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Introduction/ Objectives
Composite Technology for Exploration (CTE)
• Aimed to further advance the state-of-the-art in areas related to composite bonded 

joints technology
• Through case studies, the applications of composite bonded joints in heavy lift 

launch vehicles can reduce the mass and part counts by around 50% and 80%, 
respectively

3D Woven Composites [1, 2]

• Identified to offer good potentials in circumferential joints and end-fittings:
• Enhanced performance (e.g., delamination resistance)
• Possibility of being woven in curved sections
• Damage tolerance and fatigue resistance

• Known to exhibit micro-cracking
• Important to understand the evolution of micro-cracking and the influence on the 

3D woven parts   

Objectives
• Studying the evolution of micro-cracking as a function of four different resin systems, finer 

vs. coarser fiber yarns, and thermal cycling after processing
• Exploring how these parameters influence mechanical properties/ performance
• As an added value, taking advantage of the collected test data, modeling and computing 

elastic properties of the  weave architectures using a finite element and a analytical 
technique and comparing with the test data
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Material Systems
• AS4 carbon fiber with two different tow sizes (6K and 12K)
• Four different resin systems

• Some coupons subjected to thermal cycling: -55 ºC to 80 ºC for 400 cycles (an 18 day process, ~1 
hour per cycle) 
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8 Flat Panels
3.175 mm thick

SN#
Fiber 

Material Tow Size Resin System
Panel /Material 

Designation
SN001 6K AS4 6K/KCR-IR6070
SN002 12K AS4 12K/KCR-IR6070
SN003 6K AS4 6K/EP2400
SN004 12K AS4 12K/EP2400
SN005 6K AS4 6K/RTM6
SN006 12K AS4 12K/RTM6
SN007 6K AS4 6K/RS-50
SN008 12K AS4 12K/RS-50

AS4

KCR-IR6070

EP2400

RTM6

RS-50



Weave Architecture/ Parameters
• Two weave configurations proposed by Bally 

Ribbon Mills (BRM)
– 3D orthogonal
– One Z per dent arrangement
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Repeating Unit Cells (RUCs) – TexGen Illustration

12K6K

Weave Parameters:

Warp 
Yarns Per 

cm

Weft 
Yarns Per 

cm
WARP WEFT Z

1

Per Layer

19.1 x 8.5 x 3.2

16.8 x 7.6 x 3.2

5 41 46.4 12.6 52.6

 % Fiber Fraction
% Fiber 
Volume

Z Fiber 
per Dent

9 46.6

2 AS4-12K 3.54 3.14 4

50.9 11 AS4-6K 3.93 3.54 8

# of 
Warp 

Layers

# of 
Weft 

Layers

Unit Cell Dims
mm

46.6 7.3

Configuration Fiber



Material Characterizations & 
Mechanical Testing

• Fiber volume fraction and void content (ASTM D3171) prior to thermal cycling
• Optical microscopy and X-Ray Computed Tomography (CT) prior and after thermal 

cycling

• Mechanical Testing (in Warp direction) at National Institute for Aviation Research 
(NIAR): 

Tension (ASTM D3039) with strain gages and DIC, Compression (ASTM D6641) with extensometer, 
Short Beam Shear (ASTM D2344), and Single Shear Bearing (ASTM D5691) with extensometer and 
DIC

– Room Temperature Ambient (RTA)
• As-processed (AP)
• Thermally cycled (TC)

– Elevated Temperature Wet (ETW)
• AP
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Measurement Results: Vf
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• BRM estimated Vf for 6K and 12K weave architectures to be 50.9% and 52.6%, respectively
• Nominal thickness of 3.175 mm vs. as-built thickness (3.175 mm to 3.327 mm)

• Consistent: Vf (12K) > Vf (6K)

Avg. SD Avg. SD 
SN001 ~ 0 0.2 47.3 0.3
SN002 ~ 0 0.4 50.6 0.8
SN003 1.4 0.2 49.7 0.5
SN004 1.1 0.4 51.5 0.9
SN005 0.4 0.3 47.4 0.3
SN006 ~ 0 0.5 48.4 1.2
SN007 1.1 0.2 47.3 0.6
SN008 1.2 0.1 48.6 0.9

EP2400

RTM6

RS-50

% Void Content % Fiber Volume
ResinPanel

KCR-IR6070



Micro-cracking Assessment: Optical Microscopy
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• Micro-cracks developed in all 
panels likely during curing process 
and cool down

• Micro-cracking observed mainly 
near the Z-fibers

• Density of micro-cracks increased 
after thermal cycling

• In addition to Z-fibers 
vicinities, cracks distributed 
within the material, including 
individual fiber tows

