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Abstract

3DHZETRN-v2 includes a detailed three dimensional (3D) treatment of neutron/light-ion
transport based on a quasi-elastic/multiple-production assumption allowing improved agree-
ment of the neutron/light-ion fluence compared with results of three Monte Carlo (MC) codes
in the sense that the variance with respect to the individual MC results is less than the variance
among the MC code results. The current numerical methods are no longer the main limita-
tion to HZETRN code development and further changes in the nuclear model are required.
In a prior study, an improved quasi-elastic spectrum based on a solution of the transport ap-
proximation to nuclear media effects showed promise, but the remaining multiple-production
spectrum was based on a database derived from the Ranft model that used Bertini multiplic-
ities. In the present paper, we will implement a more complete Serber first step into the
3DHZETRN-v2 code, but we retain the Bertini-Ranft branching ratios and evaporation multi-
plicities. It is shown that the new Serber model in the 3HZETRN-v2 code reduces the variance
with individual MC codes, which are largely due to nuclear cross section model differences.

1. Introduction

Space radiation transport codes, such as the deterministic HZETRN code developed by NASA, require
accurate nuclear cross section databases as input. But these databases did not exist during the first
decade in which HZETRN was being developed. Even the perturbative approach developed for transport
solutions to the Boltzmann equation within the straight-ahead approximation was based on simple nuclear
data sets for 1 GeV protons interacting with tissue (Wilson and Lamkin, 1974). In that study, a straight-
ahead Monte Carlo (MC) result utilizing the same data set (Wright et al., 1969) provided motivation for
the development of more useful methods based on numerical procedures. A more complete study based
on coupling of the neutron and proton field solutions (Lamkin, 1974; Wilson and Lamkin, 1975) resulted
in a more computationally efficient solution to nucleon transport in extended materials than the more
relatively inefficient MC methods. In addition to the use of numerical perturbation theory in nuclear
transport algorithms, an even more efficient numerical marching procedure was derived for the transport
of heavy-ions (Wilson, 1977).

In the mid-1970s, nuclear multiple scattering theory emerged as a theoretical basis for generating
a database for heavy-ion interactions (Wilson, 1975; Wilson and Costner, 1975). An analytic solution
of the heavy-ion perturbation transport theory was derived by employing a Rudstam related formalism
(Silberberg et al., 1976) which was used to analyze high-energy/heavy-ion (HZE) experiments in extended
targets (Wilson et al., 1984). Despite these developments, a more complete interaction database for
nucleons and light-ions was needed to complete the description of HZE transport, apart from the effects
of mesons. Moreover, a nucleonic transport marching algorithm that was more compatible with the HZE
marching code was highly desirable, but such developments needed a more complete nucleon interaction
database.

The work of Ranft (1980) that was used in early versions of FLUKA was an important functional set for
developing nucleon transport marching procedures. In search of an improved nucleon interaction database,
the Ranft spectral distributions were used with the direct (cascade) and evaporation multiplicities taken
from Bertini (Anon., 1968; Bertini et al., 1969, 1972). A study of the transport procedure convergence that
used a realistic interaction cross section (Wilson et al., 1988a) provided some confidence in the marching
procedure (accuracy to < 1 percent difference for space boundary conditions compared with an analytic
solution using realistic interaction). This verified marching procedure was then employed with the newly
derived modified Ranft cross sections (Wilson et al., 1987a). However, these cross sections were not found
to be in good agreement with MC results from the newly developed High Energy Transport Code (HETC)
(Alsmiller, 1967). It was surmised that the Ranft formalism did give an adequate representation of the
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evaporated and the constituent recoil nucleons but lacked an adequate representation of the quasi-elastic
scattered nucleons. Hence, a crude approximation of the quasi-elastic contribution was added, which
yielded improved agreement with the MC evaluations (Wilson et al., 1987a). This early work is recounted
in Wilson et al. (1987a, 1988a,b, 1991), where this preliminary database was used for numerical algorithm
studies. It further proved to be adequate for application to space systems design, where uncertainty was
mainly associated with solution procedures that used the straight–ahead approximation rather than the
nuclear database.

A progression of practical solutions for nucleon transport–from the simple straight-ahead approxima-
tion to increasingly complex formalisms–allowed for early implementation of high-performance computa-
tional procedures based on marching algorithms (Wilson et al., 1974, 1977, 1986, 1988a,b, 1991, 1994,
2006). The next step in transport code development was to represent the backward propagating compo-
nents in a lowest order approximation (Clowdsley et al., 2000, 2001). This was accomplished by isolating
the isotropic component of the modified Ranft cross sections into forward and backward propagating
components. It was found that this code generally produced results for dosimetric quantities that agreed
with MC codes to the extent that the MC codes agreed among themselves (Heinbockel et al., 2003, 2009;
Slaba et al., 2010). This treatment represents the first step in a full three-dimensional (3D) code.

