 -1.10818 -1.43359 -1.75437 -2.03733 -2.16999
5 8:23:15:701 0 0.268938 0.549634 0.850126 1.171521 1.506686 1.838313 2.134456 2.272858 0 -0.2395 -0.51168 -0.80884 -1.12655 -1.45765 -1.78479 -2.07482 -2.21142
6 8:23:15:901 0 0.273959 0.560049 0.866401 1.194204 1.536422 1.875891 2.180989 2.324428 0 -0.24356 -0.52013 -0.82203 -1.14491 -1.48172 -1.8152 -2.11231 -2.25284

7 8:23:16:101 0 0.27898 0.570464 0.882675 1.216887 1.566158 1.913468 2.227522 2.375998 0 -0.24761 -0.52857 -0.83522 -1.16328 -1.50578 -1.84561 -2.1498 -2.29426 ~
0 N7_Slopes ® R} »

190108

Figure 7(f). Type 7 slope file.

Type 7 Depth Factor File

Similar to the deflections and slopes, the program will calculate the depth factors. The results will be
saved in a depth factor file as shown in figure 7(g). After the c; are calculated from this program, users can

use structure type 6 with only one strain-sensing line.

28

A B C D E F G H 1 J K L M N (] P Q R
1 |[if sg0 |If sg1 If_sg2 If_sg3 If_sga If_sg5 If_sg6 If_sg7 If_sg8 uf_sg0 uf sgl uf sg2 uf sg3 ufsgd ufsgS ufsg6b uf sg7 uf_sg8
2 5.29802 4.97504 4.59052 4.21504 3.83774 3.479 3.10436 2.66489 2.35444 6.60788 6.10399 5.66165 5.21026 4.7607 4.29257 3.84035 3.45295 2.93654 -
N7_DepthFactors @ i

190109

Figure 7(g). Type 7 depth factor file.

Type 7 Output Files

Type 7 does not have twist angles. Type 7 output files are a deflection file, a slope file, a depth factor
file, and a max min deflection file.

Final Remarks

There have been many NASA/TPs and NASA/TMs written and published about the Displacement
Theory throughout the years. The Displacement Transfer Functions were derived for many structure types.
The shape prediction accuracy of the Displacement Theory was analytically validated by finite-element
analysis of the Ikhana wing (General Atomics Aeronautical Systems Inc., Poway, California) (ref. 13). The
Displacement Theory was also experimentally validated using real-time strain data recorded from the
ground loads tests performed in the Flight Load Laboratory at the NASA Armstrong Flight Research Center
with full-scale Global Observer (AeroVironment Inc., Monrovia, California) aircraft wings (ref.14) and the
Gl (Gulfstream Aerospace, Savannah, Georgia) swept wing structure (ref. 15). In order for users to apply
the Displacement Transfer Functions without requiring deep knowledge of the Displacement Theory, the
Structure Deformation Calculation Program was written and completed. This program will output the out-
of-plane deflections, slopes, cross-sectional twist angles, and depth factors based on the structure type. The
outputs of this program can be plotted for all strain-sensing stations in one time slice, one strain-sensing
station in all time slices, or all strain-sensing stations in all time slices. This program is versatile and can be
applied to a wide range of structures such as aircraft and spacecraft (wing, tail, and fuselage), ships (slab,
plate, beam, and truss), skyscrapers, radio towers, bridges, and windmills. The data outputs by the program
can be used to monitor the integrity of a structure, and appropriate actions would be made if the structure
shows weakness that may cause serious safety issues.

29

Appendix A: Program Flowchart

The Structure Deformation Calculation Program is written for 7 structure types, it is important that
users know their structure types. Each structure type requires different geometry information and different
strain arrangement. The program flowchart is displayed in figures A1 and A2.

Start Deflection Calculation
Program

Enter strain data filename

Does strain data FPanteror
filename exist? MEasag

) and exit

Enter geometry filename

D t Print error
f_loes geome tr'!?’ message

ilename exist? and exit

Enter structure type
Open geometry file to read the structure

Print error

Is the structure type message

correct? and exit

190110

Figure Al. Flowchart of the start of the Structure Deformation Calculation Program.

30

'

Continue to read data programmed in the
geometry file and save data.

-

Create output files with names based on
the entered strain data filename.

v

Open strain data file to read strain ¢ ;
recorded on installed strain gages.

l

Calculate ¢ if needed and save in depth
factors file.

|

Calculateyi and save in deflections file.

v

Calculate 0. if applicable and save in
slope file.

'

Calculate ¢. if applicable and save in twist
angles file.

:

Calculate maximum and minimum
deflections for each strain station and save
in max and min deflections file.

.

Print the names of output files.

v

Close all files and clear all vectors.

v

End Deflection Calculation
Program

190111

Figure A2. Flowchart of the end of the Structure Deformation Calculation Program.

31

Appendix B: Program Header File
/*****-k-k-k-k**********************-k-k-k***

* TITLE: DisplacementCalculation.h - Structure Deformation Calculation Program Header *
* *
* Written by: ~ Van Tran Fleischer *
* Title: Electronics Engineer *
* Date: September 13, 2017 *
* Version: 1 *
* Organization: Advanced Systems Development Branch, Code 540 *
* Center: NASA Armstrong Flight Research Center *
*
*
*
*
*
*

*

* INTRODUCTION:

*

* This file contains C++ include files, functions, constants and variables used
* in DisplacementCalculation.cpp.

*

***/

#include <iostream>
#include <fstream>
#include <string>
#include <cmath>
#include <iomanip>
#include <vector>
using namespace std;

double asin(double Xx);

double tan(double x);

double atan(double x);

double sqgrt(double x);

double log(double x);

double pow(double x, double y);

int GetUserlnputs();

int ReadGeometryFile();
int ReadTypel 2 6();
int ReadType3();

int ReadType4();

int ReadType5();

int ReadType7();

int CreateOutputFiles();
int CalcDisplacement();
void CalculateC();

void CalcTwistAngles();
void DetermineMaxMin();
void WriteMaxMinFile();
void CloseFiles_ClearVectors();

ifstream inFile;

ifstream geoFile;
ofstream outFile;
ofstream thetaFile;
ofstream phiFile;
ofstream maxminFile;
ofstream cFile;

string inputFile;
string ingeoFile;
string outputFile;
string outthetaFile;
string outphiFile;
string outmaxminFile;
string outcFile;

vector<string> stationNames, tMax, tMin;
vector<double> epsilon, deltaL, x, y, yB, yMax, yMin;
vector<double> theta, tan_theta, phi, sin_phi;
vector<double> ¢, d, h;

const int MAX_LINE = 500000;
const int TRUE =1;

const int FALSE = 0;

const int ERROR = -1;

const int OK =0;

const int VAR_DOMAIN = 2;
const int TAPERED = 1;

const double TPR_RATIO =0.9;
const double Pl =3.1415926535897932;

char *token, *t;
char *nextToken = NULL;
char inBufffMAX_LINE];

double C, CO, Cn, CO_prime, Cn_prime, DO, Dn, HO, Hn, HO_prime, Hn_prime,
strain, length, const_deltalL, H_ratio, Hprime_ratio;

int calC = FALSE, checked = OK;
unsigned int i, j, k, n, structureType, structType, cType, domainType, numLines,

nStations, numStations, noStations, first_time = 1, phiCreated = 0,
cCreated = 0, lineNum = 0;

34

Appendix C: Program Code in C++

/*****-k***

* TITLE: DisplacementCalculation.cpp — Structure Deformation Calculation Program

*

* Written by: ~ Van Tran Fleischer

* Title: Electronics Engineer

* Date: September 13, 2017

* Version: 1

* Organization: Advanced Systems Development Branch, Code 540
* Center: NASA Armstrong Flight Research Center

*

* INTRODUCTION:

*

* In order to use this program, users must prepare a .csv file that

* contains time and strain values with the following format:

*

* The 1st line of the .csv file should contain the headers that contains

* Time and Strain-sensing stations names.

