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Abstract 

Separated programs were written in C/C++ to validate the Displacement Transfer Functions. The 

Structure Deformation Calculation Program was written to combine all of the programs to calculate 

deformed shapes of a structure using surface strain data and structural geometrical parameters. Users do 

not need to know the material properties, nor the complex internal structures geometry because the 

Displacement Theory is purely geometrical in nature. Users only need to know the structure types as defined 

in this report and information such as the structure length, depth factors, number of strain sensors, and the 

surface strains measured at the strain-sensing stations installed on the structures. Depending on the structure 

type, an applicable Displacement Transfer Function will be used. This program requires two input files 

created by users; the recorded strain data file in comma-separated values format and the structure geometry 

data file in text format. The program will output the out-of-plane deflections, slopes, cross-sectional twist 

angles, and depth factors if applicable. All output files are created in comma-separated values format. A 

section in this report describes step-by-step procedures on how to use the Structure Deformation Calculation 

Program for structure deformed shape calculations. 

Nomenclature 

 constant depth factor (vertical distance from the neutral axis to the lower surface of the 

uniform embedded beam), in. 

 lower depth factor at 
 
(distance from the embedded beam neutral axis to the i-th 

strain-sensing station on the lower surface of the embedded beam), in. 

 upper depth factor at 
 
(distance from the embedded beam neutral axis to the i-th 

strain-sensing station on the upper surface of the embedded beam, in. 

cn    value of  at free end, , in. 

   value of  at fixed end, , in. 

csv   comma-separated values format 

𝑑𝑖   chord-wise separation distance of two strain-sensing lines at , in. 

𝑑𝑛    value of 𝑑𝑖  at wing tip, 𝑥 = 𝑥𝑛 = 𝑙, in. 

𝑑0    value of 𝑑𝑖 at wing root, 𝑥 = 𝑥0 = 0, in. 
hi    depth of the front embedded beam at , in. 

   value of  at free end, , in. 

   value of  at fixed end, , in. 

l   length of an embedded beam, in. 

n   number of domains or index for the last span-wise strain-sensing station 

NASA  National Aeronautics and Space Administration 

P   applied load, lb 

SG   strain gauge 

txt   text format 

wn    wing tip chord length (width), in. 

w0    wing root chord length (width), in. 

x, y   Cartesian coordinates (x in axial direction, y in lateral direction), in. 

𝑥𝑖    axial coordinate of i-th strain sensor, in. 

𝑥𝑛    axial coordinate at wing tip x = 𝑥𝑛 = 𝑙, in. 

𝑦𝑖   vertical deflection at , in. 

yi    curved deflection at , in. 

  

c

ci x = xi

ci x = xi

ci

  

x = xn = l

c0 ci

  

x = x0 = 0

x = xi

x = xi
hn hi x = xn = l

h0 hi

  

x = x0 = 0

x = xi
x = xi
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   vertical deflection at x = 𝑥𝑛 = 𝑙, in. 

y


𝑛
   curved deflection at x = 𝑥𝑛 = 𝑙, in. 

   vertical deflection at  of a two-end supported embedded beam, in. 

y


𝑖

𝐵

   curved deflection at  of a two-end supported embedded beam, in. 

(∆𝑙)𝑖 = , i-th domain length (distance between two adjacent strain-sensing 

stations), in. 

Δln   domain length at the tip, 𝑥𝑛 − 𝑥𝑛−1, in. 

𝜀𝑖   lower surface bending strain at strain-sensing station i, in/in 

𝜀�̅�   upper surface bending strain at strain-sensing station i, in/in 

𝜀𝑛    lower surface bending strain at the tip, strain-sensing station n, in/in 

𝜀0    lower surface bending strain at the root, strain-sensing station 0, in/in 

𝜀(𝑥)  surface bending strain at axial location x, in/in 

  𝜃𝑖   slope angle of a cantilever embedded beam at , rad  

𝜃𝑛   slope angle of a cantilever embedded beam at  (free end), rad 

𝜃0   slope angle of a cantilever embedded beam at  (fixed end), rad 

   cross-sectional twist angle of a cantilever embedded beam at , rad 

( )′   quantity associated with the rear strain-sensing lines 

Introduction 

Traditionally, the wing deflections can be measured during ground testing by using position transducers 

or a photogrammetry system. For in-flight deflection measurements, those methods cannot be used. One 

technique is to use the electro-optical flight deflection measurement systems, which are composed of on-

board cameras and several wing mounted targets. Such systems can provide wing deflection information 

during the flight, but can be too heavy for lightweight flying vehicle applications. 

After the invention of the Displacement Theory which contains different Displacement Transfer 

Functions (refs. 1–12), a patented technology called, “Method for Real-Time Structure Shape-Sensing,” 

U.S. Patent Number 7,520,176 (ref. 2), was granted. The shape-sensing technology is to use the 

Displacement Transfer Functions to transform distributed surface strains into structure deformed shapes. 

This structure shape-sensing technology is quite attractive for the in-flight deformed shape monitoring of 

flight vehicles for flight control and maintaining flight safety. In addition, the real time wing shape 

monitored could then be input to the aircraft control system for aero-elastic wing shape control.  

The objective of this technical memorandum is to provide users some guidance on how to use the 

Structure Deformation Calculation Program to calculate the deformed shape of a structure based on the 

Displacement Theory and Displacement Transfer Functions (refs. 1–12). Users need to prepare two files, 

the recorded measured surface strain data in a comma-separated values (csv) file and the required 

geometrical information in a text (txt) file. Depending on the structure type, the program will create several 

csv output files that contain the out-of-plane deflections , slopes 𝜃𝑖 , cross-sectional twist angles , and 

depth factors 𝑐𝑖 if applicable. 

Shape Prediction Technical Background 

The structure shape prediction using the Displacement Transfer Functions to transform the distributed 

surface strains into structure deformed shapes was reported in many National Aeronautic and Space 

Administration (NASA) technical reports (refs. 1–12). The following sections only cover what are related 

yn

yi
B x = xi

x = xi

il º (xi - xi-1)

x = xi
x = xn = l

  

x = x0 = 0

i x = xi

yi i



3 

 

to the Structure Deformation Calculation Program. To understand more about the Displacement Theory 

and Displacement Transfer Functions, users can read the NASA technical reports listed in the reference 

section. 

Key Terminologies 

A surface line, along which the strain-sensing stations are to be discretely distributed, is called a strain-

sensing line. The surface strains are to be measured at those strain-sensing stations and recorded. The region 

between any two adjacent strain-sensing stations is called the domain. The structure depth-wise cross 

section along the strain-sensing line is called the embedded beam (not to be confused with the traditional 

isolated Euler-Bernoulli beam). The distances from the embedded beam neutral axis to the strain-sensing 

stations along the lower strain-sensing line are called the depth factors. When the data of bending surface 

strains, domain lengths, depth factors, and number of strain-sensing stations are input into the appropriate 

Displacement Transfer Functions, the deformed shape of each embedded beam can be calculated. 

Theoretical Background 

In the formulations of the Displacement Transfer Functions (refs. 1–12), each embedded beam was first 

discretized into multiple small domains with domain junctures matching the strain-sensing stations. Such a 

discretization approach allowed the surface strain distribution along each strain-sensing line to be 

represented with a piecewise-linear function. The piecewise-linear approach enabled piecewise integrations 

of the embedded-beam curvature equation to yield the Displacement Transfer Functions, which 

geometrically relate the surface strains to the out-of plane deflections along the embedded beam. 

For structure shape calculations using the Displacement Transfer Functions, surface strain data and 

depth factors of an embedded beam are needed. Based on the type of structure geometry and loading 

conditions, users can select the proper strain-sensing line system and structure type for their structures. If 

the depth factors are unknown, extra strain-sensing line(s) is/are required. The Structure Deformation 

Calculation Program covers seven structure types that have depth factors known and depth factors 

unknown. 

Depth Factors 

The depth factors of a structure are important variables in Displacement Transfer Functions. The depth 

factors , along with strains 𝜀𝑖 and domain lengths , are used in the calculations of the vertical 

deflections 𝑦𝑖, slopes 𝜃𝑖 , and cross-sectional twist angles  if applicable at the i-th strain-sensing location. 

For some structures, it is difficult to know the depth factors; therefore, extra strain-sensing lines are needed. 

Depth Factors Known 

Structure types 1 and 6 for a one-line system applied to a cantilever beam are shown in the type 1 and 

type 6 sections of this report. Structure type 2 for a two-end supported tubular beam is shown in the type 2 

section. Since the depth factors are known, only one strain-sensing line on the lower surface is needed for 

bending shape prediction analysis. 

Structure type 3 for a two-line system on the lower surface for combined bending and torsion or on the 

side and lower surfaces for combined horizontal and vertical bending is shown in the type 3 section. The 

two-line system includes tapered un-swept and swept wing boxes. If the depth factor is known, only two 

strain-sensing lines along the lower front and lower rear edges are needed. For this type of structure, the 

local cross-sectional twist angles can be calculated. 

Structure type 5 for a square thin plate (finite-element model) subjected to a point load at the plate 

center, inducing two-dimensional bending under different edge conditions (four edges clamped or simply 

ci il

i
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supported) is shown in the type 5 section. Because the depth factors are known, only the multi parallel 

strain-sensing lines on the lower surface are needed. 

Depth Factors Unknown 

Structure type 4 of a four-line system with two lines on the lower surface and two lines on the upper 

surface for shape calculations of structures under combined bending and torsion is shown in the type 4 

section. The four-line system is the most suitable sensing system for slender aircraft wings, for which the 

two neutral axes are unknown and are always subjected to both bending and torsion loadings. Two upper 

strain-sensing lines are needed for calculations of unknown depth factors. If the depth factors are known, 

the upper surface lines are not required. 

The depths at the beam root and beam tip  at the front of the embedded beam are known, and 

the local depth  can be calculated as shown in equation (1a). 

  

 
                                                  ;   (𝑖 = 1,2,3, … , 𝑛) (1a) 

               

The depths at the beam root and beam tip  at the rear of the embedded beam are known, and 

the local depth  can be calculated as shown in equation (1b). 

 

 
                                                   ;   (𝑖 = 1,2,3, … , 𝑛) (1b) 

 

The values of calculated  and the bending strains  where  are the bending strains of the 

front upper surface are used to calculate  as shown in equation (2a). 

 

 
;                                 ;   (𝑖 = 1,2,3, … , 𝑛) (2a) 

  

The values of calculated  at the rear and the bending strains  where  are the bending strains 

of the rear upper surface are used to calculate  as shown in equation (2b). 

 

 
;                                ;   (𝑖 = 1,2,3, … , 𝑛) (2b) 

   

For a nonuniform large bending structure of a two-line system on lower and upper surfaces, an extra 

upper strain-sensing line is required to calculate the depth factors as shown in type 7 section.   

List of the Shifted Displacement Transfer Functions 

Based on the piecewise-linear representations of both depth factor  and surface strain 𝜀𝑖 where        

𝑖 = 1, 2, 3, … , 𝑛, the Shifted Displacement Transfer Functions (refs. 1, 3) were formulated to transform the 

surface strains 𝜀𝑖 into slopes and vertical deflections {𝑡𝑎𝑛𝜃𝑖, 𝑦𝑖}
 
along the embedded beam. The Shifted 
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Displacement Transfer Functions for vertical deflections have the following different mathematical forms 

formulated for different types of structures (nonuniform, slightly nonuniform, and uniform). 

Vertical Deflection for Cantilever Embedded Beams 

There are three Shifted Displacement Transfer Functions for a cantilever embedded beam where 

(𝑦0 =  𝑡𝑎𝑛𝜃0 = 0). 

Nonuniform Shifted Displacement Transfer Functions 

The depth factors are not equal (𝑐𝑖−1 ≠ 𝑐𝑖), (refs. 1, 3). The slope equation (in recursive form) is 

shown as equation (3a): 
 

;   (𝑖 = 1,2,3, … , 𝑛) 

(3a) 

 

The vertical deflection equation (in recursive form) is shown as equation (3b): 

 

    
                                                                                                ;   (𝑖 = 1,2,3, … , 𝑛) 

(3b) 

 

Equations (3a) and (3b) are used for structure types 1, 3, and 4. 