Subsequent development toward a 3D solution was accomplished by solving the isotropic distribu-
tion along a number of N-rays using the forward/backward propagator along each ray (Wilson et al.,
2014a-c). This forward/isotropic solution showed increased accuracy as compared with MC codes. These
codes produce particle field distributions that agreed with three MC codes (Geant4, FLUKA, PHITS)
to the degree that the three MC codes agree among themselves (Wilson et al., 2014a-c). Clearly, the
expanded treatment of the interaction cross sections (from straight-ahead to forward/backward to for-
ward/isotropic) and a more complete treatment of the angular dependence would further improve the
results.

The next progression was to maintain the quasi–elastic term as the only straight–ahead component
and treat the constituent recoil term with the Ranft angular factor while maintaining the evaporation
products as isotropic. There were large differences in comparison with MC, and it was surmised that the
quasi–elastic component contributed to the discrepancy and needs improvement (Wilson et al., 2017a).
This last step prompted a reexamination of the quasi-elastic term and a new approach was identified. An
intra-nuclear transport theory (Wilson et al., 1986) was introduced to provide an independent formalism
for the quasi-elastic scattering (Wilson et al., 2017b). It was clear that the older ad hoc approach to
the quasi-elastic term provided a less than ideal version of nucleon quasi-elastic scattering and provided
motivation to develop an even more complete and accurate formalism.

In the present report, we will extend the neutron/light-ion 3D transport beyond the Bertini/Ranft
approximation by improving the Serber first step (Serber, 1947) in which a more complete treatment of
3D effects in the 3DHZETRN-v2.1 code is incorporated. Development of the improved Serber is achieved
while facilitating convergence studies of differing shield geometries and materials (Wilson et al., 2016;
Slaba et al., 2016). In addition to functional changes within the nuclear model, the 3D code has a
selectable angular convergence parameter for the lower energy neutrons and light-ions that need broader
angular extension. Furthermore, the quasi-elastic/multiple-production model of the quasi-elastic and
multiple production terms will be expanded by replacing the Bertini/Ranft multiple-production terms
with values from the Serber first step. These advances will use available MC codes, Geant4 (Agostinelli
et al., 2003; Geant4 Collaboration, 2012a,b), FLUKA (Fasso et al., 2005; Battistoni et al., 2007), and
PHITS (Sato et al., 2006, 2013; Niita et al., 2006), to judge the accuracy of these developments, especially
with regard to their 3D aspects. The options in MC usage are discussed in Wilson et al. (2014a,b). Upon
completion, the 3DHZETRN-v2.1 code will be validated against spaceflight data, as used in spacecraft
design (Verhage et al., 2002), and integrated into the web-based OLTARIS software system (Singleterry
et al., 2011) for general testing.
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2. Status of 3DHZETRN-v2 Code

The relevant transport equations are the coupled linear Boltzmann equations derived on the basis of
conservation principles (Wilson et al., 1977, 1991) for the differential fluence density, φj(x,Ω, E) in units
of 1/(MeV-cm2) of type j particles at position x (g/cm2), angle Ω in steradians (sr), and kinetic energy,
E (MeV/n),

B[φj(x,Ω, E)] =
∑
k

∫
σjk(Ω,Ω′, E,E′)φk(x,Ω′, E′)dΩ′dE′ − σj(E)φj(x,Ω, E), (1)

where B[φj(x,Ω, E)] is the Boltzmann transport operator (Wilson et al., 1991, 2005) given as

B[φj(x,Ω, E)] = Ω · ∇φj(x,Ω, E)−A−1j
∂

∂E
[Sj(E)φj(x,Ω, E)],

where σj(E) is the total macroscopic cross section, σjk(Ω,Ω′, E,E′) is the macroscopic double differential
cross section evaluated in the medium, and Sj(E) is the stopping power ( Sn(E) vanishes for neutrons
j = n) for particle j of mass Aj . The macroscopic cross section is found by multiplying the microscopic
cross section (cm2) by the number of atoms per gram of the target; σmacro(E) = σmicro(E)ρtarg, where
ρtarg = NA/mw; mw is the molecular weight of the target expressed in units of (g/mol), and NA is
Avogadro’s number (atoms/mol). Therefore, the macroscopic cross section has units of cm2/g, which
is consistent with the standard use of the areal density of g/cm2 for a position vector, x, employed
in radiation transport calculations. The double differential cross section, σjk(Ω,Ω′, E,E′) in units of
cm2/(g-MeV-sr), describes reactions for which a particle of type k with kinetic energy E′ and direction
Ω′ yields a particle of type j with kinetic energy E in direction Ω.

Equation (1) is subject to a boundary condition over the enclosure of the solution domain. At the
present level of development, the double differential interaction cross-sections are approximated by a for-
ward directed quasi-elastic (qe) component, an angular dependent multiple-production (mp) component
(Wilson et al., 2017b), and additional evaporative de-excitation and elastic scattering term, which is
referred to as remainder (rem):

σjk(Ω,Ω′, E,E′) =σjk,qe(Ω,Ω
′, E,E′) + σjk,mp(Ω,Ω

′, E,E′) + σjk,rem(Ω,Ω′, E,E′)

=σabs
k (E′)[Fjk,qe(E,E

′)δ(Ω−Ω′) + Fjk,mp(E,E
′)gR(θ,E,AT )] (2)

+ σjk,rem(Ω,Ω′, E,E′),

where σabs
k (E′) is the total absorption cross section, and gR(θ,E,AT ) is the Ranft (1980) angular factor.

