National Aeronautics and Space Administration

Availability Estimation for Facilities in Extreme Geographical Locations

Gerd M. Fischer, PhD, NASA Goddard Space Flight Center

Oluseun Omotoso, Morgan State University Guangming Chen, Morgan State University John W. Evans, PhD, NASA HQ

SAFETY and MISSION ASSURANCE

SAFETY and MISSION ASSURANCE DIRECTORATE Code 300

www.nasa.gov

- Project Objectives
- McMurdo Ground Station
- Seasonal accessibility of McMurdo Station
- Travel restriction at McMurdo Station due to weather
- Operational Availability Simulation Results
- Summary

Project Objectives

- Create a System Model in ReliaSoft BlockSim and perform Monte-Carlo Simulations for Operational Availability
- Consider special conditions for extreme location
 - 1. Winter access closure to Antarctica
 - 2. Accessibility restriction of Radome and Building 71 due to weather based travel restrictions at McMurdo Station
- Recommendations for Sparing and Maintenance Planning and RCM implementation

Benefits: Cost effective preventive maintenance and predictive maintenance to ensure availability

Location

SAFETY and MISSION ASSURANCE DIRECTORATE Code 300

McMurdo Station - Radome and JSOC

Access Road to Radome and Building 71

SAFETY and MISSION ASSURANCE DIRECTORATE Code 300

Statistical Distribution for re-stock probability

No possibility to re-stock spares during Antarctic winter from April to November

Is taken into account in BlockSim simulation with statistical distribution for re-stock probability

Assumptions:

- During 6 summer months (50% of the spare parts) spares are provided within 500 hours (21 days)
- During winter closure constant probability density of wait time to provide spares (0 hours to ~ 4380 hours ≈ 6 months)

Creating Distribution for re-stock probability

Weather Conditions at McMurdo

Limited access to Radome / Building 71 due to local travel restrictions based on severe weather conditions

- > Is taken into account in BlockSim simulation in repair crew availability
- Travel restrictions are based on three factors
 - Wind
 - Wind Chill
 - Visibility
- Created histogram for weather induced travel restrictions based on wind speed and calculated wind chill data at Radome / Building 71
- Approximated histogram with 2-parameter Weibull distribution

Crew Availability at Radome / Building 71

• Repair Crew Availability for Building 71 and Radome modeled with Weibull Distribution with beta = 1.25 and eta = 30

High Level Reliability Block Diagram

McMurdo System

For missions that use S-Band and X-Band; not all missions require X-Band

Monte Carlo Analysis Summary

System Overview				
General	_			
Mean Availability (All Events):	0.8951			
Std Deviation (Mean Availability):	0.0611			
Mean Availability (w/o PM & Inspection):	0.8951			
Point Availability (All Events) at 87600:	0.8937			
Reliability(87600):	0			
Expected Number of Failures:	249.5587			
Std Deviation (Number of Failures):	21.2275			
MTTFF:	312.9974			
System Uptime/Downtime	_			
Uptime:	78412.271			
CM Downtime:	9187.7295			
Inspection Downtime:	0			
PM Downtime:	0			
Total Downtime:	9187.7295			
System Downing Events	_			
Number of Failures:	249.5587			
Number of CMs:	249.5587			
Number of Inspections:	0			
Number of PMs:	0			
Total Events:	249.5587			

Block Failure Criticality / Downtime Ranking

- does not take redundancy into account

Block Failure Criticality Summary		Block Downtime Ranking		
Block Name (Diagram)	RS FCI	Block Name (Diagram)	Block Downtime	Contribution to Downtime if not in redundant configuration
Receiver, PCI Track, S-Band {22000_Multichannel Autotrack Receiver}	2.40%	Receiver, PCI Track, S-Band {22000_Multichannel Autotrack Receiver}	904.9	9.85%
Receiver, PCI Track, 720 MHz {22000_Multichannel Autotrack Receiver}	2.39%	Receiver, PCI Track, S-Band {22000_Multichannel Autotrack Receiver}	880.8	9.59%
Receiver, PCI Track, S-Band {22000_Multichannel Autotrack Receiver}	2.37%	Receiver, PCI Track, 720 MHz {22000_Multichannel Autotrack Receiver}	622.4	6.78%

One run Snapshot for all Blocks

SAFETY and MISSION ASSURANCE DIRECTORATE Code 300

Lessons Learned

- Performed Operational Availability Analysis for McMurdo Ground Station System
- Commercial availability simulation programs are not designed to deal with such special cases, but workarounds can be created, e.g. distribution or re-stock probability
 - Re-stock probability was not conditional to Antarctic seasons
- Custom-built availability simulation programs might not be cost-effective due to the low number of applications
- Essential to collect constraint information for maintenance operations, e.g. times and durations of travel restrictions to Radome / Building 71
 - Travel restriction data should be recorded and made available
- Operational Availability Simulation can help to set performance expectations for NASA Ground Stations
- Operational Availability Simulations can only be as good as the data used for input to the simulation