Slightly Nonuniform Shifted Displacement Transfer Functions 

The depth factors are almost equal , (refs. 1, 3). The slope equation (in recursive form) is 

shown as equation (4a): 
 

 

         ;   (𝑖 = 1,2,3, … , 𝑛) 

(4a) 

 

The vertical deflection equation (in recursive form) is shown as equation (4b): 

 

 ;     (𝑖 = 1,2,3, … , 𝑛) 

(4b) 

 

Equations (4a) and (4b) are used for structure types 1, 3, and 4. 

Uniform Shifted Displacement Transfer Functions 

The depth factors are equal , (ref. 1). The slope equation (in recursive form) is shown as 

equation (5a): 

(ci-1® ci )

(ci-1 = ci = c)
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                           ;   (𝑖 = 1,2,3, … , 𝑛) 

(5a) 

 

The vertical deflection equation (in recursive form) is shown as equation (5b): 

 

 

    ;   (𝑖 = 1,2,3, … , 𝑛) 

(5b) 

Vertical Deflection for Two-End Supported Embedded Beams
 

The vertical deflection  of the two-end supported embedded beam (simply supported or fixed) can 

be calculated from equation (6) (ref. 1): 

 

 

                                                                                                ;   (𝑖 = 1,2,3, … , 𝑛) 

(6) 

 

In equation (6),  is the vertical deflection of the slightly nonuniform cantilever embedded beam 

(applicable to the limit case of uniform embedded beams). The mathematical expression of  in equation 

(6) was obtained by combining the slope equation (4a) and the deflection equation (4b) into a single 

equation. The shift factor (𝑥𝑖/𝑙)𝑦𝑛 appearing in equation (6) is to proportionally shift the cantilever 

deflection curve of  and convert it to the deflection curve of the two-end supported beam with zero 

deflection 𝑦𝑖
𝐵 = 0 at the beam tip 𝑖 = 𝑛 (second support point). 

List of Curved Displacement Transfer Functions 

For large bending deformations of highly flexible slender structures, one must understand that the actual 

(true) deflection yi  of a material point at  is a curved distance traced by the same material point 

from its initial un-deformed position to its final deformed position. Thus, the conventional vertical 

deflection  is merely the vertical component of the curved true deflection  yi  (refs. 3, 11). The Curved 

Displacement Transfer Functions have the following different mathematical forms for different types of 

structures (nonuniform, slightly nonuniform, and uniform). 

  

yi
B

yi
yi

yi

x = xi

yi
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Large Deflection for Cantilever Embedded Beam 

Just like the small bending deformations, the large bending deformations have three Curved 

Displacement Transfer Functions for a cantilever embedded beam for which yi= 𝜃0 = 0. 

Nonuniform Curved Displacement Transfer Functions  

The depth factors are not equal (𝑐𝑖−1  ≠  𝑐𝑖), (ref. 11). The slope equation (in recursive form) is shown 

in equation (7a): 

 

          ;   (𝑖 = 1,2,3, … , 𝑛) 

(7a) 

 

The curved deflection equation (in recursive form) is shown in equation (7b): 

 

 
 

                   ;   (𝑖 = 1,2,3, … , 𝑛)  

(7b) 

  

Slightly Nonuniform Curved Displacement Transfer Functions 

The depth factors are almost equal , (ref. 3). The slope equation (in recursive form) is shown 

in equation (8a): 

 

  

             
                   ;    (𝑖 = 1,2,3, … , 𝑛) 

(8a) 

 

The curved deflection equation (in recursive form) is shown in equation (8b): 

 

 

                                                                
                  ;   (𝑖 = 1,2,3, … , 𝑛) 

(8b) 

 

Uniform Curved Displacement Transfer Functions 

The depth factors are equal , (ref. 11). The slope equation (in recursive form) is shown 

in equation (9a): 

 

(ci-1® ci )

(ci-1 = ci = c)
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                                    ;   (𝑖 = 1,2,3, … , 𝑛) 
(9a) 

 

The curved deflection equation (in recursive form) is shown in equation (9b): 

 

 

                            ;   (𝑖 = 1,2,3, … , 𝑛)  

(9b) 

Large Deflection for Two-end Supported Embedded Beam 

The curved deflection y


𝑖

𝐵
 of the two-end supported embedded beam (simply supported or fixed) can 

be calculated from equation (10), which enforces zero deflection at the beam tip (i = n) of the cantilever 

embedded beam using shifting factor  (ref. 1): 

 

 
 

                     ;   (𝑖 = 1,2,3, … , 𝑛) 

(10) 

 

In equation (10), y


𝑖

𝐵
 is the curved deflection of a slightly nonuniform cantilever embedded beam. 

Equation (10) was obtained by combining the slope angle equation (8a) and the curved deflection equation 

(8b) into a single equation, and is applicable to the limit case of uniform embedded beams. 

It is important to mention that, if  in equations (3) − (5) are replaced respectively with 

{𝜃𝑖 , yi}, then equations (3) − (5) become equations (7) − (9) for the shape calculations of structures under 

geometrical nonlinear large deformations (ref. 11). 

Cross-Sectional Twist Angle 

For structure types 3 and 4 that have front and rear strain-sensing lines, the cross-sectional twist angle 

at the strain-sensing station i, 𝑥 = 𝑥𝑖 , is calculated using equation (11). 

 

                                     
     ;   (𝑖 = 1,2,3, … , 𝑛) 

(11) 

  

 (xi l)
⌢
yn

{tanqi ,yi}
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Procedure to Use the Program 

In order to use the Structure Deformation Calculation Program, users are required to have Microsoft 

Visual Studio software (Microsoft Corporation, Redmond, Washington) or any server that can compile 

C/C++ to compile this program. Users need to create two input files, a strain data file and a geometry file 

in the required formats. The arrangements of the data in these files are different depending on the structure 

type as defined in the next section. 

Preparation of the Strain Data File 

The strain data file must be in csv format with the first line containing the header of “time” and names 

of the strain-sensing stations. The second line to the last line should contain the time and the measured 

surface strains 𝜀𝑖 of each strain-sensing station i on each strain-sensing line from the fixed end 𝜀0 to the 

free end 𝜀𝑛. The time format in this file will be copied to the output files. If there are multiple strain-sensing 

lines, strain data on one line must finish before starting strain data on the next line. 

Preparation of the Geometry file 

The geometry file must be prepared in txt format with spaces or tab delimiters between two values. 

This file contains the geometry data that the program will use to calculate deformations. The distances in 

this report are measured in inches, but users can use any units they want as long as they are consistent. This 

file has some or all of the following elements. 

1. Structure type from 1 to 7. 

2. Total length of the structure in inches l. 

3. Domain length in inches. The domain length, (∆𝑙)𝑖 =  ∆𝑙𝑖, is the distance between two adjacent 

strain sensors 𝑖-1 and i on a strain-sensing line;  can be constant or variable. 

4. Total number of strain-sensing stations installed on the structure. If the structure has multiple strain-

sensing lines, the number of stations installed on each strain-sensing line must be the same. The 

domain lengths  between two adjacent sensors 𝑖-1 and i on each strain-sensing line must also be 

the same; for example,  on line 1 = on line 2 = on line k: ∆𝑙1𝑖 = ∆𝑙2𝑖 = ∆𝑙𝑘𝑖. 

5. Depth factors in inches (  can be known or unknown). 

6. Chord-wise distances in inches (  for structures that have front and rear strain-sensing lines). 

7. Depths in inches (  at the fixed end and  at the free end for structures that have lower and upper 

strain-sensing lines). 

Running the program 

After creating two required input files, users can run this the Structure Deformation Calculation 

Program. The program will prompt the user for three following inputs. 

$ Enter strain data filename: 

$ Enter geometry filename: 

$ Enter structure type: 

Users must enter inputs to the above prompts in order to run the program. The program will always 

calculate vertical deflections , slopes 𝜃𝑖, and determine the maximum and minimum deflections for each 

strain-sensing station. Different structure configurations in the formulations of the Displacement Theory 

and Displacement Transfer Functions (refs. 1-12) are categorized into seven structure types in this program. 

il

il
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Depending on the structure type, the program will also calculate the depth factors  and/or the cross-

sectional twist angles . 

Output files created by the program 

The program will use the name of the strain data file to create the names of the output files in csv format 

by appending it with _Deflections, _Slopes, _Deflections_MaxMin, _DepthFactors, and _TwistedAngles. 

For example, if the strain data filename is N13.csv, the output files are N13_Deflections.csv, 

N13_Slopes.csv, N13_Deflections_MaxMin.csv, N13_DepthFactors.csv, and N13_TwistAngles.csv. The 

first row in the deflection file and slope file is labeled exactly the same as the first row in the strain data 

file. The first column in the deflection file and slope file is exactly the same as the first column in the strain 

data file. All structure types will have the deflection and maximum minimum deflection files. The 

deflections are measured in inches and the slopes and twist angles are measured in degrees. When finishing, 

the program will print out a complete message and also the names of the output files. 

Structure Types 

With the intention to make the Structure Deformation Calculation Program easy to use, one-line, two-

line, and four-line systems, with known and unknown depth factors, with vertical and curved deflections, 

and with short and long lengths are categorized into seven structure types. The structure types cover the 

range from the simplest one-line uniform cantilever beam with known depth factors to a complicated four-

line doubly tapered wing with unknown depth factors. Each structure type requires different formats of the 

strain and geometry files and has different output files. Dependent on the structure type, a correct Transfer 

Function is used in the program to calculate deflections, slopes, cross-sectional twist angles, and depth 

factors if applicable. 

Type 1 – Cantilever Embedded Beam 

For a cantilever embedded beam with strain-sensing stations distributed along the bottom strain-sensing 

line, the depth factors are known, and no torsion is involved. The one-line system can be used for shape 

prediction analysis. The cantilever embedded beam is the simplest structure type. 

Type 1 Structure 

Figure 1(a) shows a uniform cantilever beam with 𝑐0 = 𝑐𝑛 , and figure 1(b) shows a tapered cantilever 

or nonuniform beam with 𝑐0 > 𝑐𝑛. 

 

cn
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Figure 1(a). Type 1 structure of a uniform cantilever beam. 

 

 

Figure 1(b). Type 1 structure of a tapered cantilever or nonuniform beam. 

Type 1 Strain Data File 

For type 1 strain data file, recorded strains must be arranged as shown in figure 1(c). The SG_0 is 

always the strain-sensing station at the fixed end, and SG_n is always the strain-sensing station at the free-

end. In figure 1(c), SG_n is SG_16. 

 The first line is the header containing the title “time” and names of the strain-sensing station starting 

from the fixed end. 

 The second line to the last line must contain the times and measured strains at stations SG_0, SG_1, 

…, SG_n. 

 The first column contains the times that can be in any time format. 

 The columns after the first column contain the measured strains at stations SG_0, SG_1, …, SG_n. 

 

 

Figure 1(c). Type 1 strain data file. 
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Type 1 Geometry File 

For type 1 geometry files, users must prepare the geometry file in txt format as shown in figure 1(d) or 

figure 1(e). 

 

 

Figure 1(d). Type 1 geometry file of a uniform cantilever beam constant domains. 

 

 

Figure 1(e). Type 1 geometry file of a tapered cantilever beam variable domains. 

 

This file has two lines: 

Line 1: 

 The first field is the structure type. 

 The second field is the structure length. 

 The third field is the number of strain-sensing stations counting from the fixed end. 

 The fourth field is the depth factor 𝑐0  at the fixed end. 

 The fifth field is the depth factor 𝑐𝑛  at the free end. 
Line 2 for Δli domain:  

 1 is for constant domain; after 1 is nothing as shown in figure 1(d). 

 2 is for variable domain; after 2 are  Δl1,  Δl2, …,  Δln as shown in figure 1(e). 

Type 1 Deflection File 

After starting the program, users need to enter the strain data filename, the geometry filename, and 

structure type as 1. The program will compare the entered structure type 1 with the structure type 

programmed in the geometry file. If they are equal to 1, the program will calculate the deflections and save 

the results in a deflection file as shown in figure 1(f). 