*

* The second line and thereafter should have time and strain data for

* each strain-sensing station on the structure.

*

* _— i
* | Time | SG1 Name | SG2 Name | SG.. Name | SGn Name |
* _— [, ———
* |076 09:04:15.313 | 0.01155 | 0.01173 | | 0.01125 |
* _— e —_—
* |076 09:04:15.363 | 0.01164 | 0.01181 | | 0.01137 |
* _— e e e e e e ———
* 1076 09:04:15.413 | 0.01172 | 0.01187 | | 0.01146 |
* _— o ——
* |076 09:04:15.463 | 0.01187 | 0.01194 | | 0.01158 |
* -

*

* Users must prepare a .txt file that contains the data about structure.
* The format of this file is different based on structure type.

*

* This program will prompt users for the names of two files and structure type.

*

* 1. Strain data input filename in .csv extension. This file must be located in the same
* directory as the DisplacementCalculation.exe.

*

* 2. Geometry input filename in .txt format. This file must be located in the same
* directory as the DisplacementCalculation.exe program.

*

* 3. Enter structure type:

* 1 for uniform or tapered cantilever embedded beam with 1 strain line

* 2 for two-end supported embedded beam

* 3 for wing box with 2 strain lines & known ¢

L R B B I I N R S A B B R B B N B R S S T R T R N T T N S

% ok ok 3k ok F X X

4 for doubly wing box with four-line system & unknown ¢
5 for thin uniform plate

6 for curved deformation of long tapered cantilever beam
7 for curved deformation of long nonlinear beam

% % ok %

* NOMENCLATURE used in the program:

*

* C: depth factor of uniform beam, in.

* c[i]: depth factors at strain-sensing station i, x=xi, in.

* CO0, c[0]: value of c[i] at fixed end (beam root) strain-sensing station, in.

* Cn, c[n]: value of c[i] at free end (beam tip) strain-sensing station, in.

* d: chord-wise distance between two span-wise parallel strain lines, in.

* d[i]: chord-wise distance between front strain-sensing stations i and rear strain-sensing
* stations i', in.

* deltaL[i]: distance between strain-sensing stations on a same strain-sensing line i-1 & i, in.

* x[i]: distance from the fixed end to the i-th strain-sensing station, in.
* y[i]: deflection at strain-sensing station i, in.

* theta[i], 0[i]: slope of deformed beam at strain-sensing station i, deg
* phi[i], ®[i]: cross-sectional twist angle at strain-sensing station i, deg
*

* REVISION HISTORY:

*

* Initial Release: September 13, 2017

*

* Revisions:

*

F ok ok ok % ok % b % ok % ok ok ok ok ok ok o ok F ok F ok * * *

***/

#include "DisplacementCalculation.h"

int CalcDisplacement()

{

double term1, term2, term3, term4;

/I Clear epsilon arrays
epsilon.clear();

/I Read a line of data in the Strain input file
while (inFile.getline(inBuff, MAX_LINE))
{

/I Read time for the current time slice
token = strtok_s(inBuff, " \t\n", &nextToken);

/I First value is time

if (token)

{
// Save time
t = token;

I/l Write time to deflection output file
outFile <<t << "™

35

36

¥

/[Write time to slope output file
if ((structureType !=2) && (structureType !=5))
{

thetaFile <<t << " "

¥

/I Write time to twist angle output file
if ((structureType == 3) || (structureType == 4))
phiFile <<t <<™";

// Read the input strains for the current time slice
while (token)

{

¥

token = strtok_s(0, " \t\n", &nextToken);

if (token)

{
strain = atof(token);
epsilon.push_back(strain);
y.push_back(0);
yB.push_back(0);

if ((structureType !'= 2) && (structureType 1= 5))

{
theta.push_back(0);

tan_theta.push_back(0);
}

if ((structureType == 3) || (structureType == 4))

phi.push_back(0);
sin_phi.push_back(0);
}
}

switch (structureType)

case 1: // uniform or tapered cantilever beam

/I Set deflection and slope at the fixed end
y[0] =0.0;
theta[0] = 0.0;

// Write to deflection and slope output files
outFile << fixed << setprecision(6) << y[0];
thetaFile << fixed << setprecision(6) << theta[0];

/I Uniform
if (CO==Cn)

{

for (i = 1; i < numStations; i++)

{

¥

/l Eq. (5a) in this paper or Eq. (24) in NASA/TP-2009-214643
term1 = epsilon[i - 1] + epsilon[i];

tan_theta[i] = (deltaL[i] / (2.0*CQ)) * term1 + tan_theta][i - 1];
theta[i] = atan(tan_theta[i]) * 180.0/ PI;

/I EQ. (5b) in this paper or Eq. (26) in NASA/TP-2009-214643

term2 = (2.0*epsilon[i - 1]) + epsilon[i];

yl[i] = (deltaL[i] * deltaL[i] / (6.0*CQ)) * term2 + y[i - 1] +
deltaL[i] * tan_theta]i - 1];

I/ Write to deflection and slope output files
outFile <<"," << fixed << setprecision(6) << y[i];
thetaFile << "" << fixed << setprecision(6) << theta[i];

}
else if ((c[1] / CO > TPR_RATIO) && (Cn/ c[n-1] > TPR_RATIO))

/I Slightly Tapered
for (i = 1; i < numStations; i++)

{

else

{

/I Eq. (4a) in this paper or Eq. (14a) in NASA/TP-2015-218464
terml = (2.0 - (c[i] / c[i - 1])) * epsilon[i - 1] + epsilon[i];
tan_theta[i] = (deltaL[i] / (2.0*c[i - 1])) * term1 + tan_theta[i - 1];
theta[i] = atan(tan_theta[i]) * 180.0 / PI;

/I EQ. (4b) in this paper or Eq. (14b) in NASA/TP-2015-218464

term2 = (3.0 - (c[i] / c[i - 1])) * epsilon[i - 1] + epsilon[i];

y[i] = (deltaL[i] * deltaL[i] / (6.0*c[i - 1])) * term2 + y[i - 1] +
deltaL[i] * tan_theta]i - 1];