The first term of equation (2) represents the quasi-elastic multiply scattered component (to be defined
in the next section) that is assumed to travel straight forward with spectrum Fjk,qe(E,E

′). The second
term is for those nucleons and other light-ions that result from intra-nuclear collisions of the quasi-elastic
scattered primary particles with the target nuclear material and are associated with broadly dispersed
lower energy particles produced with spectral distributions Fjk,mp(E,E

′)gR(θ,E,AT ). The third term
includes target fragments from de-excitation processes and elastic scattering as represented by Chew’s
impulse approximation (Chew, 1951), a phenomenological S-wave for neutrons that provides an adequate
representation of the neutron KERMA (Wilson, 1973; Wilson et al., 1991). (Future improvements are
being planned (Werneth et al., 2017). The angular dispersion in the multiple-production term at each
energy is taken from the Ranft (1980) angular factor used in early versions of FLUKA:

gR(θ, E,AT ) =

{
NRe

−θ2/λR , 0 ≤ θ ≤ π/2
NRe

−π2/4λR , π/2 < θ ≤ π.
(3)
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NR is an energy dependent normalization factor, AT is the target nuclear mass number, and the Ranft
width factor is

λR = (0.12 + 0.00036AT )/E, (4)

where cos θ = Ω ·Ω′. Note that the normalization is
∫
gR(θ,E,AT )dΩ = 1.

In recent work (Wilson et al., 2017b), the Bertini/Ranft quasi-elastic (qe component of equation (2))
term was replaced with results from a Serber nuclear transport model (Serber, 1947) yielding improved
results. The nucleonic quasi-elastic differential cross section was found from

σjk,qe(E,E
′) =

2π

πR2
σabsk (E′)fjk,qe

∫
φms[z(b), E,E

′]bdb, (5)

where z(b) is the target chord at impact parameter b 3 {0, R}, fjk,qe = Njk,qe/
∑
lNlk,qe is the Bertini/Ranft

branching ratio for the quasi-elastic component (Wilson et al., 1988a), and φms(z, E,E
′) is the spectrum

of the multiply-scattered primary nucleon of initial energy E′ solution from nuclear transport theory
(Wilson et al., 1988a, 2017b).

The second term for multiple-production (mp) in equation (2) represents highly spectrally dispersed
particles of lower energy (Wilson, 1977; Wilson et al., 1988a) with energy spectral components given as
modifications of Ranft (1980) in the current version of 3DHZETRN-v2 (Wilson et al., 2017a,b) as

σjk,mp(E,E
′) = σabsk (E′)

3∑
i=2

Njk,i

(
α−1i e−E/αi

1− eE′/αi

)
, (6)

where i is related to the Ranft spectral components with spectral parameter αi (Wilson et al., 1991).
A more fundamental formulation of multiple production will be the focus of the present study. The de-
excitation spectrum, where Njk,1 is the evaporation multiplicity with parameters from the Bertini/Ranft
model (Wilson et al., 1988a, 1991), and elastic scattering contributions are included in σjk,rem:

σjk,rem(Ω,Ω′, E,E′) = σabsk (E′)
Njk,1

4π

(
α−11 e−E/α1

1− eE′/α1

)
+ σjk,el(Ω,Ω

′, E,E′). (7)

Wilson et al., 2017b found the Bertini/Ranft quasi-elastic term from reference (Wilson et al., 1988a) to
be overly simplified and implemented a transport based nuclear interaction model (Wilson et al., 1986)
to give a direct estimate of the quasi-elastic spectrum (equation (5)). However, the Bertini cascade
multiplicities, branching ratios, and Ranft parameters for the multiple-production term were maintained
(Wilson et al., 2016). The resulting improvements in that study encouraged the authors to replace the
multiple-production cross-sections in equation (6) with a more fundamental evaluation using the transport
nuclear model.

In recent work, the forward and isotropic fractions were arranged into a bi-directional forward/backward
transport algorithm with the first order isotropic term treated as a directional dependent perturbation
(Wilson et al., 2014a, 2015), which showed improvement over prior bi-directional methods (Clowdsley et
al., 2000, 2001; Heinbockel et al., 2003, 2009). In a more recent study, the authors used a straight-ahead
approximation for a Serber quasi-elastic term and the Bertini/Ranft multiple-production term of equation
(6) as an angular dependent perturbation using equation (3). In the present study, the Bertini/Ranft
multiple-production term is replaced with an evaluation of the corresponding multiple-production (target
constituent recoil) term using a transport nuclear model (Wilson et al., 1986, 2017b) based on the Serber
proposal (Serber, 1947).
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3. A Dynamical Theory of the Serber Model