• Developing an imaging technique 
to measure the cumulative 
volumes of the micro-cracks within 
these samples is an ongoing work 
at NASA 



Micro-cracking Assessment: X-Ray CT
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Warp-Z plane cross-section for SN001 a) AP and b) TC material 

Weft-Z plane cross-section for SN001 a) AP and b) TC material 



Micro-cracking Assessment: X-Ray CT
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Warp-Z plane cross-section for SN006 a) AP and b) TC material 

Weft-Z plane cross-section for SN006 a) AP and b) TC material 



Test Results: Tensile Testing (DIC Data)
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• Slightly higher stiffness and strength for 6K weave configurations (finer and tighter weave structure)
• Slight change (drop) in stiffness and strength as a result of thermal cycling
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Test Results: Tensile Testing (Strain Gage)
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• Higher standard deviation in modulus data 
attributed to strain measurements using strain 
gages (~9 mm x ~5 mm) and large RUC (16.8 x 7.6 
mm and 19.1 x 8.5 mm) of the materials

• Standard deviations  in modulus values using 
extensometer vs. gage data for ETW tests further 
support above hypothesis



Test Results: Compressive, SBS, and Bearing Strength
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• 6K weave configuration consistently performed 
better

• ~50% reduction in strength (compression vs. 
tension)

• Higher standard deviation in compression 
anticipated to raise from narrower and shorter 
coupon geometry in ASTM 6641 vs. ASTM 3039



Material Modeling Approaches: FE Based

• Finite element (FE) based approach
– Digimat FE
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Material Modeling Approaches: MSGMC

• Multiscale Generalized Method of Cells (MSGMC)
– Developed by NASA GRC
– Semi-analytical (efficient) 
– Provides homogenized, nonlinear constitutive response of composites
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MSGMC RUCs and sub-cells across an arbitrary number of length 
scales 

MSGMC 3D orthogonal woven representation 



Property Computations
• AS4/RTM6 material system was selected for modeling and analysis

– Both 6K and 12K
– RTA 
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• Good agreement between Digimat-FE and MSGMC
• Largest difference of 12% for v12 

E11 

(MPa)
E22

 (MPa)
E33 

(MPa)
v12 v13 v23

G12 

(MPa)
G13 

(MPa)
G23 

(MPa)
MSGMC 61,977  60,096  9,257    0.059 0.444 0.446 3,385    2,253    2,261    

Digimat-FE 61,833  59,907  9,691    0.056 0.443 0.429 3,283    2,450    2,471    
%Δ -0.2 -0.3 4.7 -5.1 -0.2 -3.8 -3.0 8.7 9.3

MSGMC 56,803  57,018  8,885    0.059 0.444 0.449 3,207    2,136    2,180    
Digimat-FE 56,400  57,500  9,308    0.052 0.448 0.425 3,029    2,369    2,420    

%Δ -0.7 0.8 4.8 -11.9 0.9 -5.3 -5.6 10.9 11.0

Configuration Method
Material Parameter/Property

AS4 6K/ RTM6
(SN005)

AS4 12K/ RTM6
(SN006)



Computed Properties vs. Test Data
• Only test data available: Warp (E11) 
• Models and analysis did not include (effect of) micro-cracks  
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• Analysis over-predicted (averaged) test values
(Strain measurement technique (strain gage vs. DIC) made a 
difference)
• Possible sources for the differences:

• Ignoring micro-cracks
• Not accounting for irregularities in weave pattern (idealized 

modeling)

E11

(GPa)
SD

% Δ to
MSGMC

% Δ to
Digimat-

FE

E11

(GPa)
SD

% Δ to
MSGMC

% Δ to
Digimat-FE

SN005 57.6 3.3 7.5 7.3 57.1 0.2 8.6 8.4
SN006 53.5 4.7 6.2 5.4 50 0.6 13.7 12.9
SN005 57.9 4 7 6.8 54.5 0.9 13.7 13.4
SN006 48.1 3.4 18 17.2 48.2 0.4 17.9 17.1

RTA (AP)

RTA (TC)

Strain Gage (from 5 Tests) DIC (from 2 Tests)

Condition Panel# 



Summary

• Eight 3D woven composite panels were fabricated and subjected to material 
characterizations and testing

– The 3D orthogonal weave included 6K and 12K yarn configurations and four different 
resin systems

• Optical microscopy and X-Ray CT revealed the presence of micro-cracks in 
the as-processed materials

– Thermal cycling increased micro-crack density in all eight panels

• No significant change in tensile performance of the materials as a result of 
thermal cycling or ETW environment (Fiber dominated, warp direction)

• Analysis over-predicted the test results by ~5% to ~13% for the AP materials 
and the difference increased as the material underwent thermal cycling  
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