I/ Write to deflection and slope output files
outFile <<"," << fixed << setprecision(6) << y[i];
thetaFile << "" << fixed << setprecision(6) << theta[i];

/I Nonuniform
for (i = 1; i < numStations; i++)

{

/l Eq. (3a) in this paper or Eq. (13a) in NASA/TP-2015-218464
terml = (epsilon[i - 1] - epsilon[i]) / (c[i - 1] - c[i]);
term2 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) *

log(cfi] / cfi - 1) / pow((cli - 1] - c[i]), 2);
tan_theta[i] = deltaL[i] * (terml + term2) + tan_theta]i - 1];
theta[i] = atan(tan_theta[i]) * 180.0/ PI;

37

38

/I Eq. (3b) in this paper or Eq. (13b) in NASA/TP-2015-218464
term3 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) /
pow((c[i - 1] - c[i]), 3);
term4 = c[i] * log(c[i] / c[i - 1]) + (c[i - 1] - c[i]);
y[i] = deltaL[i] * deltaL[i] * ((term1/ 2.0) - term3*term4) +
y[i - 1] + deltaL[i] * tan_theta]i - 1];

I/l Write to deflection and slope output files

outFile <<"," << fixed << setprecision(6) << y[i];

thetaFile << "" << fixed << setprecision(6) << theta[i];
}

}
break;

case 2: // two-end supported

/I Set values at the selected fixed end
y[0] =0.0;
yB[0] = 0.0;

/I Write to deflection output file
outFile << fixed << setprecision(6) << yB[0];

/I Calculate deflection y
for (i = 1; i < numStations; i++)
{

terml = 0.0;

term2 = 0.0;

/I EQ. (6) in this paper or Eq. (36) in NASA/TP-2009-214643
for (j =1,) <=i; j++)
{
term2=(1.0/c[i-j] *
((3.0* (2.0%j - 1.0) - ((3.0%j - 2.0)* c[i - j + 1] / c[i - j])) * epsilon]i - j]
+(3.0%j - 2.0) * epsilon[i - j + 1]);
terml += term2;

}

y[i] = deltaL[i] * deltaL[i] * term1 / 6.0;
}

/Il Calculate deflection yB
for (i = 1; i < numStations; i++)
{

/I yB =y - the correction term
yBI[i] = y[i] - (x[i] / length * y[n]);

/I 'Write to deflection output file
outFile <<"," << fixed << setprecision(6) << yB]i];

}

break;
case 3: // two-line system

/I Calculate deflections and slopes

for (j=0;j<2;j++)

{
/I Set values at the fixed end
y[j*nStations] = 0.0;
theta[j*nStations] = 0.0;

/I Write to deflection and slope output files
outFile << fixed << setprecision(6) << y[j*nStations];
thetaFile << fixed << setprecision(6) << theta[j*nStations];

for (i = j*nStations + 1; i < (j*nStations + nStations); i++)

{
/I Eq. (3a) in this paper or Eq. (13a) in NASA/TP-2015-218464
terml = (epsilon[i - 1] - epsilon[i]) / (c[i - 1] - c[i]);
term2 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1])*log(c[i] / c[i - 1]) /

pow((c[i - 1] - c[i]), 2);

tan_theta[i] = deltaL[i - j*nStations] * (term1 + term2) + tan_theta[i - 1];
theta[i] = atan(tan_theta[i]) * 180.0/ PI;

/I Eq. (3b) in this paper or Eq. (13b) in NASA/TP-2015-218464
term3 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) / pow((c[i - 1] - c[i]), 3);
term4 = c[i] * log(c[i] / c[i - 1]) + (c[i - 1] - c[i]);
y[i] = deltaL[i - j*nStations] * deltaL[i - j*nStations] * ((term1 / 2.0) -
term3*termd4) + y[i - 1] + deltaL[i - j*nStations] * tan_theta]i - 1];

/I Write to deflection and slope output files
outFile <<"," << fixed << setprecision(6) << y[i];
thetaFile << "" << fixed << setprecision(6) << theta][i];

}

/I Write "" in output files
outFile << "";
thetaFile <<"";

}
/I Calculate twist angles
CalcTwistAngles();
break;

case 4: // 4-line system

/I Calculate c[i]
if (calC == FALSE)

CalculateC();
39

}

/I Calculate deflections and slopes

for (j =0;j <4;j++)

{
/I Set values at the fixed end
y[j*nStations] = 0.0;
theta[j*nStations] = 0.0;

/I Write to deflection and slope output files
outFile << fixed << setprecision(6) << y[j*nStations];
thetaFile << fixed << setprecision(6) << theta[j*nStations];

for (i = j*nStations + 1; i < (j*nStations + nStations); i++)

{
/l Eq. (3a) in this paper or Eq. (13a) in NASA/TP-2015-218464
terml = (epsilon[i - 1] - epsilon[i]) / (c[i - 1] - c[i]);
term2 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1])*log(c[i] / c[i - 1]) /

pow((c[i - 1] - c[i]), 2);

tan_theta[i] = deltaL[i - j*nStations] * (term1 + term2) + tan_theta[i - 1];
theta[i] = atan(tan_theta[i]) * 180.0/ PI;

/l Eq. (3b) in this paper or Eq. (13b) in NASA/TP-2015-218464

term3 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) / pow((c[i - 1] - c[i]), 3);
term4 = c[i] * log(c[i] / c[i - 1]) + (c[i - 1] - c[i]);

y[i] = deltaL[i - j*nStations] * deltaL[i - j*nStations] * ((term1 / 2.0) -
term3*termd4) + y[i - 1] + deltaL[i - j*nStations] * tan_theta]i - 1];

I/ Write to deflection and slope output files
outFile <<"," << fixed << setprecision(6) << y[i];
thetaFile << "" << fixed << setprecision(6) << theta[i];

}

/I Write "" in output files
outFile << "™
thetaFile << ™";

¥

/[Calculate twist angles
CalcTwistAngles();
break;

case 5: // Thin uniform plate

/I Calculate deflections
for (j = 0; j < numLines; j++)

/! Set values at the selected fixed end
y[j*nStations] = 0.0;
yB[j*nStations] = 0.0;

I/l Write to deflection output file
outFile << fixed << setprecision(6) << yB[j*nStations];

/I Calculate y deflections
for (i = j*nStations + 1; i < (j*nStations + nStations); i++)
{

terml = 0.0;

term2 = 0.0;

/I EQ. (6) in this paper or Eq. (36) in NASA/TP-2009-214643
for (k = 1; k <= (i-J*nStations); k++)

term2=(1.0/C) *
((3.0* (2.0*k - 1.0) - (3.0*k - 2.0)) * epsilon[i - k]
+ (3.0*k - 2.0) * epsilon[i - k + 1]);
terml += term2;

