

Uniaxial Tensile Properties of AS4 3D Woven Composites with Four Different Resin Systems: *Experimental Results and Analysis* – Property Computations

Babak Farrokh¹, Kenneth N. Segal¹, Trent M. Ricks², Sandi G. Miller², Benjamin T. Rodini ³, and David W. Sleight⁴

¹NASA Goddard Space Flight Center, Greenbelt, MD
²NASA Glenn Research Center, Cleveland, OH
³ATA Aerospace LLC, Greenbelt, MD
⁴NASA Langley Research Center, Hampton, VA

Outline

- Introduction and Objectives
- Materials, Processes, and Weave Architectures
- Material Characterizations and Mechanical Testing
- Experimental Results and Discussion
- Material Modeling and Mechanical Property Computations
- Summary
- Acknowledgements

Introduction/ Objectives

NASA

Composite Technology for Exploration (CTE)

- Aimed to further advance the state-of-the-art in areas related to composite bonded joints technology
- Through case studies, the applications of *composite bonded joints* in heavy lift launch vehicles can reduce the mass and part counts by around 50% and 80%, respectively

3D Woven Composites [1, 2]

- Identified to offer good potentials in circumferential joints and end-fittings:
 - Enhanced performance (e.g., delamination resistance)
 - Possibility of being woven in curved sections
 - Damage tolerance and fatigue resistance
- Known to exhibit micro-cracking
- Important to understand the evolution of micro-cracking and the influence on the 3D woven parts

Objectives

- Studying the evolution of micro-cracking as a function of four different resin systems, finer vs. coarser fiber yarns, and thermal cycling after processing
- Exploring how these parameters influence mechanical properties/ performance
- As an added value, taking advantage of the collected test data, modeling and computing elastic properties of the weave architectures using a finite element and a analytical technique and comparing with the test data

Material Systems

- AS4 carbon fiber with two different tow sizes (6K and 12K)
- Four different resin systems

8 Flat Panels

3.175 mm thick

SN#	Fiber Material	Tow Size	Resin System	Panel /Material Designation
SN001		6K	KCR-IR6070	AS4 6K/KCR-IR6070
SN002		12K		AS4 12K/KCR-IR6070
SN003	AS4	6K	EP2400 RTM6	AS4 6K/EP2400
SN004		12K		AS4 12K/EP2400
SN005		6K		AS4 6K/RTM6
SN006		12K		AS4 12K/RTM6
SN007		6K	RS-50	AS4 6K/RS-50
SN008		12K		AS4 12K/RS-50

Some coupons subjected to thermal cycling: -55 °C to 80 °C for 400 cycles (an 18 day process, ~1 hour per cycle)

Weave Architecture/ Parameters

• Two weave configurations proposed by Bally Ribbon Mills (BRM)

- 3D orthogonal
- One Z per dent arrangement

Repeating Unit Cells (RUCs) – TexGen Illustration

Weave Parameters:

	Fiber	Per Layer		# of	# of		% Fiber Fraction				
Configuration		Warp Yarns Per <i>cm</i>	Weft Yarns Per <i>cm</i>	# of Warp Layers	Weft Layers	Unit Cell Dims <i>mm</i>	WARP	WEFT	Z	% Fiber Volume	Z Fiber per Dent
1	AS4-6K	3.93	3.54	8	9	16.8 x 7.6 x 3.2	46.6	46.6	7.3	50.9	1
2	AS4-12K	3.54	3.14	4	5	19.1 x 8.5 x 3.2	41	46.4	12.6	52.6	1

Ζ

× * ×

Material Characterizations & Mechanical Testing

- Fiber volume fraction and void content (ASTM D3171) prior to thermal cycling
- Optical microscopy and X-Ray Computed Tomography (CT) prior and after thermal cycling
- Mechanical Testing (in <u>Warp direction</u>) at National Institute for Aviation Research (NIAR):

Tension (ASTM D3039) with strain gages and DIC, Compression (ASTM D6641) with extensometer, Short Beam Shear (ASTM D2344), and Single Shear Bearing (ASTM D5691) with extensometer and DIC

- Room Temperature Ambient (RTA)
 - As-processed (AP)
 - Thermally cycled (TC)
- Elevated Temperature Wet (ETW)
 - AP

Measurement Results: V_f

Panel	Desin	% Void Conte	ent	% Fiber Volume		
	Kesm	Avg.	SD	Avg.	SD	
SN001	KCP IP6070	~ 0	0.2	47.3	0.3	
SN002	KCK-IK0070	~ 0	0.4	50.6	0.8	
SN003	ED2400	1.4	0.2	49.7	0.5	
SN004	EF 2400	1.1	0.4	51.5	0.9	
SN005	DTM6	0.4	0.3	47.4	0.3	
SN006	KTWO	~ 0	0.5	48.4	1.2	
SN007	DS 50	1.1	0.2	47.3	0.6	
SN008	ко-30	1.2	0.1	48.6	0.9	

- BRM estimated Vf for 6K and 12K weave architectures to be 50.9% and 52.6%, respectively
 - Nominal thickness of 3.175 mm vs. as-built thickness (3.175 mm to 3.327 mm)
- **Consistent:** $V_f (12K) > V_f (6K)$