 

 

Figure 1(f). Type 1 deflection file. 

Type 1 Slope File 

Similar to the deflections, the program will calculate the slopes. The results will be saved in a slope file 

as shown in figure 1(g). 
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Figure 1(g). Type 1 slope file. 

Max Min Deflection File for All Structure Types 

After calculating deflections for all strain-sensing stations, the max min deflections are determined and 

written in the output max min deflection file. Users should center the data columns so that the data are more 

readable. This file is always created for all structure types with the format as shown in figure 1(h). 

 

 

Figure 1(h). Maximum and minimum deflection file. 

Type 1 Output Files 

Type 1 does not have depth factors nor twist angles. Type 1 output files are a deflection file, a slope 

file, and a max min deflection file. 

Type 2 – Two-end Supported Beam 

A cantilever beam with a two-end supported beam is installed with strain-sensing stations distributed 

along the bottom strain-sensing line. In this case, the load P is applied in the middle of the structure. The 

slopes will not be calculated. 

Type 2 Structure 

Figure 2(a) shows a two-end simply supported beam and figure 2(b) shows a two-end fixed beam. An 

additional case is one end fixed and other end simply supported. 
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Figure 2(a). Type 2 structure of a beam with two-end simply supported. 

 

 

Figure 2(b). Type 2 structure of a beam with two-end fixed beam. 

Type 2 Strain Data File 

The strain data file is prepared in csv format similar to type 1 as shown in figure 2(c). 

 

 

Figure 2(c). Type 2 strain data file. 
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Type 2 Geometry File 

The geometry file is prepared in txt format similar to the type 1 above. The geometry file is shown in 

figures 1(d) and 1(e). 

Type 2 Deflection File 

After starting the program, users need to enter the strain data filename, the geometry filename, and the 

structure type as 2. The program will compare the entered structure type 2 with the structure type 

programmed in the geometry file. If they are equal to 2, the program will calculate the deflections and save 

the results in a deflection file as shown in figure 2(d). 

 

 

Figure 2(d). Type 2 deflection file. 

Type 2 Output Files 

Type 2 only have deflections. Type 2 output files are a deflection file and a max min deflection file. 

Type 3 – Tapered Wing Box and Two-line System 

A tapered wing box with two strain-sensing lines where strain-sensing stations are distributed along 

front and rear bottom lines. Twist angles will be calculated in this case. Any two strain-sensing lines can 

be used as long as they are in the same vertical or horizontal plane. The domain lengths for strain-sensing 

station i on two strain-sensing lines must be the same; for example, Δli = Δl1i on line 1 = Δl2i on line 2. 

Type 3 Structure 

Figure 3(a) shows a wing box with two lower strain-sensing lines. 
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Figure 3(a). Type 3 Structure of a tapered wing box two-line system. 

Type 3 Strain Data File 

Users need to prepare the strain data file in csv format as shown in figure 3(b). The strain values on one 

line must be completed before starting on the other line. 

 

 

Figure 3(b). Type 3 strain data file. 

Type 3 Geometry File 

Users need to prepare the geometry file as shown in figures 3(c) and 3(d). This file has three lines. 

 

 

Figure 3(c). Type 3 geometry file constant domains. 
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Figure 3(d). Type 3 geometry file variable domains. 

 

Line 1: 

 The first field is the structure type. 

 The second field is the structure length. 

 The third field is the total number of strain-sensing stations. 

 The fourth field is the chore-wise distance 𝑑0 at the fixed end. 

 The fifth field is the chore-wise distance 𝑑𝑛 at the free end. 
Line 2 for Δli domain:  

 1 is for constant domain; after 1 is nothing as shown in figure 3(c). 

 2 is for variable domain; after 2 are Δl1,  Δl2, …,  Δln as shown in figure 3(d). 
Line 3 for depth factors: 

 If the beam depth tapers down linearly from the fixed end to the free end, enter 1. After 1, enter the 

depth factor 𝑐0 and 𝑐𝑛 for the front line, 𝑐0′ and 𝑐𝑛′ for the rear line as shown in figure 3(c). 

 If the beam depth does not taper down linearly from the fixed end to the free end, enter 2. After 2, 

enter the depth factors in the order of the strain sensors in the strain data file as shown in figure 3(d), 

𝑐0 for lf_sg0, …, 𝑐𝑛 for lf_sg8, 𝑐0′ for lr_sg0, …, 𝑐𝑛′ for lr_sg8. 

Type 3 Deflection File 

After starting the program, users need to enter the strain data filename, the geometry filename, and the 

structure type as 3. The program will compare the entered structure type 3 with the structure type 

programmed in the geometry file. If they are equal to 3, the program will calculate the deflections and save 

the results in a deflection file as shown in figure 3(e). 

 

 

Figure 3(e). Type 3 deflection file. 

Type 3 Slope File 

Similar to the deflections, the program will calculate the slopes. The results will be saved in a slope file 

as shown in figure 3(f). 
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Figure 3(f). Type 3 slope file. 

Type 3 Cross-sectional Twist Angle File 

Similar to the deflections and slopes, the program will calculate the twist angles. The results will be 

saved in a twist angle file as shown in figure 3(g). 

 

 

Figure 3(g). Type 3 twist angle file. 

Type 3 Output Files 

Type 3 does not have depth factors. Type 3 output files are a deflection file, a slope file, a twist angle 

file, and a max min deflection file. 

Type 4 – Doubly Tapered Wing and Four-line System 

A doubly tapered wing with four strain-sensing lines where strain-sensing stations are distributed along 

two front lines and two rear lines. Depth factors and twist angles will be calculated in this case. The domain 

lengths for strain-sensing station i on four strain-sensing lines must be the same; for example, Δli = Δl1i on 

line 1 = Δl2i  on line 2 = Δl3i on line 3 = Δl4i on line 4. Type 4 is the most complicated type; users need to 

prepare the strain data file and the geometry file carefully. 

Type 4 Structure 

Figure 4(a) shows a doubly tapered wing with a four-line system. The two extra lines must be added to 

determine depth factors 𝑐𝑖. After running this structure type one time, users have the depth factors 𝑐𝑖 created 

by this program. Then, users can use structure type 3 with a two-line system. 
 

The lower front strains are (𝜀0, 𝜀1, 𝜀2, … , 𝜀𝑛). 

The upper front strains are (𝜀0̅, 𝜀1̅, 𝜀2̅, … , 𝜀�̅�). 

The lower rear strains are (𝜀0
′ , 𝜀1

′ , 𝜀2
′ , … , 𝜀𝑛

′ ). 

The upper rear strains are (𝜀0̅
′ , 𝜀1̅

′ , 𝜀2̅
′ , … , 𝜀�̅�

′ ). 
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Figure 4(a). Type 4 structure of a doubly tapered wing four-line system. 

Type 4 Strain Data File 

Users need to prepare a single strain data file in csv format as shown in figure 4(b). The first strain 

sensor on each line must always be located at the fixed end. The strain values on one line must be completed 

before starting on the next line. The order of strains need to be exactly as shown in figure 4(b). The top half 

containing strain data for the front starts from column B and the bottom half containing strain data for the 

rear starts from column T. 
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Figure 4(b). Type 4 strain data file. 

Type 4 Geometry File 

Users need to prepare the Geometry file in txt format as shown in figure 4(c).  

 

 

Figure 4(c). Type 4 geometry File. 

 

Line 1: 

 The first field is the structure type. 

 The second field is the structure length. 

 The third field is the total number of strain-sensing stations. 

 The fourth field is the separation distance from the front and the rear at the fixed end, 𝑑0. 

 The fifth field is the separation distance from the front and the rear at the free end, 𝑑𝑛. 

 The sixth field is the beam depth at the front fixed end, ℎ0. 

 The seventh field is the beam depth at the front free end, ℎ𝑛. 

 The eighth field is the beam depth at the rear fixed end, ℎ0′. 
 The ninth field is the beam depth at the rear free end, ℎ𝑛′. 

Line 2 for Δli domain: 

 1 is for constant domain; nothing after 1 as shown in figure 1(d). 

 2 is for variable domain; after 2 are Δl1, Δl2, …, Δln as shown in figure 4(c). 

Type 4 Deflection File 

After starting the program, users need to enter the strain data filename, the geometry filename, and the 

structure type as 4. The program will compare the entered structure type 4 with the structure type 

programmed in the geometry file. If they are equal to 4, the program will calculate the deflections and save 

the results in a deflection file as shown in figure 4(d). 
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Figure 4(d). Type 4 deflection file. 

Type 4 Slope File 

Similar to the deflections, the program will calculate the slopes. The results will be saved in a slope file 

as shown in figure 4(e). 

 

 

Figure 4(e). Type 4 slope file. 

Type 4 Depth Factor File 

The program will calculate the depth factors for type 4. The results will be saved in a depth factor file 

as shown in figure 4(f). Structure type 4 does not have depth factors 𝑐𝑖; therefore, a four-line system is 

used. After the 𝑐𝑖 are calculated from this program, users can use structure type 3 with a two-line system. 
 

 

Figure 4(f). Type 4 depth factor file. 
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Type 4 Twist Angle File 

The program will also calculate the twist angles for type 4. The results will be saved in a twist angle 

file as shown in figure 4(g). Users can change the title names LwrStation_0, …, UprStation_8 to whatever 

names that make sense to them. 

 

 

Figure 4(g). Type 4 twist angle file. 

Type 4 Output Files 

The program creates the most output files for this type. Type 4 output files are a deflection file, a slope 

file, a depth factor file, a twist angle file, and a max min deflection file. 

Type 5 – Thin Uniform Plate 

For a uniform plate (𝑐0 = 𝑐𝑛), the strain sensor system requires multiple parallel strain-sensing lines 

across the two opposite edges as shown in figure 5(a). The four edges of the plate can be either fixed or 

simply supported. The load is applied somewhere in the center of the plate. The plate must be very thin and 

the depth factor is very small compared to the length. The domain lengths for strain-sensing station i on 

every strain-sensing line must be the same; for example, Δli = Δl1i on line 1 = Δl2i  on line 2 = Δl3i on line 

3 = Δl ki on line k. Similar to type 2, the slopes will not be calculated. 

Type 5 Structure 

Figure 5(a) shows a thin uniform plate with parallel strain-sensing lines with undeformed and deformed 

shapes. 
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Figure 5(a). Type 5 structure of a very thin plate. 

Type 5 Strain Data File 

Users need to prepare the strain data file in csv format with strain values on one line which must be 

completed before starting on the next line. Lines must start from one end across to the other end as shown 

in figure 5(b); for example, line 1, line 2, …, line k. For more details of how to arrange the type 5 strain 

data file, users can refer to the type 1 strain data file and the type 4 strain data file in the report. 

 

 

Figure 5(b). Type 5 strain data file for three lines. 

Type 5 Geometry File 

The geometry file should be prepared in txt format as shown in figure 5(c). This file has two lines: 

Line 1: 

 The first field is the structure type. 

 The second field is the length of the strain-sensing line. 

 The third field is the number of strain-sensing stations. 

 The fourth field is the plate thickness. 

 The fifth field is the number of strain-sensing lines on the plate. 
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Line 2 for Δli domain:  

 1 is for constant domain; after 1 is nothing as shown in figure 1(d). 

 2 is for variable domain; after 2 are Δl1,  Δl2, …,  Δln as shown in figure 5(c). 

 

 

Figure 5(c). Type 5 geometry file. 

Type 5 Deflection File 

After starting the program, users need to enter the strain data filename, the geometry filename, and the 

structure type as 5. The program will compare the entered structure type 5 with the structure type 

programmed in the geometry file. If they are equal to 5, the program will calculate the deflections and save 

the results in a deflection file as shown in figure 5(d). 

 

 
Figure 5(d). Type 5 deflection file for three lines. 

Type 5 Output Files 

Type 5 does not have slopes, nor twist angles. The output files are a deflection file and a max min 

deflection file. 

Type 6 – Long Beam with Known Depth Factors 

Type 6 is the same as type 1 where the length of the structure is very long compared to the width and 

known depth factors 𝑐𝑖. For large deformations, 𝑡𝑎𝑛𝜃𝑖 is replaced by 𝜃𝑖 in the Displacement Transfer 

Function used for type 1. 