}

y[i] = deltaL[i - j*nStations] * deltaL[i - j*nStations] * term1/ 6.0;
}

/I Calculate yB deflections
for (i = j*nStations + 1; i < (j*nStations + nStations); i++)
{
/I yB =y - the correction term
yBl[i] = y[i] - (x[i-j*nStations] / length * y[n + j*nStations]);

/I Write to deflection output file
outFile << "," << fixed << setprecision(6) << yB]i];

}

/I Write """ in output file
outFile << "™

}
break;

case 6: // curved deformation of 1 line long tapered beam
/I Set deflection and slope at the fixed end
y[0] = 0.0;
theta[0] = 0.0;
I/ Write to deflection and slope output files
outFile << fixed << setprecision(6) << y[0];
thetaFile << fixed << setprecision(6) << theta[0];

/I Calculate curved deflections of tapered beam

// Uniform
if (CO==Cn)

42

{

for (i = 1; i < numStations; i++)

{

¥

/I EQ. (9a) in this paper or Eq. (18a) in NASA/TP-2017-219406
term1 = epsilon[i - 1] + epsilon[i];
theta[i] = (deltaL[i] / (2.0*CQ)) * term1 + theta[i - 1];

/I EQ. (9b) in this paper or Eq. (18b) in NASA/TP-2017-219406

term2 = (2.0*epsilon[i - 1]) + epsilon[i];

yl[i] = (deltaL[i] * deltaL[i] / (6.0*CQ)) * term2 + y[i - 1] +
deltaL[i] * theta[i - 1];

/I Write to deflection and slope output files
outFile << "," << fixed << setprecision(6) << yJi];
thetaFile << "" << fixed << setprecision(6) << theta[i] * 180.0/ PI;

}
else if ((c[1] / CO > TPR_RATIO) && (Cn/c[n - 1] > TPR_RATIO))

/I Slightly Nonuniform Tapered
for (i = 1; i < numStations; i++)

{

¥
¥

else

/l Eq. (8a) in this paper or Eq. (18) in NASA/TP-2009-214643
term1 = (2.0 - (c[i] / c[i - 1])) * epsilon[i - 1] + epsilon[i];
tan_theta[i] = (deltaL[i] / (2.0*c[i - 1])) * term1 + theta[i - 1];

/l Eq. (8b) in this paper or Eq. (21) in NASA/TP-2009-214643

term2 = (3.0 - (c[i] / c[i - 1])) * epsilon[i - 1] + epsilon[i];

y[i] = (deltaL[i] * deltaL[i] / (6.0*c[i - 1])) * term2 + y[i - 1] +
deltaL[i] * theta[i - 1];

/I Write to deflection and slope output files
outFile <<"," << fixed << setprecision(6) << y[i];
thetaFile << "" << fixed << setprecision(6) << theta[i] * 180.0/ PI;

/I Nonuniform Curved Deformation
for (i = 1; i < numStations; i++)

{

/I EQ. (7a) in this paper or Eq. (18a) in NASA/TP-2017-219406

terml = (epsilon[i - 1] - epsilon[i]) / (c[i - 1] - c[i]);

term2 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1])*log(c[i] / c[i - 1]) /
pow((c[i - 1] - c[i]), 2);

theta[i] = deltaL[i] * (term1 + term2) + theta[i - 1];

/I EQ. (7b) in this paper or Eq. (18b) in NASA/TP-2017-219406
term3 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) / pow((c[i - 1] - c[i]), 3);
term4 = c[i] * log(c[i] / c[i - 1]) + (c[i - 1] - c[i]);

}

break;

¥

y[i] = deltaL[i] * deltaL[i] * ((term1 / 2.0) - term3*term4) + y[i - 1] +
deltaL[i] * theta[i - 1];

/I Write to deflection and slope output files
outFile << "," << fixed << setprecision(6) << yJi];
thetaFile << "," << fixed << setprecision(6) << theta[i] * 180.0/ PI;

case 7: // curved deformation for 2 lines, lower and upper; unknown c

/I Calculate cfi]
if (calC == FALSE)

¥

CalculateC();

/Il Calculate nonlinear large deflections and slopes for a long nonuniform structure
for (j =0;j<2;j++)

{

/1 Set values at the fixed end
y[j*nStations] = 0.0;
theta[j*nStations] = 0.0;

I/ Write to deflection and slope output files
outFile << fixed << setprecision(6) << y[j*nStations];
thetaFile << fixed << setprecision(6) << theta[j*nStations];

for (i = j*nStations + 1; i < (j*nStations + nStations); i++)

{

¥

/I EQ. (7a) in this paper or Eq. (18a) in NASA/TP-2017-219406

terml = (epsilon[i - 1] - epsilon[i]) / (c[i - 1] - c[i]);

term2 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1])*log(c[i] / c[i - 1]) /
pow((c[i - 1] - c[i]), 2);

theta[i] = deltaL[i - j*nStations] * (term1 + term2) + theta[i - 1];

/I EQ. (7b) in this paper or Eq. (18b) in NASA/TP-2017-219406

term3 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) / pow((c[i - 1] - c[i]), 3);

term4 = c[i] * log(c[i] / c[i - 1]) + (c[i - 1] - c[i]);

y[i] = deltaL[i - j*nStations] * deltaL[i - j*nStations] * ((term1/2.0) —
term3*termd4) + deltal[i - j*nStations] * theta[i - 1] + y[i - 1];

// Write to deflection and slope output files
outFile << "," << fixed << setprecision(6) << y[i];
thetaFile << ™" << fixed << setprecision(6) << theta[i] * 180.0 / PI;

/I Write "" in output files
outFile << ™";
thetaFile << ",";

43

44

}

break;
} // switch

// Put the end of line to output files
outFile << endl;

if ((structureType !=2) && (structureType !=5))
{

¥

if ((structureType == 3) || (structureType == 4))
phiFile << endl;

thetaFile << endl;

/[Initialize vectors yMax, yMin, tMax and tMin for the first time
if (first_time == 1)

if ((structureType !'=2) && (structureType 1= 5))
{

for (i = 0; i < numStations; i++)

{
yMax[i] = y[i];
yMinl[i] = y[i];
tMax[i] = t;
tMin[i] = t;
}
}
else
{
for (i = 0; i < numStations; i++)
{
yMax[i] = yBIiJ;
yMin[i] = yBI[i];
tMax[i] = t;
tMin[i] = t;
}
}
first_time = 0;

¥

/I Determin max and min deflections
DetermineMaxMin();

/I Clear vectors
epsilon.clear();

y.clear();

yB.clear();
theta.clear();
phi.clear();
}
return(OK);
}
int GetUserInputs()
{

/I Get required data from user
cout << "$ Enter Strain Data filename: ";
cin >> inputFile;

/I Open input file
inFile.open(inputFile.c_str(), ios::in);
if (inFile.fail())

{

cerr << "Could not open " << inputFile << "I\n";

cerr << "Please check your Strain Data filename\n\n";
checked = ERROR;

return(ERROR);