The Serber model has been used to develop stochastic models of nuclear reactions to generate nuclear
data for nucleon transport codes (Goldberger, 1948; Metropolis et al., 1958; Bertini, 1969). The Serber
model is implemented herein as a linear Boltzmann equation (Wilson et al., 1986, 2017b) derived on
the basis of conservation principles for the fluence density of nucleons, φ(z, E,E0) (nucleons/fm2-MeV),
moving through nuclear matter with initial energy E0 at depth z = 0 fm to energy E (MeV) given at
lowest order as a one dimensional approximation by (Wilson et al., 1986, 2017b)

∂zφ(z, E,E0) + ρσm(E)φ(z, E,E0) =

∞∫
E

ρσ(E′)fm(E,E′)φ(z, E′, E0)dE′. (8)

ρ is the nucleon density within nuclear matter (ρ= 0.1222 fm−3), σm(E) is the media modified total
two-nucleon cross-section, σ(E′) is the free two-body total cross section, and fm(E,E′) represents the
media modified spectrum resulting from processes by which a nucleon with energy E′ interacts with
nuclear matter and two nucleons emerge from the interaction site with a spectral distribution of energy
E (Wilson et al., 2017b). The resulting transport is modified within the region of nuclear media in which
the target nucleus is represented by a liquid drop of density ρ (Joos, 1958) with a potential well depth, V0
(32 MeV). The interior nucleons are distributed in kinetic energy according to the Fermi-Dirac function
in phase space up to the Fermi maximum energy of εF (24.5 MeV), which is the top level of the Fermi
sea. The Fermi energy distribution is given as

D(ε) =
3

2εF

√
ε

εF
. (9)

Hence, the nucleons of the nuclear media are in states of various kinetic energies, 0 < ε < εF , below the
binding energy of the least bound nucleon VB (7.5 MeV). Note that the lowest energy transfers, ∆, given
by εF − ε are blocked by the Pauli exclusion principle and that collisions on the range of εF − ε < ∆ < V0
contribute to nuclear excitation. The solution domain in equation (8) is over {εF , E0} where E0 is the
initial energy of the nucleon at z = 0. The spectral distribution of the resulting nucleonic field at various
locations is evaluated by solving equation (8).

3.1. The Interaction Parameters

The differential cross section of free nucleons for producing a nucleon of energy E from the interaction
by a nucleon of energy E′ is further discussed in Wilson et al. (1986, 1991) and approximated by the free
space isotopic averaged two-nucleon cross sections σ = 1

2 (σpp + σpn) as

σ(E,E′) = σ(E′)

[
B(E′)e−B(E′)(E′−E) +B(E′)e−B(E′)E

]
1− e−B(E′)E′

= σ(E′)f(E,E′)

= σe(E,E
′) + σr(E,E

′)

= σ(E′)[fe(E,E
′) + fr(E,E

′)] = σe(E,E
′) + σr(E,E

′) (10)

where σ(E′) is the total free two nucleon cross section, fe(E,E
′) is the spectrum of the scattered nucleon,

and fr(E,E
′) is the spectrum of the nucleon recoiling from its “resting” position. The slope parameter

B(E′) is nearly energy independent above 400 MeV and is approximated by (Wilson et al., 1991)

B(E′) ≈ 2mc2 10−6[3.5 + 40e−E
′/200], (11)
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where mc2 is the nucleon rest energy (taken as 938 MeV in the current example). Note that the first
term is accounting for the elastically scattered spectrum of the incoming nucleon from the struck nucleon,
which is labeled as fe(E,E

′) in equation (10). The reactive processes are ignored. The fe(E,E
′) term

dominates for E on the order of the incident energy E′. The second term, labeled as fr(E,E
′), provides

the spectrum of the target recoil nucleon and dominates the scattering for small E. The free interacting
nucleonic cross sections are assumed to be approximately correct in nuclear matter with modifications
by nuclear binding (within nuclei) and Pauli exclusion effects. (Additional discussion of nuclear binding
effects is summarized by Wilson (1973)). The two-body nucleonic cross sections have been extensively
studied and are presented in Fig. 1 (Olive et al., 2014; Werneth et al., 2017). The isotopic averaged
cross sections are presently used in equation (10). The two-body cross sections are modified by the Pauli
exclusion principle affected by the allowable phase space in nuclear matter. Differential scattering from
a free nucleon is given by equation (10), and the total scattering cross section is related to the elastic
scattering cross section σe(E,E

′) of the projectile as

σ(E′) =

E′∫
0

σe(E,E
′)dE. (12)

Note that the σ(E′) is inversely related to the mean free path, which will be modified since Pauli blocking
will restrict the phase space of interaction.