Type 6 Structure 

Figure 6(a) shows a nonuniform long cantilever beam with undeformed and deformed shapes. 
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Figure 6(a). Type 6 structure of a long beam with known 𝑐𝑖. 

Type 6 Strain Data File 

For type 6, recorded strains must be arranged as type 1 and is shown in figure 6(b). For more details, 

refer to the type 1 strain data file in the report. 

 

 
Figure 6(b). Type 6 strain data file. 

Type 6 Geometry File 

For type 6, users need to prepare the geometry file in txt format similar to type 1. For more details, refer 

to the type 1 geometry file shown in figures 1(d) and 1(e). 

Type 6 Deflection File 

After starting the program, users need to enter the strain data filename, the geometry filename, and the 

structure type as 6. The program will compare the entered structure type 6 with the structure type 

programmed in the geometry file. If they are equal to 6, the program will calculate the deflections and save 

the results in a deflection file as shown in figure 6(c). 
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Figure 6(c). Type 6 deflection file. 

Type 6 Slope File 

Similar to the deflections, the program will calculate the slopes. The results will be saved in a slope file 

as shown in figure 6(d). 

 

 
Figure 6(d). Type 6 slope file. 

Type 6 Output Files 

Type 6 does not have depth factors, nor twist angles. Type 6 output files are a deflection file, a slope 

file, and a max min deflection file. 

Type 7 – Long Beam with Unknown Depth Factors 

Type 7 is the same as type 1 where the length of the structure is very long compared to the width and 

unknown depth factors 𝑐𝑖. For this type, an extra strain-sensing line on the upper surface is needed to 

calculate the depth factors 𝑐𝑖. For large deformations, 𝑡𝑎𝑛𝜃𝑖 is replaced by 𝜃𝑖 in the Displacement Transfer 

Function used for type 1. 

Type 7 Structure 

Figure 7(a) shows a long cantilever beam with two strain-sensing lines. 

 

 
Figure 7(a). Type 7 Structure of a long beam with unknown 𝑐𝑖. 
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Type 7 Strain Data File 

Users need to prepare the strain data file in csv format as shown in figure 7(b). The two strain sensors 

lf_sg0 and uf_sg0 are always at the fixed end. The strain values on one line must be completed before 

starting on the other line; normally the lower front strain-sensing line is first followed by the upper front 

strain-sensing line. 

 

 
Figure 7(b). Type 7 strain data file. 

Type 7 Geometry File 

For type 7, users need to prepare the Geometry file in txt format as shown in figures 7(c) and 7(d). This 

file has two lines: 

Line 1: 

 The first field is the structure type. 

 The second field is the structure length. 

 The third field is the number of strain-sensing stations. 

 The fourth field is the wing root depth ℎ0  at the front. 
 The fifth field is wing tip depth ℎ𝑛  at the front. 

Line 2 for Δli domain:  

 1 is for constant domain; after 1 is nothing as shown in figure 7(c). 

 2 is for variable domain; after 2 are Δl1,  Δl2, …,  Δln as shown in figure 7(d). 
 

 
Figure 7(c). Type 7 geometry file constant domains. 
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Figure 7(d). Type 7 geometry file variable domains. 

Type 7 Deflection File 

After starting the program, users need to enter the strain data filename, the geometry filename, and the 

structure type as 7. The program will compare the entered structure type 7 with the structure type 

programmed in the geometry file. If they are equal to 7, the program will calculate the deflections and save 

the results in a deflection file as shown in figure 7(e). 

 

 
Figure 7(e). Type 7 deflection file. 

Type 7 Slope File 

Similar to the deflections, the program will calculate the slopes. The results will be saved in a slope file 

as shown in figure 7(f). 

 

 
Figure 7(f). Type 7 slope file. 

Type 7 Depth Factor File 

Similar to the deflections and slopes, the program will calculate the depth factors. The results will be 

saved in a depth factor file as shown in figure 7(g). After the 𝑐𝑖 are calculated from this program, users can 

use structure type 6 with only one strain-sensing line. 
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Figure 7(g). Type 7 depth factor file. 

Type 7 Output Files 

Type 7 does not have twist angles. Type 7 output files are a deflection file, a slope file, a depth factor 

file, and a max min deflection file. 

Final Remarks 

There have been many NASA/TPs and NASA/TMs written and published about the Displacement 

Theory throughout the years. The Displacement Transfer Functions were derived for many structure types. 

The shape prediction accuracy of the Displacement Theory was analytically validated by finite-element 

analysis of the Ikhana wing (General Atomics Aeronautical Systems Inc., Poway, California) (ref. 13). The 

Displacement Theory was also experimentally validated using real-time strain data recorded from the 

ground loads tests performed in the Flight Load Laboratory at the NASA Armstrong Flight Research Center 

with full-scale Global Observer (AeroVironment Inc., Monrovia, California) aircraft wings (ref.14) and the 

GIII (Gulfstream Aerospace, Savannah, Georgia) swept wing structure (ref. 15). In order for users to apply 

the Displacement Transfer Functions without requiring deep knowledge of the Displacement Theory, the 

Structure Deformation Calculation Program was written and completed. This program will output the out-

of-plane deflections, slopes, cross-sectional twist angles, and depth factors based on the structure type. The 

outputs of this program can be plotted for all strain-sensing stations in one time slice, one strain-sensing 

station in all time slices, or all strain-sensing stations in all time slices. This program is versatile and can be 

applied to a wide range of structures such as aircraft and spacecraft (wing, tail, and fuselage), ships (slab, 

plate, beam, and truss), skyscrapers, radio towers, bridges, and windmills. The data outputs by the program 

can be used to monitor the integrity of a structure, and appropriate actions would be made if the structure 

shows weakness that may cause serious safety issues.  
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Appendix A: Program Flowchart 

The Structure Deformation Calculation Program is written for 7 structure types, it is important that 

users know their structure types. Each structure type requires different geometry information and different 

strain arrangement. The program flowchart is displayed in figures A1 and A2. 

 

 
 

Figure A1. Flowchart of the start of the Structure Deformation Calculation Program.  
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Figure A2. Flowchart of the end of the Structure Deformation Calculation Program.  
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Appendix B: Program Header File 

/******************************************************************************* 

* TITLE: DisplacementCalculation.h - Structure Deformation Calculation Program Header      * 

*                        * 

* Written by:     Van Tran Fleischer                * 

* Title:               Electronics Engineer               * 

* Date:               September 13, 2017                 * 

* Version:  1                    *  

* Organization: Advanced Systems Development Branch, Code 540        * 

* Center:  NASA Armstrong Flight Research Center          * 

*                        *  

* INTRODUCTION:                   * 

 *                        * 

*  This file contains C++ include files, functions, constants and variables used     * 

*   in DisplacementCalculation.cpp.                * 

*                        *  

*******************************************************************************/ 

 

#include <iostream> 

#include <fstream> 

#include <string> 

#include <cmath> 

#include <iomanip> 

#include <vector> 

using namespace std; 

 

double   asin(double x); 

double   tan(double x); 

double   atan(double x); 

double   sqrt(double x); 

double   log(double x); 

double   pow(double x, double y); 

 

int   GetUserInputs(); 

int   ReadGeometryFile(); 

int   ReadType1_2_6(); 

int   ReadType3(); 

int   ReadType4(); 

int   ReadType5(); 

int   ReadType7(); 

int   CreateOutputFiles(); 

int   CalcDisplacement(); 

void  CalculateC(); 

void  CalcTwistAngles(); 

void  DetermineMaxMin(); 

void  WriteMaxMinFile(); 

void  CloseFiles_ClearVectors(); 

 

ifstream inFile; 
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ifstream geoFile; 

ofstream outFile; 

ofstream thetaFile; 

ofstream phiFile; 

ofstream maxminFile; 

ofstream cFile; 

 

string inputFile; 

string ingeoFile; 

string outputFile; 

string outthetaFile; 

string outphiFile; 

string outmaxminFile; 

string outcFile; 

 

vector<string> stationNames, tMax, tMin; 

vector<double> epsilon, deltaL, x, y, yB, yMax, yMin; 

vector<double> theta, tan_theta, phi, sin_phi; 

vector<double> c, d, h; 

 

const   int   MAX_LINE = 500000; 

const   int   TRUE = 1; 

const   int   FALSE = 0; 

const   int   ERROR = -1; 

const   int   OK = 0; 

const   int   VAR_DOMAIN = 2; 

const   int   TAPERED = 1; 

const   double        TPR_RATIO = 0.9; 

const   double  PI = 3.1415926535897932; 

 

char    *token, *t; 

char    *nextToken = NULL; 

char     inBuff[MAX_LINE]; 

 

double  C, C0, Cn, C0_prime, Cn_prime, D0, Dn, H0, Hn, H0_prime, Hn_prime, 

            strain, length, const_deltaL, H_ratio, Hprime_ratio; 

 

int        calC = FALSE, checked = OK; 

 

unsigned int i, j, k, n, structureType, structType, cType, domainType, numLines, 

              nStations, numStations, noStations, first_time = 1, phiCreated = 0,  

              cCreated = 0, lineNum = 0;  
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Appendix C: Program Code in C++ 

/******************************************************************************* 

* TITLE: DisplacementCalculation.cpp – Structure Deformation Calculation Program      * 

*                        * 

* Written by:     Van Tran Fleischer                   * 

* Title:               Electronics Engineer               * 

* Date:               September 13, 2017                 * 

* Version:    1                    * 

* Organization: Advanced Systems Development Branch, Code 540        * 

* Center:    NASA Armstrong Flight Research Center          * 

*                        * 

* INTRODUCTION:                   * 

*                        * 

* In order to use this program, users must prepare a .csv file that         * 

* contains time and strain values with the following format:         * 

*                        * 

* The 1st line of the .csv file should contain the headers that contains        * 

* Time and Strain-sensing stations names.              * 

*                        * 

* The second line and thereafter should have time and strain data for        * 

* each strain-sensing station on the structure.             * 

*                        * 

* --------------------------------------------------------------------------------------      * 

* | Time        | SG1 Name | SG2 Name | SG.. Name  | SGn Name |      * 

* --------------------------------------------------------------------------------------      * 

* |076 09:04:15.313  |  0.01155      |  0.01173    |        ....         |  0.01125    |      * 

* --------------------------------------------------------------------------------------      * 

* |076 09:04:15.363  |  0.01164      |  0.01181    |        ....         |  0.01137    |      * 

* --------------------------------------------------------------------------------------      * 

* |076 09:04:15.413  |  0.01172      |  0.01187    |    ....          |  0.01146   |      * 

* --------------------------------------------------------------------------------------      * 

* |076 09:04:15.463  |  0.01187      |  0.01194    |    ....          |  0.01158   |      * 

* ---------------------------------------------------------------------------------------      * 

*                        * 

* Users must prepare a .txt file that contains the data about structure.        * 

* The format of this file is different based on structure type.          * 

*                        * 

* This program will prompt users for the names of two files and structure type.     * 

*                        * 

* 1. Strain data input filename in .csv extension. This file must be located in the same   * 

*    directory as the DisplacementCalculation.exe.            * 

*                        * 

* 2. Geometry input filename in .txt format. This file must be located in the same     * 

*  directory as the DisplacementCalculation.exe program.          * 

*                        * 

* 3. Enter structure type:                  * 

*  1 for uniform or tapered cantilever embedded beam with 1 strain line      * 

*  2 for two-end supported embedded beam             * 

*  3 for wing box with 2 strain lines & known c            * 
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*  4 for doubly wing box with four-line system & unknown c         * 

*  5 for thin uniform plate                  * 

*  6 for curved deformation of long tapered cantilever beam         * 

*  7 for curved deformation of long nonlinear beam           * 

*                        * 

* NOMENCLATURE used in the program:              * 

*                        * 

* C: depth factor of uniform beam, in.               * 

* c[i]: depth factors at strain-sensing station i, x=xi, in.           * 

* C0, c[0]: value of c[i] at fixed end (beam root) strain-sensing station, in.      * 