¥

cout << "$ Enter Geometry filename: ";
cin >> ingeoFile;

/I Open geometry input file
geoFile.open(ingeoFile.c_str(), ios::in);
if (geoFile.fail())

{

cerr << "Could not open " << ingeoFile << "I\n";
cerr << "Please check your Geometry filename!\n\n";
checked = ERROR;

return(ERROR);

¥

cout << "\nStructure Type:\n";

cout << "1 for uniform or tapered beam with 1-line system.\n";

cout << "2 for two-end supported.\n";

cout << "3 for 2-line system.\n";

cout << "4 for 4-line system.\n";

cout << "5 for thin uniform plate.\n";

cout << "6 for curved deformation of long tapered beam.\n";
cout << "7 for curved deformation of long nonlinear beam.\n";

/I Prompt for structure type from user
cout << "\n$ Enter structure type: ";
cin >> structureType;

if ((structureType < 1) || (structureType > 7))

45

46

cout << "\nThe entered structure type is not valid! Must be from 1 to 71\n";
cerr << "Please rerun the program and enter a valid structure type\n\n";
checked = ERROR;

return(ERROR);
}
return(OK);
}
int ReadGeometryFile()
{

/I Check structureType to load geometry data correctly
switch (structureType)

case 1: // uniform & tapered
case 2: // two-end supported
case 6: // curved deformation of long tapered beam

ReadTypel 2 6();
break;

case 3: // 2 lines and known ¢

ReadType3();
break;

case 4: // 4 lines and unknown ¢

ReadType4();
break;

case 5: // 2-point supported

ReadType5();
break;

case 7: // nonuniform curved deflection, 2 lines, lower and upper, unknown c

ReadType7();
break;

} // switch structureType

/I Check structure type
if (structType = structureType)

cerr << "\nThe entered structure type is different from the one in the Geometry file'\n";
cerr << "Please Check Geometry File " << ingeoFile << "I\n\n";

checked = ERROR;

return(ERROR);

¥

}

/I Initialize vectors yMax, yMin, tMax, and tMin
for (i = 0; i < numStations; i++)

{

yMax.push_back(0);
yMin.push_back(0);
tMax.push_back("0");
tMin.push_back(*'0");

}
return(OK);

int ReadTypel 2 6()

{

lineNum = 0;

/I Read the 1st line of geometry file
while (geoFile.getline(inBuff, MAX_LINE))

lineNum++;
switch (lineNum)

/l Read data
case 1: // Read line No. 1

/I Read structure type

token = strtok_s(inBuff, " \t\n", &nextToken);

structType = atoi(token);

/I Read structure length
token = strtok_s(0, " \t\n", &nextToken);
length = atof(token);

// Read number of strain-sensing stations
token = strtok_s(0, " \t\n", &nextToken);
numsStations = atoi(token);

/I Read depth factor at the fixed end CO
token = strtok_s(0, " \t\n", &nextToken);
CO0 = atof(token);

/I Read depth factor at the free end Cn
token = strtok_s(0, " \t\n", &nextToken);
Cn = atof(token);

/I Calculate n
n = numsStations - 1;
break;

47

48

case 2: // Read line No. 2

/I Read domain type
token = strtok_s(inBuff, " \t\n", &nextToken);
domainType = atoi(token);

/I Push the index of c, deltal, and x
c.push_back(CO0);
deltalL.push_back(0);
X.push_back(0);

if (domainType == VAR_DOMAIN)

/I Read deltaL
token = strtok_s(0, " \t\n", &nextToken);
while (token)
{
deltalL.push_back(atof(token));
c.push_back(0);
x.push_back(0);

/l read next deltaL
token = strtok_s(0, " \t\n", &nextToken);

}

/I Calculate Xi and Ci for variable domain
for (i = 1; i < numStations; i++)
{
X[i] = x[i - 1] + deltaL[i];
c[i] = CO - (CO - Cn)* (x[i] / length);
}
}

else

{
const_deltaL. = length / double(n);

for (i = 1; i < numStations; i++)

deltalL.push_back(const_deltal);
x.push_back(0);
c.push_back(0);

}

/I Calculate Xi and Ci for constant domain
for (i = 1; i < numStations; i++)
{
X[i] = (double) i * const_deltaL;
c[i] = CO - (CO - Cn)* (x[i] / length);
}
}

break;

} /1 switch (lineNum)

} // while

/I Close geoFile
geoFile.close();

return(OK);
}
int ReadType3()
{

lineNum = 0;

/I read the 1st line of geometry file
while (geoFile.getline(inBuff, MAX_LINE))

{

lineNum++;

switch (lineNum)

{

/l Read data

case 1: // Read line No. 1

/I Read structure type
token = strtok_s(inBuff, " \t\n", &nextToken);
structType = atoi(token);

// Read structure length
token = strtok_s(0, " \t\n", &nextToken);
length = atof(token);

// Read number of strain-sensing stations
token = strtok_s(0, " \t\n", &nextToken);
numsStations = atoi(token);

/I Read chord-wise distant at root DO
token = strtok_s(0, " \t\n", &nextToken);
DO = atof(token);

/I Read chord-wise distant at tip Dn
token = strtok_s(0, " \t\n", &nextToken);
Dn = atof(token);

/I Calculate n

nStations = numsStations / 2;
n = nStations - 1;

break;

case 2: // Read line No. 2

49

/l Read domain type
token = strtok_s(inBuff, " \t\n", &nextToken);
domainType = atoi(token);

/I Push the index of deltalL and x
deltalL.push_back(0);
x.push_back(0);

if (domainType == VAR_DOMAIN)

{
// Read deltal
token = strtok_s(0, " \t\n", &nextToken);
while (token)
{
deltaL.push_back(atof(token));
x.push_back(0);
/l read next deltal
token = strtok_s(0, " \t\n", &nextToken);
}
/I Calculate Xi for variable domain
x[0] =0.0;
for (i = 1; i < nStations; i++)
{
X[i] = x[i - 1] + deltaL[i];
}
else
{
const_deltaL. = length / double(n);
for (i = 1; i < nStations; i++)
deltal.push_back(const_deltal);
x.push_back(0);
}
/I Calculate Xi for constant domain
x[0] =0.0;
for (i = 1; i < nStations; i++)
{
X[i] = ((double)i) * const_deltaL;
}
break;

case 3: // Read line No. 3

// Read cType
token = strtok_s(inBuff, " \t\n", &nextToken);

50

cType = atoi(token);

Il Check if tapered
if (cType == TAPERED)

{

else

/I Read CO
token = strtok_s(0, " \t\n", &nextToken);
CO0 = atof(token);

/I Read Cn
token = strtok_s(0, " \t\n", &nextToken);
Cn = atof(token);

/l Read CO_prime
token = strtok_s(0, " \t\n", &nextToken);
CO_prime = atof(token);

/l Read Cn_prime
token = strtok_s(0, " \t\n", &nextToken);
Cn_prime = atof(token);