Phase space must be available with the nuclear medium for scattering to occur, and the final states
must lie above the Fermi sea, E > εF . This effect of Pauli blocking is approximated by recognizing that
the elastic differential cross section in equation (10) needs modification to account for those regions of
phase space that are filled by nuclear matter that are not available under Pauli exclusion. Hence, a Pauli
modified differential cross section within the Fermi sea is approximated as

σm(E,E′) =σ(E′)f(E,E′)Θ[E′ − (εF − ε)− E]Θ[E − εF ]

=σ(E′)fm(E,E′) = σem(E,E′) + σrm(E,E′), (13)

where the Θ-functions (unit step functions) are phase space modifications of the spectral distribution,
and ε is the initial kinetic energy of the nucleon within the Fermi sea. Note that the recoil nucleon must
have energy above the Fermi energy, εF , and the maximum energy of E is E′ − (εF − ε), where (εF − ε)
is the energy required to raise the nucleon of nuclear matter of energy ε to be above the Fermi sea. The
total cross section for interaction with a nucleon of energy ε in nuclear matter becomes

σm(E′) =

E′∫
0

σ(E′)fe(E,E
′)Θ[E′ − (εF − ε)− E]Θ[E − εF ]dE

= σ(E′)

E′−(εF−ε)∫
εF

fem(E,E′)dE

= σ(E′)

[
e−B(E′)(εF−ε) − e−B(E′)(E′−εF )

1− e−B(E′)E′

]
= σ(E′)FP (E′, ε). (14)

The Pauli blocking factor for a nuclear constituent of initial energy ε is given by the function of the
incident energy E′ as

FP (E′, ε) =
e−B(E′)(εF−ε) − e−B(E′)(E′−εF )

1− e−B(E′)E′
, (15)
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Figure 1: Total nucleonic two-body cross sections (Olive et al., 2014; Werneth et al., 2017) for proton-
proton (pp) and proton-neutron (pn) reactions. Experimental data from the Particle Data Group (PDG)
are represented with dots and error bars and were extracted from Olive et al. (2014). Fits to the data
are taken from Werneth et al. (2017) and are represented by solid lines.
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where FP (E′, ε) is valid over the domain of positive values. Thus, (εF − ε) < (E′ − εF ) indicates that
E′ > εF and εF > ε so that E′ = 2εF − ε is the boundary where the inequalities are satisfied. The
fraction of constituent nucleons of nuclear matter with energy ε is D(ε)dε, and the average bound nucleon
blocking is

FP (E′) =

εF∫
εL

D(ε)dε
e−B(E′)(εF−ε) − e−B(E′)(E′−εF )

1− e−B(E′)E′

=

e−B(E′)εF
∞∑
n=0

Cn − C0e
−B(E′)(E−εF )

1− e−B(E′)E′
, (16)

where

Cn =
[B(E′)εF ]n

n!(1 + 3n
2 )

[
1−

( εL
εF

)n+3/2
]
.

The lower limit on the integral over ε is then εL = (2εF − E′)Θ(2εF − E′). The result is shown in
Fig. 2. Also in Fig. 2 for comparison are the semi-empirical values we have used previously (Wilson et
al., 1987a,b, 2017b) based on the work of Dymarz and Kohmura (1983). The two-body isotopic averaged
cross section, σ(E′), and the modified cross section, σm(E′), are shown in Fig. 3. Note that blocking
results in zero scattering on/below the Fermi surface.

3.2. Solving the Nuclear Transport Equation

The differential operator of equation (8) can be inverted by using an integrating factor of µ(z, E) =
eρσm(E)z to yield a Volterra integral equation that describes the transport process given by

φ(z, E,E0) = φ0(z, E,E0) +

z∫
0

e−ρσm(E)(z−z′)
∞∫
εL

ρσm(E,E′)φ(z′, E′, E0)dE′dz′ (17)

that may be solved as a perturbation series (Lamkin, 1974; Wilson and Lamkin, 1974, 1975; Wilson et
al., 1986). The first term consists of the uncollided particle beam as

φ0(z, E,E0) = e−ρσm(E)zφ(0, E,E0), (18)

where the boundary condition, φ(0, E,E0), is assumed herein to be a mono-energetic beam at the initial
energy E0 so that φ(0, E,E0) = δ(E − E0), which is the only term of the series solution with E ≥
E0 − (εF − ε). Higher order corrections can be found by iterating the successive terms, which forms a
perturbation series solution of equation (17) where successive terms are given by (Wilson and Lamkin,
1974, 1975)

φn(z, E,E0) =

z∫
0

e−ρσm(E)(z−z′)
E0∫
εL

ρσm(E,E′)φn−1(z′, E′, E0)dE′dz′, (19)

for E > 2εF − ε. Note, φn(z, E,E0) is null for E < εF and E > E0− (εF − ε), where ε is the initial energy
of the struck nucleon for n > 0. The lower limit on the energy integral will be labeled as εL and is equal
to E so long as E > (2εF − ε), as collisions at lower energies would require scattering into the Fermi sea
and are not allowed under the Pauli Principle. The first correction (first perturbation) to the uncollided
primary beam term in equation (18) is found by substituting φ0(z, E,E0) into the integral term on the