* Cn, c[n]: value of c[i] at free end (beam tip) strain-sensing station, in.       * 

* d: chord-wise distance between two span-wise parallel strain lines, in.       * 

* d[i]: chord-wise distance between front strain-sensing stations i and rear strain-sensing   *   

* stations i', in.                     * 

* deltaL[i]: distance between strain-sensing stations on a same strain-sensing line i-1 & i , in.  * 

* x[i]: distance from the fixed end to the i-th strain-sensing station, in.       * 

* y[i]: deflection at strain-sensing station i, in.             * 

* theta[i], θ[i]: slope of deformed beam at strain-sensing station i, deg       * 

* phi[i], Φ[i]: cross-sectional twist angle at strain-sensing station i, deg       * 

*                        * 

* REVISION HISTORY:                  * 

*                        * 

* Initial Release: September 13, 2017               * 

*                        * 

* Revisions:                     * 

*                        * 

*******************************************************************************/ 

 

#include "DisplacementCalculation.h" 

 

int CalcDisplacement() 

{ 

 double term1, term2, term3, term4; 

 

 // Clear epsilon arrays 

 epsilon.clear(); 

 

 // Read a line of data in the Strain input file 

 while (inFile.getline(inBuff, MAX_LINE)) 

 { 

  // Read time for the current time slice 

  token = strtok_s(inBuff, " ,\t\n", &nextToken); 

 

  // First value is time 

  if (token) 

  { 

   // Save time 

   t = token; 

 

   // Write time to deflection output file 

   outFile << t << ","; 
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   // Write time to slope output file 

   if ((structureType != 2) && (structureType != 5)) 

   { 

    thetaFile << t << ","; 

   } 

 

   // Write time to twist angle output file 

   if ((structureType == 3) || (structureType == 4)) 

    phiFile << t << ","; 

  } 

 

  // Read the input strains for the current time slice 

  while (token) 

  { 

   token = strtok_s(0, " ,\t\n", &nextToken); 

 

   if (token) 

   { 

    strain = atof(token); 

    epsilon.push_back(strain); 

    y.push_back(0); 

    yB.push_back(0); 

 

    if ((structureType != 2) && (structureType != 5)) 

    { 

     theta.push_back(0); 

     tan_theta.push_back(0); 

    } 

 

    if ((structureType == 3) || (structureType == 4)) 

    { 

     phi.push_back(0); 

     sin_phi.push_back(0); 

    } 

   }    

  } 

  

  switch (structureType) 

  { 

  case 1: // uniform or tapered cantilever beam  

 

   // Set deflection and slope at the fixed end 

   y[0] = 0.0; 

   theta[0] = 0.0; 

 

   // Write to deflection and slope output files 

   outFile << fixed << setprecision(6) << y[0]; 

   thetaFile << fixed << setprecision(6) << theta[0]; 
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   // Uniform 

   if (C0 == Cn) 

   { 

    for (i = 1; i < numStations; i++) 

    { 

     // Eq. (5a) in this paper or Eq. (24) in NASA/TP-2009-214643  

     term1 = epsilon[i - 1] + epsilon[i]; 

     tan_theta[i] = (deltaL[i] / (2.0*C0)) * term1 + tan_theta[i - 1]; 

     theta[i] = atan(tan_theta[i]) * 180.0 / PI; 

 

     // Eq. (5b) in this paper or Eq. (26) in NASA/TP-2009-214643 

     term2 = (2.0*epsilon[i - 1]) + epsilon[i]; 

     y[i] = (deltaL[i] * deltaL[i] / (6.0*C0)) * term2 + y[i - 1] + 

                                        deltaL[i] * tan_theta[i - 1]; 

 

     // Write to deflection and slope output files 

     outFile << "," << fixed << setprecision(6) << y[i]; 

     thetaFile << "," << fixed << setprecision(6) << theta[i]; 

    } 

   } 

   else if ((c[1] / C0 > TPR_RATIO) && (Cn / c[n-1] > TPR_RATIO)) 

{ 

 // Slightly Tapered 

    for (i = 1; i < numStations; i++) 

    { 

     // Eq. (4a) in this paper or Eq. (14a) in NASA/TP-2015-218464  

     term1 = (2.0 - (c[i] / c[i - 1])) * epsilon[i - 1] + epsilon[i]; 

     tan_theta[i] = (deltaL[i] / (2.0*c[i - 1])) * term1 + tan_theta[i - 1]; 

     theta[i] = atan(tan_theta[i]) * 180.0 / PI; 

 

     // Eq. (4b) in this paper or Eq. (14b) in NASA/TP-2015-218464 

     term2 = (3.0 - (c[i] / c[i - 1])) * epsilon[i - 1] + epsilon[i]; 

     y[i] = (deltaL[i] * deltaL[i] / (6.0*c[i - 1])) * term2 + y[i - 1] + 

                                        deltaL[i] * tan_theta[i - 1]; 

 

     // Write to deflection and slope output files 

     outFile << "," << fixed << setprecision(6) << y[i]; 

     thetaFile << "," << fixed << setprecision(6) << theta[i]; 

    } 

} 

else 

   { 

    // Nonuniform   

    for (i = 1; i < numStations; i++) 

    { 

     // Eq. (3a) in this paper or Eq. (13a) in NASA/TP-2015-218464 

     term1 = (epsilon[i - 1] - epsilon[i]) / (c[i - 1] - c[i]); 

     term2 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) *  

               log(c[i] / c[i - 1]) / pow((c[i - 1] - c[i]), 2); 

     tan_theta[i] = deltaL[i] * (term1 + term2) + tan_theta[i - 1]; 

     theta[i] = atan(tan_theta[i]) * 180.0 / PI; 
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     // Eq. (3b) in this paper or Eq. (13b) in NASA/TP-2015-218464 

     term3 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) /  

                                   pow((c[i - 1] - c[i]), 3); 

     term4 = c[i] * log(c[i] / c[i - 1]) + (c[i - 1] - c[i]); 

     y[i] = deltaL[i] * deltaL[i] * ((term1 / 2.0) - term3*term4) +  

                                       y[i - 1] + deltaL[i] * tan_theta[i - 1]; 

 

     // Write to deflection and slope output files 

     outFile << "," << fixed << setprecision(6) << y[i]; 

     thetaFile << "," << fixed << setprecision(6) << theta[i]; 

    } 

   } 

   break; 

 

  case 2: // two-end supported 

 

   // Set values at the selected fixed end 

   y[0] = 0.0; 

   yB[0] = 0.0; 

 

   // Write to deflection output file 

   outFile << fixed << setprecision(6) << yB[0]; 

 

   // Calculate deflection y 

   for (i = 1; i < numStations; i++) 

   { 

    term1 = 0.0; 

    term2 = 0.0; 

 

    // Eq. (6) in this paper or Eq. (36) in NASA/TP-2009-214643 

    for (j = 1; j <= i; j++) 

    { 

     term2 = (1.0 / c[i - j]) * 

      ((3.0 * (2.0*j - 1.0) - ((3.0*j - 2.0)* c[i - j + 1] / c[i - j])) * epsilon[i - j] 

       + (3.0*j - 2.0) * epsilon[i - j + 1]); 

     term1 += term2; 

    } 

 

    y[i] = deltaL[i] * deltaL[i] * term1 / 6.0; 

   } 

 

   // Calculate deflection yB 

   for (i = 1; i < numStations; i++) 

   { 

    // yB = y - the correction term 

    yB[i] = y[i] - (x[i] / length * y[n]); 

 

    // Write to deflection output file 

    outFile << "," << fixed << setprecision(6) << yB[i]; 
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   } 

   break; 

 

  case 3: // two-line system 

 

   // Calculate deflections and slopes 

   for (j = 0; j < 2; j++) 

   { 

    // Set values at the fixed end 

    y[j*nStations] = 0.0; 

    theta[j*nStations] = 0.0; 

 

    // Write to deflection and slope output files 

    outFile << fixed << setprecision(6) << y[j*nStations]; 

    thetaFile << fixed << setprecision(6) << theta[j*nStations]; 

 

    for (i = j*nStations + 1; i < (j*nStations + nStations); i++) 

    { 

     // Eq. (3a) in this paper or Eq. (13a) in NASA/TP-2015-218464 

     term1 = (epsilon[i - 1] - epsilon[i]) / (c[i - 1] - c[i]); 

     term2 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1])*log(c[i] / c[i - 1]) /  

pow((c[i - 1] - c[i]), 2); 

     tan_theta[i] = deltaL[i - j*nStations] * (term1 + term2) + tan_theta[i - 1]; 

     theta[i] = atan(tan_theta[i]) * 180.0 / PI; 

 

// Eq. (3b) in this paper or Eq. (13b) in NASA/TP-2015-218464 

     term3 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) / pow((c[i - 1] - c[i]), 3); 

     term4 = c[i] * log(c[i] / c[i - 1]) + (c[i - 1] - c[i]); 

     y[i] = deltaL[i - j*nStations] * deltaL[i - j*nStations] * ((term1 / 2.0) -  

term3*term4) + y[i - 1] + deltaL[i - j*nStations] * tan_theta[i - 1]; 

 

     // Write to deflection and slope output files 

     outFile << "," << fixed << setprecision(6) << y[i]; 

     thetaFile << "," << fixed << setprecision(6) << theta[i]; 

    } 

 

    // Write "," in output files 

    outFile << ","; 

    thetaFile << ","; 

   } 

 

   // Calculate twist angles 

   CalcTwistAngles(); 

   break; 

 

  case 4: // 4-line system 

 

   // Calculate c[i] 

   if (calC == FALSE) 

   { 

    CalculateC(); 
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   } 

 

   // Calculate deflections and slopes 

   for (j = 0; j < 4; j++) 

   { 

    // Set values at the fixed end 

    y[j*nStations] = 0.0; 

    theta[j*nStations] = 0.0; 

 

    // Write to deflection and slope output files 

    outFile << fixed << setprecision(6) << y[j*nStations]; 

    thetaFile << fixed << setprecision(6) << theta[j*nStations]; 

 

    for (i = j*nStations + 1; i < (j*nStations + nStations); i++) 

    { 

     // Eq. (3a) in this paper or Eq. (13a) in NASA/TP-2015-218464 

     term1 = (epsilon[i - 1] - epsilon[i]) / (c[i - 1] - c[i]); 

     term2 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1])*log(c[i] / c[i - 1]) /  

pow((c[i - 1] - c[i]), 2); 

     tan_theta[i] = deltaL[i - j*nStations] * (term1 + term2) + tan_theta[i - 1]; 

     theta[i] = atan(tan_theta[i]) * 180.0 / PI; 

 

     // Eq. (3b) in this paper or Eq. (13b) in NASA/TP-2015-218464 

     term3 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) / pow((c[i - 1] - c[i]), 3); 

     term4 = c[i] * log(c[i] / c[i - 1]) + (c[i - 1] - c[i]); 

     y[i] = deltaL[i - j*nStations] * deltaL[i - j*nStations] * ((term1 / 2.0) - 

term3*term4) + y[i - 1] + deltaL[i - j*nStations] * tan_theta[i - 1]; 

 

     // Write to deflection and slope output files 

     outFile << "," << fixed << setprecision(6) << y[i]; 

     thetaFile << "," << fixed << setprecision(6) << theta[i]; 

    } 

 

    // Write "," in output files 

    outFile << ","; 

    thetaFile << ","; 

   } 

 

   // Calculate twist angles 

   CalcTwistAngles(); 

   break; 

 

  case 5: // Thin uniform plate 

 

   // Calculate deflections 

   for (j = 0; j < numLines; j++) 

   { 

    // Set values at the selected fixed end 

    y[j*nStations] = 0.0;  

    yB[j*nStations] = 0.0; 
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    // Write to deflection output file 

    outFile << fixed << setprecision(6) << yB[j*nStations]; 

    

    // Calculate y deflections  

    for (i = j*nStations + 1; i < (j*nStations + nStations); i++) 

    { 

     term1 = 0.0; 

     term2 = 0.0; 

 

     // Eq. (6) in this paper or Eq. (36) in NASA/TP-2009-214643 

     for (k = 1; k <= (i-j*nStations); k++) 