/I Initialize ¢, & x vectors
for (i = 0; i < numStations; i++)
{
c.push_back(0);
x.push_back(0);
}

/I Calculate Ci for the front
c[0] = CO;
for (i = 1; i < nStations; i++)
{
c[i] = CO - (CO - Cn)* (x[i] / length);

/I Calculate Ci for the rear
c[nStations] = CO_prime;
for (i = nStations + 1; i < numStations; i++)

{

c[i] = CO_prime - (CO_prime - Cn_prime)* (x[i-nStations] / length);

// Read cfi]
token = strtok_s(0, " \t\n", &nextToken);
while (token)

c.push_back(atof(token));

/] read next ¢

51

52

token = strtok_s(0, " \t\n", &nextToken);
}
}
break;

} /1 switch (lineNum)
} // while getline

/I Close geoFile
geoFile.close();

/I Initialize vectors d & phi
for (i = 0; i < nStations; i++)

d.push_back(0);
phi.push_back(0);
}
return(OK);

}
int ReadType4()
{

lineNum = 0;

/I Read the 1st line of geometry file
while (geoFile.getline(inBuff, MAX_LINE))

lineNum++;

switch (lineNum)

{

// Read data

case 1: // Read line No. 1

/I Read structure type
token = strtok_s(inBuff, " \t\n", &nextToken);
structType = atoi(token);

// Read structure length
token = strtok_s(0, " \t\n", &nextToken);
length = atof(token);

// Read number of strain-sensing stations
token = strtok_s(0, " \t\n", &nextToken);
numsStations = atoi(token);

/I Read chord-wise distant at root DO
token = strtok_s(0, " \t\n", &nextToken);
DO = atof(token);

/I Read chord-wise distant at tip Dn
token = strtok_s(0, " \t\n", &nextToken);
Dn = atof(token);

/I Read wing root depth at front HO
token = strtok_s(0, " \t\n", &nextToken);
HO = atof(token);

// Read wing tip depth at front Hn
token = strtok_s(0, " \t\n", &nextToken);
Hn = atof(token);

// Read wing root depth at rear HO_prime
token = strtok_s(0, " \t\n", &nextToken);
HO_prime = atof(token);

/I Read wing tip depth at rear Hn_prime
token = strtok_s(0, " \t\n", &nextToken);
Hn_prime = atof(token);

/I Initialize variables
nStations = numStations / 4;
noStations = numStations / 2;
n = nStations - 1;

break;

case 2: // Read line No. 2

/I Read domain type
token = strtok_s(inBuff, " \t\n", &nextToken);
domainType = atoi(token);

[/l Push the index of deltaL and x
deltalL.push_back(0);
x.push_back(0);

if (domainType == VAR_DOMAIN)

/I Read deltaL
token = strtok_s(0, " \t\n", &nextToken);
while (token)
{
deltalL.push_back(atof(token));
x.push_back(0);

// read next deltal

token = strtok_s(0, " \t\n", &nextToken);

¥

/I Calculate Xi for variable domain
for (i = 1; i < nStations; i++)

53

54

x[i] = X[i - 1] + deltaL[i;
}
}

else

{
const_deltal. = length / double(n);

for (i = 1; i < nStations; i++)

deltal.push_back(const_deltal);
X.push_back(0);
}

/I Calculate Xi for constant domain
for (i = 1; i < nStations; i++)

X[i] = ((double)i) * const_deltaL;
}
}
break;

} // switch lineNum
} /' while getline

/I Close geoFile
geoFile.close();

/I Initialize vectors h and ¢
for (i = 0; i < numStations; i++)

h.push_back(0);
c.push_back(0);
}

/I Initialize vectors d and phi
for (i = 0; i < noStations; i++)

d.push_back(0);
phi.push_back(0);
}
return(OK);

}

int ReadType5()
{

lineNum = 0;

/I read the 1st line of geometry file
while (geoFile.getline(inBuff, MAX_LINE))

lineNum++;

switch (lineNum)

{

/l Read data

case 1: // Read line No. 1

/I Read structure type
token = strtok_s(inBuff, " \t\n", &nextToken);
structType = atoi(token);

// Read structure length
token = strtok_s(0, " \t\n", &nextToken);
length = atof(token);

// Read number of strain-sensing stations
token = strtok_s(0, " \t\n", &nextToken);
numsStations = atoi(token);

/I Read depth factor of the thin plate
token = strtok_s(0, " \t\n", &nextToken);
C = atof(token);

/I Read number of lines
token = strtok_s(0, " \t\n", &nextToken);
numLines = atoi(token);

/I Calculate n

nStations = numStations / numLines;
n = nStations - 1;

break;

case 2: // Read line No. 2

/I Read domain type
token = strtok_s(inBuff, " \t\n", &nextToken);
domainType = atoi(token);

[/l Push the index of deltaL and x
deltalL.push_back(0);
x.push_back(0);

if (domainType == VAR_DOMAIN)
// Read deltaL
token = strtok_s(0, " \t\n", &nextToken);
while (token)

deltaL.push_back(atof(token));
x.push_back(0);

56

/I Read next deltal

¥

/I Calculate Xi for variable domain
for (i = 1; i < nStations; i++)

token = strtok_s(0, " \t\n", &nextToken);

X[i] = x[i - 1] + deltaL[i];

}
else
{
const_deltaL = length / double(n);
for (i = 1; i < nStations; i++)
{
deltalL.push_back(const_deltal);
x.push_back(0);
}
/I Calculate Xi for constant domain
for (i = 1; i < nStations; i++)
X[i] = (double)i * const_deltaL;
}
break;

} /1 switch (lineNum)
} // while

/I Close geoFile
geoFile.close();

return(OK);
}
int ReadType7()
lineNum = 0;

/I Read the 1st line of geometry file
while (geoFile.getline(inBuff, MAX_LINE))

lineNum++;

switch (lineNum)

{

// Read data

case 1: // Read line No. 1

/I Read structure type
token = strtok_s(inBuff, " \t\n", &nextToken);
structType = atoi(token);

/I Read structure length
token = strtok_s(0, " \t\n", &nextToken);
length = atof(token);

/I Read number of strain-sensing stations
token = strtok_s(0, " \t\n", &nextToken);
numsStations = atoi(token);

// Read wing root depth at front HO
token = strtok_s(0, " \t\n", &nextToken);
HO = atof(token);

/I Read wing tip depth at front Hn
token = strtok_s(0, " \t\n", &nextToken);
Hn = atof(token);

/I Initialize variables
nStations = numStations / 2;
n = nStations - 1;

break;

case 2: // Read line No. 2

/I Read domain type
token = strtok_s(inBuff, " \t\n", &nextToken);
domainType = atoi(token);

[/l Push the index of deltaL and x
deltalL.push_back(0);
x.push_back(0);

if (domainType == VAR_DOMAIN)

/I Read deltaL
token = strtok_s(0, " \t\n", &nextToken);
while (token)
{
deltalL.push_back(atof(token));
x.push_back(0);