8



Figure 2: Pauli blocking factor for a nucleon moving through nuclear matter with energy E0 in the
present nuclear model given by equation (16) and empirical values from Wilson et al. (1987a,b) based on
Dymarz and Kohmura (1983).
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Figure 3: The free two-body cross section (mb) in nuclear matter without the Pauli blocking factor and
the Pauli modified cross section as determined by equation (16).
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right side of equation (19) as given by

φ1(z, E,E0) =

z∫
0

e−ρσm(E)(z−z′)
E0∫
εL

ρσm(E,E′)φ0(z′, E′, E0)dE′dz′

=

(
e−ρσm(E)z − e−ρσm(E0)z

ρσm(E0)− ρσm(E)

)
ρσm(E,E0), (20)

for E on the interval {εF , E0 − (εF − ε)} as required by the Pauli blocking factor (see equation (13))
and null otherwise. (Note, ρσm(E,E0) contains the factor Θ[E0 − (εF − ε)]Θ[E − εF ].) The fraction of
nucleons of nuclear matter with energy ε is given by equation (9), and the statistical mean (average over
ε) of equation (20) is given by

ψ1(z, E,E0) =

εF∫
εL

D(ε)dε

(
e−ρσm(E)z − e−ρσm(E0)z

ρσm(E0)− ρσm(E)

)
ρσm(E,E0)

=

[
1−

( εL
εF

)3/2](e−ρσm(E)z − e−ρσm(E0)z

ρσm(E0)− ρσm(E)

)
ρσm(E,E0). (21)

The transition of the step function Θ[E0 − (εF − ε)− E] occurs at

εL = E + εF − E0, (22)

and provides the lower limit, εL, for the integral in equation (21), where the upper limit is εF . Note that
εL is zero when the right side of equation (20) transitions to/from zero, signifying full participation of the
constituent nucleons. The ψ1(z, E,E0) term describes the spectra of the scattered nucleon contained in
the σem(E,E′) term in addition to the spectral distribution of the struck nucleon σrm(E,E0) term. The
first scattering of the incident nucleon is then given by the multiply-scattered component of the primary
nucleon term of equation (13), σem(E,E0), as

ψs1(z, E,E0) =

[
1−

( εL
εF

)3/2](e−ρσm(E)z − e−ρσm(E0)z

ρσm(E0)− ρσm(E)

)
ρσem(E,E0)

=

[
1−

( εL
εF

)3/2](e−ρσm(E)z − e−ρσm(E0)z

ρσm(E0)− ρσm(E)

)

× ρσ(E0)B(E0)
e−B(E0)(E0−E)

1− e−B(E0)(E0)
, (23)

for E on the interval {εF , E0} and null otherwise. The notation σem refers to the quasi-elastic compo-
nent of σm. Similarly, the recoiling nuclear constituent produced by the first scattering is given by the
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σrm(E,E′) term of equation (13) as

ψr1(z, E,E0) =

[
1−

( εL
εF

)3/2](e−ρσm(E)z − e−ρσm(E0)z

ρσm(E0)− ρσm(E)

)
ρσrm(E,E0)

=

[
1−

( εL
εF

)3/2](e−ρσm(E)z − e−ρσm(E0)z

ρσm(E0)− ρσm(E)

)

× ρσ(E0)B(E0)
e−B(E0)E

1− e−B(E0)E0
(24)

for E on the interval {εF , E0} and null otherwise. The graphs of the first quasi-elastic and first recoil
terms are shown in Figs. 4 and 5 for several initial energies E0 of 132, 232, 332, and 432 MeV. Clearly
there are higher order terms for both the multiple scattering of the incident nucleon as it moves through
the nuclear material and the recoiling nuclear constituents being produced. In these higher order terms,
it is assumed that the spectral normalization factor given by N(E0) = 1− e−B(E0)E0 is the same for each
additional term evaluation. These assumptions are helpful in evaluation of higher terms and leaves the
first scattering event exactly evaluated. The second scattered terms are expected to have slight errors,
due to the replacement of 1−e−B(E′)E′ with 1−e−B(E0)E0 , which increases further in higher order terms
(see the Appendix where we demonstrate this error to be somewhat minor). In the following development
we describe a small correction that will give an adequate solution for the higher order terms.

3.3. Multiple Scattering Series

To establish the scattering properties of the nuclear media we only evaluate the σe(E,E
′) terms in

equation (19) for which equation (21) is the lowest order perturbative result. Note, the use of the term
“multiple scattering” herein is more limited than we have used elsewhere (Wilson, 1973, 1974, 1975). In
the present work, multiply-scattering refers to the scattering of the incident nucleon. We now follow the
interactions after the first scattering that generally have further interactions prior to exit through the
nuclear boundary. Energy is redistributed after each collision, which affects subsequent collisions. We
follow the assumption that N(E′) ≈ N(E0) but make a small correction accounting for the redistribution
of energy upon scattering by making a slight downshift in the average energy by setting N(E′) = N(γE0),
where γ is unity for the first term and [0.96 − z/200]n−1 for the nth subsequent terms. The successive
multiple scattering terms under the assumptions discussed in the Appendix coupled with these energy
corrections leads to