     { 

      term2 = (1.0 / C) * 

       ((3.0 * (2.0*k - 1.0) - (3.0*k - 2.0)) * epsilon[i - k] 

        + (3.0*k - 2.0) * epsilon[i - k + 1]); 

      term1 += term2; 

     } 

 

     y[i] = deltaL[i - j*nStations] * deltaL[i - j*nStations] * term1 / 6.0;    

    } 

 

    // Calculate yB deflections 

    for (i = j*nStations + 1; i < (j*nStations + nStations); i++) 

    { 

     // yB = y - the correction term 

     yB[i] = y[i] - (x[i-j*nStations] / length * y[n + j*nStations]); 

 

     // Write to deflection output file 

     outFile << "," << fixed << setprecision(6) << yB[i]; 

    } 

 

    // Write "," in output file 

    outFile << ","; 

   } 

   break; 

 

  case 6: // curved deformation of 1 line long tapered beam 

 

   // Set deflection and slope at the fixed end 

   y[0] = 0.0; 

   theta[0] = 0.0; 

 

   // Write to deflection and slope output files 

   outFile << fixed << setprecision(6) << y[0]; 

   thetaFile << fixed << setprecision(6) << theta[0]; 

 

   // Calculate curved deflections of tapered beam 

    

// Uniform 

   if (C0 == Cn) 
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   { 

    for (i = 1; i < numStations; i++) 

    { 

     // Eq. (9a) in this paper or Eq. (18a) in NASA/TP-2017-219406  

     term1 = epsilon[i - 1] + epsilon[i]; 

     theta[i] = (deltaL[i] / (2.0*C0)) * term1 + theta[i - 1]; 

 

     // Eq. (9b) in this paper or Eq. (18b) in NASA/TP-2017-219406 

     term2 = (2.0*epsilon[i - 1]) + epsilon[i]; 

     y[i] = (deltaL[i] * deltaL[i] / (6.0*C0)) * term2 + y[i - 1] + 

               deltaL[i] * theta[i - 1]; 

 

     // Write to deflection and slope output files 

     outFile << "," << fixed << setprecision(6) << y[i]; 

     thetaFile << "," << fixed << setprecision(6) << theta[i] * 180.0 / PI; 

    } 

   } 

   else if ((c[1] / C0 > TPR_RATIO) && (Cn / c[n - 1] > TPR_RATIO)) 

   { 

    // Slightly Nonuniform Tapered 

    for (i = 1; i < numStations; i++) 

    { 

     // Eq. (8a) in this paper or Eq. (18) in NASA/TP-2009-214643 

     term1 = (2.0 - (c[i] / c[i - 1])) * epsilon[i - 1] + epsilon[i]; 

     tan_theta[i] = (deltaL[i] / (2.0*c[i - 1])) * term1 + theta[i - 1]; 

 

     // Eq. (8b) in this paper or Eq. (21) in NASA/TP-2009-214643 

     term2 = (3.0 - (c[i] / c[i - 1])) * epsilon[i - 1] + epsilon[i]; 

     y[i] = (deltaL[i] * deltaL[i] / (6.0*c[i - 1])) * term2 + y[i - 1] + 

      deltaL[i] * theta[i - 1]; 

 

     // Write to deflection and slope output files 

     outFile << "," << fixed << setprecision(6) << y[i]; 

     thetaFile << "," << fixed << setprecision(6) << theta[i] * 180.0 / PI; 

    } 

   } 

   else 

   { 

    // Nonuniform Curved Deformation 

    for (i = 1; i < numStations; i++) 

    { 

     // Eq. (7a) in this paper or Eq. (18a) in NASA/TP-2017-219406 

     term1 = (epsilon[i - 1] - epsilon[i]) / (c[i - 1] - c[i]); 

     term2 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1])*log(c[i] / c[i - 1]) /  

pow((c[i - 1] - c[i]), 2); 

     theta[i] = deltaL[i] * (term1 + term2) + theta[i - 1]; 

 

     // Eq. (7b) in this paper or Eq. (18b) in NASA/TP-2017-219406 

     term3 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) / pow((c[i - 1] - c[i]), 3); 

     term4 = c[i] * log(c[i] / c[i - 1]) + (c[i - 1] - c[i]); 
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     y[i] = deltaL[i] * deltaL[i] * ((term1 / 2.0) - term3*term4) + y[i - 1] +  

deltaL[i] * theta[i - 1]; 

 

     // Write to deflection and slope output files 

     outFile << "," << fixed << setprecision(6) << y[i]; 

     thetaFile << "," << fixed << setprecision(6) << theta[i] * 180.0 / PI; 

    } 

   } 

   break; 

 

  case 7: // curved deformation for 2 lines, lower and upper; unknown c 

 

   // Calculate c[i] 

   if (calC == FALSE) 

   { 

    CalculateC(); 

   } 

 

   // Calculate nonlinear large deflections and slopes for a long nonuniform structure 

   for (j = 0; j < 2; j++) 

   { 

    // Set values at the fixed end 

    y[j*nStations] = 0.0; 

    theta[j*nStations] = 0.0; 

 

    // Write to deflection and slope output files 

    outFile << fixed << setprecision(6) << y[j*nStations]; 

    thetaFile << fixed << setprecision(6) << theta[j*nStations]; 

 

    for (i = j*nStations + 1; i < (j*nStations + nStations); i++) 

    { 

     // Eq. (7a) in this paper or Eq. (18a) in NASA/TP-2017-219406 

     term1 = (epsilon[i - 1] - epsilon[i]) / (c[i - 1] - c[i]); 

     term2 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1])*log(c[i] / c[i - 1]) /  

pow((c[i - 1] - c[i]), 2); 

     theta[i] = deltaL[i - j*nStations] * (term1 + term2) + theta[i - 1]; 

 

     // Eq. (7b) in this paper or Eq. (18b) in NASA/TP-2017-219406 

     term3 = (epsilon[i - 1] * c[i] - epsilon[i] * c[i - 1]) / pow((c[i - 1] - c[i]), 3); 

     term4 = c[i] * log(c[i] / c[i - 1]) + (c[i - 1] - c[i]); 

     y[i] = deltaL[i - j*nStations] * deltaL[i - j*nStations] * ((term1 / 2.0) – 

term3*term4) + deltaL[i - j*nStations] * theta[i - 1] + y[i - 1]; 

 

     // Write to deflection and slope output files 

     outFile << "," << fixed << setprecision(6) << y[i]; 

     thetaFile << "," << fixed << setprecision(6) << theta[i] * 180.0 / PI; 

    } 

 

    // Write "," in output files 

    outFile << ","; 

    thetaFile << ","; 
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   } 

   break; 

 

  } // switch 

 

  // Put the end of line to output files 

  outFile << endl; 

 

  if ((structureType != 2) && (structureType != 5)) 

  { 

   thetaFile << endl; 

  } 

 

  if ((structureType == 3) || (structureType == 4)) 

   phiFile << endl; 

 

  // Initialize vectors yMax, yMin, tMax and tMin for the first time 

  if (first_time == 1) 

  { 

   if ((structureType != 2) && (structureType != 5)) 

   { 

    for (i = 0; i < numStations; i++) 

    { 

     yMax[i] = y[i]; 

     yMin[i] = y[i]; 

 

     tMax[i] = t; 

     tMin[i] = t; 

    } 

   } 

   else 

   { 

    for (i = 0; i < numStations; i++) 

    { 

     yMax[i] = yB[i]; 

     yMin[i] = yB[i]; 

 

     tMax[i] = t; 

     tMin[i] = t; 

    } 

   } 

 

   first_time = 0; 

  } 

 

  // Determin max and min deflections 

  DetermineMaxMin(); 

 

  // Clear vectors 

  epsilon.clear(); 
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  y.clear(); 

  yB.clear(); 

  theta.clear(); 

  phi.clear(); 

 } 

 return(OK); 

} 

 

int GetUserInputs() 

{ 

 // Get required data from user 

 cout << "$ Enter Strain Data filename: "; 

 cin >> inputFile; 

 

 // Open input file  

 inFile.open(inputFile.c_str(), ios::in); 

 if (inFile.fail()) 

 { 

  cerr << "Could not open " << inputFile << "!\n"; 

  cerr << "Please check your Strain Data filename!\n\n"; 

  checked = ERROR; 

  return(ERROR); 

 } 

 

 cout << "$ Enter Geometry filename: "; 

 cin >> ingeoFile; 

 

 // Open geometry input file  

 geoFile.open(ingeoFile.c_str(), ios::in); 

 if (geoFile.fail()) 

 { 

  cerr << "Could not open " << ingeoFile << "!\n"; 

  cerr << "Please check your Geometry filename!\n\n"; 

  checked = ERROR; 

  return(ERROR); 

 } 

 

 cout << "\nStructure Type:\n"; 

 cout << "1 for uniform or tapered beam with 1-line system.\n"; 

 cout << "2 for two-end supported.\n"; 

 cout << "3 for 2-line system.\n"; 

 cout << "4 for 4-line system.\n"; 

 cout << "5 for thin uniform plate.\n"; 

 cout << "6 for curved deformation of long tapered beam.\n"; 

cout << "7 for curved deformation of long nonlinear beam.\n"; 

 

// Prompt for structure type from user 

 cout << "\n$ Enter structure type: "; 

 cin >> structureType; 

  

 if ((structureType < 1) || (structureType > 7)) 
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 { 

  cout << "\nThe entered structure type is not valid! Must be from 1 to 7!\n"; 

  cerr << "Please rerun the program and enter a valid structure type!\n\n"; 

  checked = ERROR; 

  return(ERROR); 

 }  

 return(OK); 

} 

 

int ReadGeometryFile() 

{ 

 // Check structureType to load geometry data correctly 

 switch (structureType) 

 { 

 case 1: // uniform & tapered 

 case 2: // two-end supported 

 case 6: // curved deformation of long tapered beam 

 

  ReadType1_2_6(); 

  break; 

 

 case 3: // 2 lines and known c 

 

  ReadType3(); 

  break; 

 

 case 4: // 4 lines and unknown c 

 

  ReadType4(); 

  break; 

 

 case 5: // 2-point supported 

 

  ReadType5(); 

  break; 

 

 case 7: // nonuniform curved deflection, 2 lines, lower and upper, unknown c 

 

  ReadType7(); 

  break; 

 

 } // switch structureType 

 

 // Check structure type 

 if (structType != structureType) 

 { 

  cerr << "\nThe entered structure type is different from the one in the Geometry file!\n"; 

  cerr << "Please Check Geometry File " << ingeoFile << "!\n\n"; 

  checked = ERROR; 

  return(ERROR); 
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 } 

 

 // Initialize vectors yMax, yMin, tMax, and tMin 

 for (i = 0; i < numStations; i++) 

 { 

  yMax.push_back(0); 

  yMin.push_back(0); 

  tMax.push_back("0"); 

  tMin.push_back("0"); 

 } 

 return(OK); 

} 

 

int ReadType1_2_6() 

{ 

 lineNum = 0; 

 

 // Read the 1st line of geometry file 

 while (geoFile.getline(inBuff, MAX_LINE)) 

 { 

  lineNum++; 

   

  switch (lineNum) 

  { 

  // Read data 

  case 1:   // Read line No. 1 

 

   // Read structure type 

   token = strtok_s(inBuff, " ,\t\n", &nextToken); 

   structType = atoi(token); 

 

   // Read structure length 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   length = atof(token); 

 

   // Read number of strain-sensing stations 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   numStations = atoi(token); 

 

   // Read depth factor at the fixed end C0 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   C0 = atof(token); 

 

   // Read depth factor at the free end Cn 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   Cn = atof(token); 

 

   // Calculate n 

   n = numStations - 1; 

   break; 
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  case 2:   // Read line No. 2  

 

   // Read domain type 

   token = strtok_s(inBuff, " ,\t\n", &nextToken); 

   domainType = atoi(token); 

 

   // Push the index of c, deltaL, and x 

   c.push_back(C0); 

   deltaL.push_back(0); 

   x.push_back(0); 

 

   if (domainType == VAR_DOMAIN) 