/I read next deltal
token = strtok_s(0, " \t\n", &nextToken);

¥

/I Calculate Xi for variable domain
for (i = 1; i < nStations; i++)

57

58

x[i] = X[i - 1] + deltaL[i];

}
}
else
{
const_deltal. = length / double(n);
for (i = 1; i < nStations; i++)
deltal.push_back(const_deltal);
X.push_back(0);
}
/I Calculate Xi for constant domain
for (i = 1; i < nStations; i++)
X[i] = ((double)i) * const_deltaL;
}
}
break;

} // switch lineNum
} /' while getline

/I Close geoFile
geoFile.close();

/I Initialize vectors h and ¢
for (i = 0; i < numStations; i++)

h.push_back(0);
c.push_back(0);

return(OK);
}
int CreateOutputFiles()
{

unsigned int loc, locl;

/I Create deflection output file
outputFile = inputFile;

loc = outputFile.find(".");
outputFile.insert(loc, "_Deflections");

/I Open deflection output file
outFile.open(outputFile.c_str(), ios::out);

if (outFile.fail())
{

cerr << "Could not open " << outputFile << endl;
return(ERROR);

¥

/I Create slope (angle theta) output file
if ((structureType != 2) && (structureType 1= 5))

outthetaFile = inputFile;
outthetaFile.insert(loc, "_Slopes");

/I Open slope output file
thetaFile.open(outthetaFile.c_str(), ios::out);
if (thetaFile.fail())

{

cerr << "Could not open " << outthetaFile << endl;
return(ERROR);

¥
¥

/I Create max and min deflection output file
outmaxminFile = outputFile;

locl = outmaxminFile.find(".");
outmaxminFile.insert(locl, " MaxMin");

/I Open max and min deflection output file
maxminFile.open(outmaxminFile.c_str(), ios::out);
if (maxminFile.fail())
{
cerr << "Could not open " << outmaxminFile << endl;
return(ERROR);
}
maxminFile << "SG Name, Time at Max Deflection, Max Deflection, Time at Min Deflection,
Min Deflection\n";

if ((structureType == 3) || (structureType == 4))

/I Create twist angle (phi) output file
outphiFile = inputFile;
outphiFile.insert(loc, "_TwistAngles");

/I Open twist angle output file
phiFile.open(outphiFile.c_str(), ios::out);
if (phiFile.fail())

{

cerr << "Could not open " << outphiFile << endl;
return(ERROR);

}
phiCreated = 1;

59

60

if ((structureType == 4) || (structureType == 7))
{

/I Create depth factor output file

outcFile = inputFile;

outcFile.insert(loc, "_DepthFactors");

/I Open depth factor output file
cFile.open(outcFile.c_str(), ios::out);
if (cFile.fail())

{

cerr << "Could not open depth factor file " << outcFile << endl;

checked = ERROR,;
return(ERROR);

¥

/I Initialize cCreated
cCreated = 1;

¥

/I Read 1st line of input file
inFile.getline(inBuff, MAX_LINE);

/I Write to output files
outFile << inBuff << endl;

if ((structureType !'=2) && (structureType 1= 5))
{

thetaFile << inBuff << endl;

¥

/I Read the 1st name of the 1st line
token = strtok_s(inBuff, " \t\n", &nextToken);

if ((structureType == 3) || (structureType == 4))

phiFile << token <<™";

}

/I Read strain-sensing station names
token = strtok_s(0, " \t\n", &nextToken);
while (token)

{
if ((structureType == 4) || (structureType == 7))

{
¥

stationNames.push_back(token);

cFile << token << ", ";

token = strtok_s(0, " \t\n", &nextToken);

}

/I Done reading the first title line
if (structureType == 3)

{ for (i = 0; i < nStations; i++)
! phiFile << "Station " <<i<<"'™
ghiFiIe << endl;

%lse if (structureType == 4)

/I Write names for lower strain-sensing stations
for (i = 0; i < nStations; i++)

{
¥

I/l Write names for upper strain-sensing stations
for (i = nStations; i < noStations; i++)

phiFile << "LwrStation_" <<i<<"";

phiFile << "UprStation_" << (i - nStations) <<",";

phiFile << endl;
cFile << endl;

else if (structureType ==7)
{

}
return(OK);

cFile << endl;

¥

void CalculateC()
{
/' Initialize h[0] and h[n]
h[0] = HO;
h[n] = Hn;
H_ratio = Hn/ HO;

/I Calculate front c[i] using Egs. (1la & 2a)
for(i=0;i<n;i++)
{
/! Lower front
h[i] = HO - (HO - Hn)*(x[i] / length);
c[i] = abs(epsilon[i]) * h[i] / (abs(epsilon]i]) + abs(epsilon[i + nStations]));

/I Upper front
c[i + nStations] = h[i] - c[i];

62

}

c[n] = H_ratio*c[0];
c[n + nStations] = H_ratio*c[nStations];

/I if structure type 4, need to do the rear
if (structureType == 4)

/I Calculate rear c[i] using Egs. (1b & 2b)
h[noStations] = HO_prime;

h[noStations + n] = Hn_prime;
Hprime_ratio = Hn_prime / HO_prime;

for (i = noStations; i < (noStations + n); i++)

{
/I Lower rear
h[i] = HO_prime - (HO_prime - Hn_prime)*(x[i - noStations] / length);
c[i] = abs(epsilon[i]) * h[i] / (abs(epsilon]i]) + abs(epsilon[i + nStations]));
/I Upper rear
c[i + nStations] = h[i] - c[i];
}

c[noStations + n] = Hprime_ratio*c[noStations];
c[noStations + n + nStations] = Hprime_ratio * c[nhoStations + nStations];

}
for (i = 0; i < numStations; i++)

cFile << c[i] <<", ™,

¥

cFile << endl;
cFile.close();
calC = TRUE;

void CalcTwistAngles()

{

/I Initialize d[0] and d[n]
d[0] = DO;
d[n] = Dn;
switch (structureType)
case 3: // 2 lines
/I Set twist angle at the root to 0.0
phi[0] = 0.0;
phiFile << fixed << setprecision(6) << phi[0];

/l Eq. (11) in this paper or Eg. (38) in NASA/TP-2009-214643

/I Calculate twist angle phi

for (i = 1; i < nStations; i++)
{

d[i] = DO - (DO - Dn)*(x[i] / length);

sin_phi[i] = (y[i] - y[i + nStations]) / d[i];

phi[i] = asin(sin_phi[i])*180.0 / PI;

phiFile << " " << fixed << setprecision(6) << phi[i];
}

break;

¥

case 4: // 4 lines

{

/I Set twist angle at lower root to 0.0
phi[0] = 0.0;
phiFile << fixed << setprecision(6) << phi[0];

/l Eq. (11) in this paper or Eg. (38) in NASA/TP-2009-214643
/Il Calculate lower twist angle phi
for (i = 1; i < nStations; i++)
{
d[i] = DO - (DO - Dn)*(x[i] / length);
sin_phi[i] = (y[i] - y[i + noStations]) / d[i];
phi[i] = asin(sin_phi[i])*180.0 / PI;
phiFile << """ << fixed << setprecision(6) << phi[i];