φsn(z, E,E0) ≈ [ρσBz]n[E0 − (εF − ε)− E]n−1
e−B(E0−E)

n!(n− 1)! [1− e−BγnE0 ]
n , (25)

which is null except when E is on the interval {εF , E0 − (εF − ε)}. Clearly γ is well approximated by
(0.96 − z/200). Note that this perturbation approach is similar to the perturbation series (Wilson and
Lamkin, 1974, 1975; Lamkin, 1974; Wilson et al., 1986, 2017b). The constituent kinetic energy, ε, is
distributed according to the Fermi-Dirac theory (see equation (9). Assuming σm(E) = σm(E0) = σm
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Figure 4: The Pauli blocking effect on the initial scattering of the projectile nucleon at depth z in nuclear
matter.
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Figure 5: The Pauli blocking effect on the initial recoil of the constituent nucleon at depth z in nuclear
matter.
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and B(E) = B(E0) = B results in

ψsn =

εF∫
εL

D(ε)dε φsn(z, E,E0)

=

εF∫
εL

D(ε)dε [ρσBz]n[E0 − (εF − ε)− E]n−1
e−B(E0−E)

n!(n− 1)! [1− e−BγnE0 ]
n

= [ρσBz]n
e−ρσmze−B(E0−E)

n!(n− 1)! [1− e−BγnE0 ]
n

εF∫
εL

D(ε)dε [E0 − (εF − ε)− E]
n−1

= [ρσBz]n
e−ρσmze−B(E0−E)

n!(n− 1)! [1− e−BγnE0 ]
n In(E,E0) (26)

with the provision that E > εF and

In(E,E0) =
3

(2n+ 1)ε
3/2
F

[
ε
3/2
F (∆ + εF )n−1 − ε3/2L (∆ + εL)n−1

]
+

2∆(n− 1)

2n+ 1
In−1(E,E0), (27)

where ∆ = E0 − E − εF . The lowest order term (n = 1) is given as

I1(E,E0) = 1−
( εL
εF

)3/2
, (28)

which appears in equation (23). In the above, we have described the fate of the incident nucleon and
ignored the two nucleonic components, {p,n}, but the formalism can be extended to include multiple
constituents {p,n} and charge exchange cross sections (Wilson et al., 1991). The complete solution for
the scattered nucleon is given as

ψms(z, E,E0) = ψs1(z, E,E0) + ψs2(z, E,E0) + ψs3(z, E,E0) + . . . . (29)

The full multiple scattering fluence is shown in Fig. 6. Note that the ψ0(z, E,E0) term is the transmitted
incident fluence that results from survival without nuclear interaction contributing to nuclear elastic
scattering (but without the important diffractive components of the usual quantum multiple scattering
series (Wilson, 1974)) and is not part of the present form of the multiple scattering (ms). Furthermore,
the ms multiplicity according to results of equations (26) and (29) is given by

Mms(z, E0) =

E0∫
εF

ψms(z, E,E0)dE, (30)

where we have used ψms(z, E,E0) given by equation (29). The total differential fluence is then

ψS(z, E,E0) = ψ0(z, E,E0) + ψms(z, E,E0), (31)
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Figure 6: The Pauli blocking effect on the multiple scattering of the projectile nucleon at depth z in
nuclear matter.
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and the Boltzmann equation must conserve the total fluence as

E0∫
εF

ψS(z, E,E0)dE = 1 =

E0∫
εF

ψ0(z, E,E0)dE +

E0∫
εF

ψms(z, E,E0)dE. (32)

Thus, the multiple scattered multiplicity is related to the incident fluence and the surviving incident
nucleon as

E0∫
εF

ψms(z, E,E0)dE ≈ 1− e−ρσm(E0)z ≡Mms(z, E0), (33)

where Mms(z, E0) in equation (33) is the correct (physically required) total multiplicity of multiply
scattered nucleons at depth z, and Mms(z, E0) of equation (30) is the multiplicity associated with the
approximate ms solution discussed above (see the Appendix) but with the added γn correction as dis-
cussed. The integral over dE only has non-zero contributions on the interval {εF , E0}. The theoretical
multiplicity from equation (33) is compared to the approximate multiplicity from equation (30), and
examples of spectral errors are provided in the Appendix. The errors in Mms(z, E0) are generally less
than 6 percent difference for energies and penetration depths of current interest. It is clear from the
Appendix that the errors are small for the most important spectral components near the incident energy
at even large penetration depths as governed by the cross section σe(E,E0). At the higher penetration
depths, the energy further degrades because of the higher number of collisions. Note that the limitation
for E on the interval {εF , E0} is clearly apparent in Fig. 6 as observed with the low-energy gap for
E < εF and the high-energy roll-off for E0 − εF < E < E0. Fewer constituent nucleons at the top of the
Fermi sea generally contribute to the scattered fluence as E → E0; eventually, Pauli exclusion precludes
constituent contributions and the fluence spectra falls to zero. We will subsequently discuss the inclusion
of these results in the description of the nuclear reactions. In application, equation (29) will only require
the branching ratios of the nucleonic component. In the present work, the branching ratios from the
Bertini/Ranft model are used (Wilson et al., 1988b).