   { 

    // Read deltaL 

    token = strtok_s(0, " ,\t\n", &nextToken); 

    while (token) 

    { 

     deltaL.push_back(atof(token)); 

     c.push_back(0); 

     x.push_back(0); 

      

     // read next deltaL 

     token = strtok_s(0, " ,\t\n", &nextToken); 

    } 

 

    // Calculate Xi and Ci for variable domain 

    for (i = 1; i < numStations; i++) 

    { 

     x[i] = x[i - 1] + deltaL[i]; 

     c[i] = C0 - (C0 - Cn)* (x[i] / length); 

    } 

   } 

   else 

   { 

    const_deltaL = length / double(n); 

 

    for (i = 1; i < numStations; i++) 

    { 

     deltaL.push_back(const_deltaL); 

     x.push_back(0); 

     c.push_back(0); 

    } 

 

    // Calculate Xi and Ci for constant domain 

    for (i = 1; i < numStations; i++) 

    { 

     x[i] = (double) i * const_deltaL; 

     c[i] = C0 - (C0 - Cn)* (x[i] / length); 

    } 

   } 
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   break; 

 

  } // switch (lineNum) 

 } // while 

 

 // Close geoFile 

 geoFile.close(); 

 return(OK); 

} 

 

int ReadType3() 

{ 

 lineNum = 0; 

 

 // read the 1st line of geometry file 

 while (geoFile.getline(inBuff, MAX_LINE)) 

 { 

  lineNum++; 

 

  switch (lineNum) 

  { 

  // Read data 

  case 1:  // Read line No. 1  

 

   // Read structure type 

   token = strtok_s(inBuff, " ,\t\n", &nextToken); 

   structType = atoi(token); 

 

   // Read structure length 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   length = atof(token); 

    

   // Read number of strain-sensing stations 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   numStations = atoi(token); 

    

   // Read chord-wise distant at root D0 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   D0 = atof(token); 

    

   // Read chord-wise distant at tip Dn 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   Dn = atof(token); 

    

   // Calculate n 

   nStations = numStations / 2; 

   n = nStations - 1; 

   break; 

 

  case 2:   // Read line No. 2 
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   // Read domain type 

   token = strtok_s(inBuff, " ,\t\n", &nextToken); 

   domainType = atoi(token); 

    

   // Push the index of deltaL and x 

   deltaL.push_back(0); 

   x.push_back(0); 

 

   if (domainType == VAR_DOMAIN) 

   { 

    // Read deltaL 

    token = strtok_s(0, " ,\t\n", &nextToken); 

    while (token) 

    { 

     deltaL.push_back(atof(token)); 

     x.push_back(0); 

      

     // read next deltaL 

     token = strtok_s(0, " ,\t\n", &nextToken); 

    } 

 

    // Calculate Xi for variable domain 

    x[0] = 0.0; 

    for (i = 1; i < nStations; i++) 

    { 

     x[i] = x[i - 1] + deltaL[i]; 

    } 

   } 

   else 

   { 

    const_deltaL = length / double(n); 

    for (i = 1; i < nStations; i++) 

    { 

     deltaL.push_back(const_deltaL); 

     x.push_back(0); 

    } 

 

    // Calculate Xi for constant domain 

    x[0] = 0.0; 

    for (i = 1; i < nStations; i++) 

    { 

     x[i] = ((double)i) * const_deltaL; 

    } 

   } 

   break; 

 

  case 3:   // Read line No. 3 

    

   // Read cType 

   token = strtok_s(inBuff, " ,\t\n", &nextToken); 
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   cType = atoi(token); 

 

   // Check if tapered 

   if (cType == TAPERED) 

   { 

    // Read C0 

    token = strtok_s(0, " ,\t\n", &nextToken); 

    C0 = atof(token); 

    

    // Read Cn 

    token = strtok_s(0, " ,\t\n", &nextToken); 

    Cn = atof(token); 

 

    // Read C0_prime 

    token = strtok_s(0, " ,\t\n", &nextToken); 

    C0_prime = atof(token); 

 

    // Read Cn_prime 

    token = strtok_s(0, " ,\t\n", &nextToken); 

    Cn_prime = atof(token); 

 

    // Initialize c, & x vectors 

    for (i = 0; i < numStations; i++) 

    { 

     c.push_back(0); 

     x.push_back(0); 

    } 

 

    // Calculate Ci for the front 

    c[0] = C0; 

    for (i = 1; i < nStations; i++) 

    { 

     c[i] = C0 - (C0 - Cn)* (x[i] / length); 

    } 

 

    // Calculate Ci for the rear 

    c[nStations] = C0_prime; 

    for (i = nStations + 1; i < numStations; i++) 

    { 

     c[i] = C0_prime - (C0_prime - Cn_prime)* (x[i-nStations] / length); 

    } 

   } 

   else 

   { 

    // Read c[i] 

    token = strtok_s(0, " ,\t\n", &nextToken); 

    while (token) 

    { 

     c.push_back(atof(token)); 

 

     // read next c 
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     token = strtok_s(0, " ,\t\n", &nextToken); 

    } 

   } 

   break; 

 

  } // switch (lineNum) 

 } // while getline 

 

 // Close geoFile 

 geoFile.close(); 

 

 // Initialize vectors d & phi 

 for (i = 0; i < nStations; i++) 

 { 

  d.push_back(0); 

  phi.push_back(0); 

 } 

 return(OK); 

} 

 

int ReadType4() 

{ 

 lineNum = 0; 

 

 // Read the 1st line of geometry file 

 while (geoFile.getline(inBuff, MAX_LINE)) 

 { 

  lineNum++; 

   

  switch (lineNum) 

  { 

  // Read data 

  case 1:   // Read line No. 1 

 

   // Read structure type 

   token = strtok_s(inBuff, " ,\t\n", &nextToken); 

   structType = atoi(token); 

 

   // Read structure length 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   length = atof(token); 

 

   // Read number of strain-sensing stations 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   numStations = atoi(token); 

 

   // Read chord-wise distant at root D0 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   D0 = atof(token); 
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   // Read chord-wise distant at tip Dn 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   Dn = atof(token); 

    

   // Read wing root depth at front H0 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   H0 = atof(token); 

    

   // Read wing tip depth at front Hn 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   Hn = atof(token); 

    

   // Read wing root depth at rear H0_prime 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   H0_prime = atof(token); 

    

   // Read wing tip depth at rear Hn_prime 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   Hn_prime = atof(token); 

 

   // Initialize variables 

   nStations = numStations / 4; 

   noStations = numStations / 2; 

   n = nStations - 1;   

   break; 

 

  case 2:   // Read line No. 2 

 

   // Read domain type 

   token = strtok_s(inBuff, " ,\t\n", &nextToken); 

   domainType = atoi(token); 

    

   // Push the index of deltaL and x 

   deltaL.push_back(0); 

   x.push_back(0); 

 

   if (domainType == VAR_DOMAIN) 

   { 

    // Read deltaL 

    token = strtok_s(0, " ,\t\n", &nextToken); 

    while (token) 

    { 

     deltaL.push_back(atof(token)); 

     x.push_back(0); 

 

     // read next deltaL 

     token = strtok_s(0, " ,\t\n", &nextToken); 

    } 

 

    // Calculate Xi for variable domain 

    for (i = 1; i < nStations; i++) 
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    { 

     x[i] = x[i - 1] + deltaL[i]; 

    } 

   } 

   else 

   {    

    const_deltaL = length / double(n); 

     

    for (i = 1; i < nStations; i++) 

    { 

     deltaL.push_back(const_deltaL); 

     x.push_back(0); 

    } 

 

    // Calculate Xi for constant domain 

    for (i = 1; i < nStations; i++) 

    { 

     x[i] = ((double)i) * const_deltaL; 

    } 

   } 

   break; 

  } // switch lineNum 

 } // while getline 

 

 // Close geoFile 

 geoFile.close(); 

  

 // Initialize vectors h and c 

 for (i = 0; i < numStations; i++) 

 { 

  h.push_back(0); 

  c.push_back(0); 

 } 

 

 // Initialize vectors d and phi 

 for (i = 0; i < noStations; i++) 

 { 

  d.push_back(0); 

  phi.push_back(0); 

 } 

 return(OK); 

} 

 

int ReadType5() 

{ 

 lineNum = 0; 

 

 // read the 1st line of geometry file 

 while (geoFile.getline(inBuff, MAX_LINE)) 

 { 
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  lineNum++; 

   

  switch (lineNum) 

  { 

  // Read data 

  case 1:   // Read line No. 1 

 

   // Read structure type 

   token = strtok_s(inBuff, " ,\t\n", &nextToken); 

   structType = atoi(token); 

 

   // Read structure length 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   length = atof(token); 

    

   // Read number of strain-sensing stations 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   numStations = atoi(token); 

    

   // Read depth factor of the thin plate 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   C = atof(token); 

    

   // Read number of lines 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   numLines = atoi(token); 

    

   // Calculate n 

   nStations = numStations / numLines; 

   n = nStations - 1; 

   break; 

 

  case 2:   // Read line No. 2  

 

   // Read domain type 

   token = strtok_s(inBuff, " ,\t\n", &nextToken); 

   domainType = atoi(token); 

    

   // Push the index of deltaL and x   

   deltaL.push_back(0); 

   x.push_back(0); 

    

   if (domainType == VAR_DOMAIN) 

   { 

    // Read deltaL 

    token = strtok_s(0, " ,\t\n", &nextToken); 

    while (token) 

    { 

     deltaL.push_back(atof(token)); 

     x.push_back(0); 
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     // Read next deltaL 

     token = strtok_s(0, " ,\t\n", &nextToken); 

    } 

 

    // Calculate Xi for variable domain 

    for (i = 1; i < nStations; i++) 

    { 

     x[i] = x[i - 1] + deltaL[i]; 

    } 

   } 

   else 

   { 

    const_deltaL = length / double(n); 

 

    for (i = 1; i < nStations; i++) 

    { 

     deltaL.push_back(const_deltaL); 

     x.push_back(0); 

    } 

 

    // Calculate Xi for constant domain 

    for (i = 1; i < nStations; i++) 

    { 

     x[i] = (double)i * const_deltaL; 

    } 

   } 

   break; 

 

  } // switch (lineNum) 

 } // while 

 

 // Close geoFile 

 geoFile.close(); 

 return(OK); 

} 

 

int ReadType7() 

{ 

 lineNum = 0; 

 

 // Read the 1st line of geometry file 

 while (geoFile.getline(inBuff, MAX_LINE)) 

 { 

  lineNum++; 

 

  switch (lineNum) 

  { 

  // Read data 

  case 1:   // Read line No. 1 
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   // Read structure type 

   token = strtok_s(inBuff, " ,\t\n", &nextToken); 

   structType = atoi(token); 

 

   // Read structure length 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   length = atof(token); 

 

   // Read number of strain-sensing stations 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   numStations = atoi(token); 

 

   // Read wing root depth at front H0 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   H0 = atof(token); 

 

   // Read wing tip depth at front Hn 

   token = strtok_s(0, " ,\t\n", &nextToken); 

   Hn = atof(token); 

 

   // Initialize variables 

   nStations = numStations / 2; 

   n = nStations - 1; 

 

   break; 

 

  case 2:   // Read line No. 2 

 

   // Read domain type 

   token = strtok_s(inBuff, " ,\t\n", &nextToken); 

   domainType = atoi(token); 

 

   // Push the index of deltaL and x 

   deltaL.push_back(0); 

   x.push_back(0); 

 

   if (domainType == VAR_DOMAIN) 

   { 

    // Read deltaL 

    token = strtok_s(0, " ,\t\n", &nextToken); 

    while (token) 

    { 

     deltaL.push_back(atof(token)); 

     x.push_back(0); 

 

     // read next deltaL 

     token = strtok_s(0, " ,\t\n", &nextToken); 

    } 

 

    // Calculate Xi for variable domain 

    for (i = 1; i < nStations; i++) 
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    { 

     x[i] = x[i - 1] + deltaL[i]; 

    } 

   } 

   else 

   { 

    const_deltaL = length / double(n); 

 

    for (i = 1; i < nStations; i++) 