¥

/I Set twist angle at upper root to 0.0
phi[nStations] = 0.0;
phiFile << """ << fixed << setprecision(6) << phi[nStations];

/I Calculate upper twist angle phi
for (i = (1 + nStations); i < noStations; i++)

sin_phi[i] = (y[i] - y[i + noStations]) / d[i - nStations];
phi[i] = asin(sin_phi[i])*180.0 / PI;
phiFile << " " << fixed << setprecision(6) << phi[i];

}

break;
} // case 4

} // switch structureType
}

void DetermineMaxMin()

{

for (i = 1; i < numStations; i++)

/I Check for max and min deflections
if ((structureType !'=2) && (structureType = 5))

63

64

¥

if (y[i] >= yMax][i])
{

tMax][i] =t;
, yMax[i] = y[iJ;
else if (y[i] < yMin[i])
{

tMin[i] = t;
yMin[i] = y[i];

¥

else

if (yB[i] >= yMax([i])
{

tMax[i] =t;
yMax[i] = yBIi];

}
else if (yB[i] < yMin[i])
{

tMin[i] = t;
yMinl[i] = yB[i];

¥
¥

void WriteMaxMinFile()

{

}

/I Write yMax and yMin to file
for (i = 0; i < numStations; i++)

{
maxminFile << fixed;
maxminFile << stationNames[i] <<"," << tMax[i] << "," << setprecision(6) << yMax([i]
<< "M << tMIN[i] << " << setprecision(6) << yMin[i] << endl;
}

void PrintOutputFilenames()

{

/I Print out successful messages

cout << "\n$ Displacement Calculation program completed successfully!\n" << endl;
cout << "$ Output files are listed below:\n" << endl;

cout << "$ Deflection file: " << outputFile << endl;

if ((structureType !'=2) && (structureType 1= 5))

cout << "$ Slope file: " << outthetaFile << endl;

¥

if (cCreated == 1)
{

¥

if (phiCreated == 1)
{

¥

cout << "$ Max and Min Deflection file: " << outmaxminFile << endl << endl;

cout << "$ Depth Factor file: " << outcFile << endl;

cout << "$ Twist Angle file: " << outphiFile << endl;

void CloseFiles_ClearVectors()

{

/I Close all files
outFile.close();
maxminFile.close();

if ((structureType !'= 2) && (structureType 1= 5))

thetaFile.close();
}

if ((structureType == 3) || (structureType == 4))
{

phiFile.close();

/I Clear out all vectors
epsilon.clear();
x.clear();
y.clear();
yB.clear();
yMax.clear();
yMin.clear();
tMax.clear();
tMin.clear();
theta.clear();
tan_theta.clear();
phi.clear();
sin_phi.clear();

c.clear();
d.clear();
h.clear();
deltaL.clear();}

void main()

65

66

GetUserlInputs();
if (checked !'= ERROR)
{
ReadGeometryFile();
if (checked != ERROR)

{
CreateOutputFiles();
if (checked != ERROR)
{
/I Let user know the program is running
cout << "\n$ Displacement Calculation program is running
CalcDisplacement();
if (checked !'= ERROR)
{
WriteMaxMinFile();
PrintOutputFilenames();
}
}
}

CloseFiles_ClearVectors();

.t <<endl;

10.

11.

12.

13.

References

Ko, William L., W. L. Richards, and Van T. Tran., “Displacement Theories for In-Flight Deformed
Shape Predictions of Aerospace Structures,” NASA/TP-2007-214612, October 2007.

Ko, William L., and William Lance Richards, Method for Real-Time Structure Shape-Sensing, U.S.
Patent No. 7,520,176, issued April 21, 20009.

Ko, William L., and Van Tran Fleischer, “Further Development of Ko Displacement Theory for
Deformed Shape Predictions of Nonuniform Aerospace Structures,” NASA/TP-2009-214643,
September 20009.

Ko, William L., and Van Tran Fleischer, “Methods for In-Flight Wing Shape Predictions of Highly
Flexible Unmanned Aerial Vehicles: Formulation of Ko Displacement Theory,” NASA/TP-2010-
214656, August 2010.

Ko, William L., and Van Tran Fleischer, “First- and Second-Order Displacement Transfer
Functions for Structural Shape Calculations Using Analytically Predicted Surface Strains,”
NASA/TP-2012-215976, March 2012.

Ko, William L., and Van Tran Fleischer, “Improved Displacement Transfer Functions for Structure
Deformed Shape Predictions Using Discreetly Distributed Surface Strains,” NASA/TP-2012-
216060, November 2012.

Ko, William L., and Van Tran Fleischer, “Extension of Ko Straight-Beam Displacement Theory to
Deformed Shape Predictions of Slender Curved Structures,” NASA/TP-2011-214657, April 2011.

Ko, William L., and Van Tran Fleischer, “Large-Deformation Displacement Transfer Functions for
Shape Predictions of Highly Flexible Slender Aerospace Structures,” NASA/TP-2013-216550,
December, 2013.

Ko, William L., and Van Tran Fleischer, “Variable-Domain Displacement Transfer Functions for

Converting Surface Strains into Deflections for Structural Deformed Shape Predictions,”
NASA/TP-2015-218464, March 2015.

Ko, William L., and Van Tran Fleischer, “Modified Displacement Transfer Functions for Deformed
Shape Predictions of Slender Curved Structures with Varying Curvatures,” NASA/TM-2014-
216660, May 2014.

Ko, William L., Van Tran Fleischer, and Shun-Fat Lung, “Curved Displacement Transfer Functions
for Geometric Nonlinear Large Deformation Structure Shape Predictions,” NASA/TP-2017-
219406, March 2017.

Ko, William L., Van Tran Fleischer, and Shun-Fat Lung, “Curvilinear Displacement Transfer
Functions for Deformed Shape Predictions of Curved Structures Using Distributed Surface
Strains,” NASA/TP-2018-219692, September 2018.

Ko, William L., W. L. Richards, and Van Tran Fleischer, “Applications of Ko Displacement Theory
to the Deformed Shape Predictions of Doubly Tapered Ikhana Wing,” NASA/TP-2009-214652,
November 20009.

67

68

14. Jutte, Christine, William L. Ko, Craig A. Stephens, John A. Bakalyar, W. Lance Richards, and
Allen R. Parker, “Deformed Shape Calculations of a Full-Scale Wing Using Fiber Optic Strain
Data from a Ground Loads Test,” NASA/TP-2011-215975, November 2011.

15. Lung, Shun-Fat, and William L. Ko, “Applications of Displacement Transfer Functions to
Deformed Shape Predictions of the Gl Swept-Wing Structure,” Presented at the 30th Congress of
the International Council of the Aeronautical Sciences, Daejeon, Korea, September 25-30, 2016.