Micro-cracking Assessment: Optical Microscopy

- Micro-cracks developed in all panels likely during curing process and cool down
- Micro-cracking observed mainly near the Z-fibers
- Density of micro-cracks increased after thermal cycling
 - In addition to Z-fibers vicinities, cracks distributed within the material, including individual fiber tows
- Developing an imaging technique to measure the cumulative volumes of the micro-cracks within these samples is an ongoing work at NASA

Micro-cracking Assessment: X-Ray CT

Warp

Warp-Z plane cross-section for SN001 a) AP and b) TC material

Weft

Weft-Z plane cross-section for SN001 a) AP and b) TC material

Micro-cracking Assessment: X-Ray CT

Warp-Z plane cross-section for SN006 a) AP and b) TC material

Weft

Weft-Z plane cross-section for SN006 a) AP and b) TC material

Test Results: Tensile Testing (DIC Data)

- Slightly higher stiffness and strength for 6K weave configurations (finer and tighter weave structure)
- Slight change (drop) in stiffness and strength as a result of thermal cycling

Stress (MPa)

Test Results: Tensile Testing (Strain Gage)

- Higher standard deviation in modulus data attributed to strain measurements using strain gages (~9 mm x ~5 mm) and large RUC (16.8 x 7.6 mm and 19.1 x 8.5 mm) of the materials
- Standard deviations in modulus values using extensometer vs. gage data for ETW tests further support above hypothesis

Test Results: Compressive, SBS, and Bearing Strength

- 6K weave configuration consistently performed better
- ~50% reduction in strength (compression vs. tension)
- Higher standard deviation in compression anticipated to raise from narrower and shorter coupon geometry in ASTM 6641 vs. ASTM 3039

Material Modeling Approaches: FE Based

- Finite element (FE) based approach
 - Digimat FE

Material Modeling Approaches: MSGMC

- Multiscale Generalized Method of Cells (MSGMC)
 - Developed by NASA GRC
 - Semi-analytical (efficient)
 - Provides homogenized, nonlinear constitutive response of composites

MSGMC RUCs and sub-cells across an arbitrary number of length scales

MSGMC 3D orthogonal woven representation

Property Computations

• AS4/RTM6 material system was selected for modeling and analysis

- Both 6K and 12K
- RTA

		Material Parameter/Property									
Configuration	Method	E ₁₁ (MPa)	E ₂₂ (MPa)	E ₃₃ (MPa)	v ₁₂	v ₁₃	v ₂₃	G ₁₂ (MPa)	G ₁₃ (MPa)	G ₂₃ (MPa)	
AS4 6K/ RTM6 (SN005)	MSGMC	61,977	60,096	9,257	0.059	0.444	0.446	3,385	2,253	2,261	
	Digimat-FE	61,833	59,907	9,691	0.056	0.443	0.429	3,283	2,450	2,471	
	%Δ	-0.2	-0.3	4.7	-5.1	-0.2	-3.8	-3.0	8.7	9.3	
AS4 12K/ RTM6 (SN006)	MSGMC	56,803	57,018	8,885	0.059	0.444	0.449	3,207	2,136	2,180	
	Digimat-FE	56,400	57,500	9,308	0.052	0.448	0.425	3,029	2,369	2,420	
	%Δ	-0.7	0.8	4.8	-11.9	0.9	-5.3	-5.6	10.9	11.0	

- Good agreement between Digimat-FE and MSGMC
- Largest difference of 12% for v12

Computed Properties vs. Test Data

- Only test data available: Warp (E11)
- Models and analysis did not include (effect of) micro-cracks

	Panel#	Str	ain Gage	(from 5 Tes	sts)	DIC (from 2 Tests)				
Condition		E ₁₁ (GPa)	SD	%∆to MSGMC	% ∆ to Digimat- FE	E ₁₁ (GPa)	SD	%Δto MSGMC	% ∆ to Digimat-FE	
RTA (AP)	SN005	57.6	3.3	7.5	7.3	57.1	0.2	8.6	8.4	
	SN006	53.5	4.7	6.2	5.4	50	0.6	13.7	12.9	
RTA (TC)	SN005	57.9	4	7	6.8	54.5	0.9	13.7	13.4	
	SN006	48.1	3.4	18	17.2	48.2	0.4	17.9	17.1	

- Analysis over-predicted (averaged) test values (Strain measurement technique (strain gage vs. DIC) made a difference)
- Possible sources for the differences:
 - Ignoring micro-cracks
 - Not accounting for irregularities in weave pattern (idealized modeling)

Summary

- Eight 3D woven composite panels were fabricated and subjected to material characterizations and testing
 - The 3D orthogonal weave included 6K and 12K yarn configurations and four different resin systems
- Optical microscopy and X-Ray CT revealed the presence of micro-cracks in the as-processed materials
 - Thermal cycling increased micro-crack density in all eight panels
- No significant change in tensile performance of the materials as a result of thermal cycling or ETW environment (Fiber dominated, warp direction)
- Analysis over-predicted the test results by ~5% to ~13% for the AP materials and the difference increased as the material underwent thermal cycling

Acknowledgements

- X-Ray CT support by Grace Fischetti and Dr. Justin Jones from Materials Branch at NASA Goddard Space Flight Center
- 3D weave design and fabrication by Mr. Hakan Gokce and Mr. Leon Bryn at Bally Ribbon Mills, Inc.