    { 

     deltaL.push_back(const_deltaL); 

     x.push_back(0); 

    } 

 

    // Calculate Xi for constant domain 

    for (i = 1; i < nStations; i++) 

    { 

     x[i] = ((double)i) * const_deltaL; 

    } 

   } 

 

   break; 

 

  } // switch lineNum 

 

 } // while getline 

 

 // Close geoFile 

 geoFile.close(); 

 

 // Initialize vectors h and c 

 for (i = 0; i < numStations; i++) 

 { 

  h.push_back(0); 

  c.push_back(0); 

 } 

 return(OK); 

} 

 

int CreateOutputFiles() 

{ 

 unsigned int loc, loc1; 

 

 // Create deflection output file 

 outputFile = inputFile; 

 loc = outputFile.find("."); 

 outputFile.insert(loc, "_Deflections"); 

 

 // Open deflection output file  

 outFile.open(outputFile.c_str(), ios::out); 
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 if (outFile.fail()) 

 { 

  cerr << "Could not open " << outputFile << endl; 

  return(ERROR); 

 } 

 

 // Create slope (angle theta) output file 

 if ((structureType != 2) && (structureType != 5)) 

 { 

  outthetaFile = inputFile; 

  outthetaFile.insert(loc, "_Slopes"); 

 

  // Open slope output file  

  thetaFile.open(outthetaFile.c_str(), ios::out); 

  if (thetaFile.fail()) 

  { 

   cerr << "Could not open " << outthetaFile << endl; 

   return(ERROR); 

  } 

 } 

 

 // Create max and min deflection output file 

 outmaxminFile = outputFile; 

 loc1 = outmaxminFile.find("."); 

 outmaxminFile.insert(loc1, "_MaxMin"); 

  

 // Open max and min deflection output file 

 maxminFile.open(outmaxminFile.c_str(), ios::out); 

 if (maxminFile.fail()) 

 { 

  cerr << "Could not open " << outmaxminFile << endl; 

  return(ERROR); 

 } 

 maxminFile << "SG Name, Time at Max Deflection, Max Deflection, Time at Min Deflection,  

Min Deflection\n"; 

 

 if ((structureType == 3) || (structureType == 4)) 

 { 

  // Create twist angle (phi) output file 

  outphiFile = inputFile; 

  outphiFile.insert(loc, "_TwistAngles"); 

 

  // Open twist angle output file 

  phiFile.open(outphiFile.c_str(), ios::out); 

  if (phiFile.fail()) 

  { 

   cerr << "Could not open " << outphiFile << endl; 

   return(ERROR); 

  } 

  phiCreated = 1; 

 } 
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 if ((structureType == 4) || (structureType == 7)) 

 { 

  // Create depth factor output file 

  outcFile = inputFile; 

  outcFile.insert(loc, "_DepthFactors"); 

   

  // Open depth factor output file 

  cFile.open(outcFile.c_str(), ios::out); 

  if (cFile.fail()) 

  { 

   cerr << "Could not open depth factor file " << outcFile << endl; 

   checked = ERROR; 

   return(ERROR); 

  } 

 

  // Initialize cCreated 

  cCreated = 1; 

 } 

 

 // Read 1st line of input file 

 inFile.getline(inBuff, MAX_LINE); 

 

 // Write to output files 

 outFile << inBuff << endl; 

 

 if ((structureType != 2) && (structureType != 5)) 

 { 

  thetaFile << inBuff << endl; 

 } 

 

 // Read the 1st name of the 1st line 

 token = strtok_s(inBuff, " ,\t\n", &nextToken); 

 

 if ((structureType == 3) || (structureType == 4)) 

 { 

  phiFile << token << ","; 

 } 

 

 // Read strain-sensing station names 

 token = strtok_s(0, " ,\t\n", &nextToken); 

 while (token) 

 { 

  if ((structureType == 4) || (structureType == 7)) 

  { 

   cFile << token << ", "; 

  } 

  stationNames.push_back(token); 

 

  token = strtok_s(0, " ,\t\n", &nextToken); 
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 } 

 

 // Done reading the first title line 

 if (structureType == 3) 

 { 

  for (i = 0; i < nStations; i++) 

  { 

   phiFile << "Station_" << i << ","; 

  } 

  phiFile << endl; 

 } 

 else if (structureType == 4) 

 { 

  // Write names for lower strain-sensing stations 

  for (i = 0; i < nStations; i++) 

  { 

   phiFile << "LwrStation_" << i << ","; 

  } 

 

  // Write names for upper strain-sensing stations 

  for (i = nStations; i < noStations; i++) 

  { 

   phiFile << "UprStation_" << (i - nStations) << ","; 

  } 

  phiFile << endl; 

  cFile << endl; 

 } 

 else if (structureType == 7) 

 { 

  cFile << endl; 

 } 

 return(OK); 

} 

 

void CalculateC() 

{ 

 //  Initialize h[0] and h[n] 

 h[0] = H0; 

 h[n] = Hn; 

 H_ratio = Hn / H0; 

 

 //  Calculate front c[i] using Eqs. (1a & 2a) 

 for (i = 0; i < n; i++) 

 { 

  // Lower front 

  h[i] = H0 - (H0 - Hn)*(x[i] / length); 

  c[i] = abs(epsilon[i]) * h[i] / (abs(epsilon[i]) + abs(epsilon[i + nStations])); 

 

  // Upper front 

  c[i + nStations] = h[i] - c[i]; 

 } 



62 

 

 c[n] = H_ratio*c[0]; 

 c[n + nStations] = H_ratio*c[nStations]; 

 

 // if structure type 4, need to do the rear 

 if (structureType == 4) 

 { 

  // Calculate rear c[i] using Eqs. (1b & 2b) 

  h[noStations] = H0_prime; 

  h[noStations + n] = Hn_prime; 

  Hprime_ratio = Hn_prime / H0_prime; 

 

  for (i = noStations; i < (noStations + n); i++) 

  { 

   // Lower rear 

   h[i] = H0_prime - (H0_prime - Hn_prime)*(x[i - noStations] / length); 

   c[i] = abs(epsilon[i]) * h[i] / (abs(epsilon[i]) + abs(epsilon[i + nStations])); 

 

   // Upper rear 

   c[i + nStations] = h[i] - c[i]; 

  } 

 

  c[noStations + n] = Hprime_ratio*c[noStations]; 

  c[noStations + n + nStations] = Hprime_ratio * c[noStations + nStations]; 

 } 

 

 for (i = 0; i < numStations; i++) 

 { 

  cFile << c[i] << ", "; 

 } 

 

 cFile << endl; 

 cFile.close(); 

 calC = TRUE; 

} 

 

void CalcTwistAngles() 

{ 

 // Initialize d[0] and d[n] 

 d[0] = D0; 

 d[n] = Dn; 

 

 switch (structureType) 

 { 

 case 3: // 2 lines 

 { 

  // Set twist angle at the root to 0.0 

  phi[0] = 0.0; 

  phiFile << fixed << setprecision(6) << phi[0]; 

 

  // Eq. (11) in this paper or Eq. (38) in NASA/TP-2009-214643 
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  // Calculate twist angle phi  

   

  for (i = 1; i < nStations; i++) 

  { 

   d[i] = D0 - (D0 - Dn)*(x[i] / length); 

   sin_phi[i] = (y[i] - y[i + nStations]) / d[i]; 

   phi[i] = asin(sin_phi[i])*180.0 / PI; 

   phiFile << "," << fixed << setprecision(6) << phi[i]; 

  } 

  break; 

 } 

 

 case 4: // 4 lines 

 { 

  // Set twist angle at lower root to 0.0 

  phi[0] = 0.0; 

  phiFile << fixed << setprecision(6) << phi[0]; 

 

  // Eq. (11) in this paper or Eq. (38) in NASA/TP-2009-214643 

  // Calculate lower twist angle phi 

  for (i = 1; i < nStations; i++) 

  { 

   d[i] = D0 - (D0 - Dn)*(x[i] / length); 

   sin_phi[i] = (y[i] - y[i + noStations]) / d[i]; 

   phi[i] = asin(sin_phi[i])*180.0 / PI; 

   phiFile << "," << fixed << setprecision(6) << phi[i]; 

  } 

 

  // Set twist angle at upper root to 0.0 

  phi[nStations] = 0.0; 

  phiFile << "," << fixed << setprecision(6) << phi[nStations]; 

 

  // Calculate upper twist angle phi 

  for (i = (1 + nStations); i < noStations; i++) 

  { 

   sin_phi[i] = (y[i] - y[i + noStations]) / d[i - nStations]; 

   phi[i] = asin(sin_phi[i])*180.0 / PI; 

   phiFile << "," << fixed << setprecision(6) << phi[i]; 

  } 

  break; 

 } // case 4 

 

 } // switch structureType 

} 

 

void DetermineMaxMin() 

{ 

 for (i = 1; i < numStations; i++) 

 { 

  // Check for max and min deflections 

  if ((structureType != 2) && (structureType != 5)) 
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  {   

   if (y[i] >= yMax[i]) 

   { 

    tMax[i] = t; 

    yMax[i] = y[i]; 

   } 

   else if (y[i] < yMin[i]) 

   { 

    tMin[i] = t; 

    yMin[i] = y[i]; 

   } 

  } 

  else 

  { 

   if (yB[i] >= yMax[i]) 

   { 

    tMax[i] = t; 

    yMax[i] = yB[i]; 

   } 

   else if (yB[i] < yMin[i]) 

   { 

    tMin[i] = t; 

    yMin[i] = yB[i]; 

   } 

  } 

 } 

} 

 

void  WriteMaxMinFile() 

{ 

 // Write yMax and yMin to file 

 for (i = 0; i < numStations; i++) 

 { 

  maxminFile << fixed; 

  maxminFile << stationNames[i] << "," << tMax[i] << "," << setprecision(6) << yMax[i] 

   << "," << tMin[i] << "," << setprecision(6) << yMin[i] << endl; 

 } 

} 

 

void PrintOutputFilenames() 

{ 

 // Print out successful messages 

 cout << "\n$ Displacement Calculation program completed successfully!\n" << endl; 

 cout << "$ Output files are listed below:\n" << endl; 

 cout << "$ Deflection file: " << outputFile << endl; 

 

 if ((structureType != 2) && (structureType != 5)) 

 { 

  cout << "$ Slope file: " << outthetaFile << endl; 

 } 
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 if (cCreated == 1) 

 { 

  cout << "$ Depth Factor file: " << outcFile << endl; 

 } 

 

 if (phiCreated == 1) 

 { 

  cout << "$ Twist Angle file: " << outphiFile << endl; 

 } 

 

 cout << "$ Max and Min Deflection file: " << outmaxminFile << endl << endl; 

} 

 

 

void CloseFiles_ClearVectors() 

{ 

 // Close all files 

 outFile.close(); 

 maxminFile.close(); 

 

 if ((structureType != 2) && (structureType != 5)) 

 { 

  thetaFile.close(); 

 } 

 

 if ((structureType == 3) || (structureType == 4)) 

 { 

  phiFile.close(); 

 } 

 

 // Clear out all vectors 

 epsilon.clear(); 

 x.clear(); 

 y.clear(); 

 yB.clear(); 

 yMax.clear(); 

 yMin.clear(); 

 tMax.clear(); 

 tMin.clear(); 

 theta.clear(); 

 tan_theta.clear(); 

 phi.clear(); 

 sin_phi.clear(); 

 

 c.clear(); 

 d.clear(); 

 h.clear(); 

 deltaL.clear();} 

 

void main() 
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{ 

 GetUserInputs(); 

 if (checked != ERROR) 

 { 

  ReadGeometryFile(); 

  if (checked != ERROR) 

  { 

   CreateOutputFiles(); 

   if (checked != ERROR) 

   { 

    // Let user know the program is running 

    cout << "\n$ Displacement Calculation program is running  ..." << endl; 

 

    CalcDisplacement(); 

    if (checked != ERROR) 

    { 

     WriteMaxMinFile(); 

     PrintOutputFilenames(); 

    } 

   } 

  } 

 } 

 CloseFiles_ClearVectors(); 

}  
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