3.4. Multiple Recoil Series

Next, the multiple recoil series is obtained by employing a methodology that is analogous to the
multiple scattering series derivation. The first constituent recoil term results from collision of the initial
nucleon of energy E0, as given by the recoil component of σm term of equation (21), which is labeled herein
as σrm(E,E0) . The energy of the recoiling nucleons is low and peaked at energies just above the Fermi
energy εF but declines at higher energies as e−B(E0)E . Subsequent recoils produced by these recoiling
nucleons decline even more rapidly (Clowdsley et al., 2000) as approximately e−nB(E0)E with diminished
contributions to the recoil spectra (but as one can demonstrate, they make important contributions to
nuclear excitation).

The main recoil terms are those produced by interaction of the multiply-scattered incident nucleon
with constituents of energy ε providing a contribution to the multiple recoil series (Wilson et al., 1986).
Assuming σm(E) ≈ σm(E0) ≡ σm and B(E) = B(E0) = B as before, the results are approximately given
by

φrn(z, E,E0) =

z∫
0

e−ρσm(z−z′)

E0−(εF−ε)∫
E

ρσmBe
−BE

1− e−BγnE0
φsn−1(z′, E′, E0)dE′dz′, (34)

where the φsn−1(z, E,E0) are the prior terms of the multiple scattering series as given in equation (25).
Equation (34) represents the recoiling constituent nucleon from the collision of the scattered primary
nucleon. All other recoil terms are neglected as being inferior to results from equation (34) (Wilson et al.,
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Figure 7: The theoretically correct multiplicity compared to that obtained from the corrected spectral
distributions for E0 of 132, 532 and 1032 MeV as a function of penetration depth z (fm).
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1986). Results in equation (34) produce the largest cross terms in the series solutions of the cross terms
between σe(E,E

′) and σr(E,E
′). The first multiple recoil term is given exactly from equation (20) by

φr1(z, E,E0) = ρσzBe−ρσmz
e−BE

1− e−BE0
, (35)

and the higher order terms can be evaluated analytically under present approximations. The result is

φrn(z, E,E0) = [ρσz]ne−ρσmzBe−B(E+εF−ε)
[
ân−2[E0 − (εF − ε)− E]

n!(n− 2)! [1− e−BγnE0 ]
n

]
(36)

for E on the interval {εF , E0 − (εF − ε)} and null otherwise. ân(t) are special functions used in the
nucleon-nucleus model by Wilson et al. (1986) and have recurrence relations given by

ân(t) = nân−1(t)− tne−t, (37)

with
â0(t) = 1− e−t. (38)

Treating the constituent kinetic energy, ε, as distributed according to the Fermi-Dirac theory (see equation
(9)) results in

ψrn(z, E,E0) =

εF∫
εL

D(ε)dε φrn(z, E,E0)

≈
[
1−

( εL
εF

)3/2]
(ρσz)ne−ρσmzBe−BE

ân−2[B(E0 − E)]

n!(n− 2)! [1− e−BγnE0 ]
n . (39)

The total approximate recoil fluence is

ψmr = ψr1(z, E,E0) + ψr2(z, E,E0) + ψr3(z, E,E0) · · · , (40)

as shown in Fig. 8. The multiple recoil multiplicity is given as

Mmr(z, E,E0) =

E0∫
εF

ψmr(z, E,E0)dE. (41)

Mmr(z, E0) is the total nucleon recoil fluence at penetration depth z according to equation (41) as shown
in Fig. 9. Note that the limitation for E on the interval {εF , E0} is seen in the figure by the low-energy
gap for E < εF and the high-energy roll-off for E > E0− εF . Unlike the ms series, where the multiplicity
is given by conservation principles as shown in equation (33), there is no simple method of evaluating
the multiple recoil multiplicity as given by equation (41). Application of equation (41) will rely on the
Bertini/Ranft model multiplicities and the mr nucleon spectra when applied to a specific nucleus.

3.5. Nuclear Binding Effects

In the above analysis, we have developed a theoretical treatment of interacting nucleons of initial
energy E0 in nuclear media that includes Pauli exclusion effects appropriate to a Fermi gas as the core of
the nuclear model, but, thus far, nuclear binding effects have been ignored. Within the region of nuclear
matter, the target nucleus is represented by a liquid drop model with a potential well depth of V0 (≈ 32
MeV) and a Fermi energy of εF (≈ 24.5 MeV) that is the top level of the Fermi sea below the binding
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Figure 8: The approximate multiple recoil spectra at various initial energies and depths, z, in nuclear
matter using equation (41).
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Figure 9: The recoil multiplicity of equation (41) for E0 of 132, 532 and 1032 MeV as a function of
penetration z (fm).
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energy of the least bound nucleon Vb (≈ 7.5 MeV) (Joos, 1958). Upon entering the region of the bound
nucleons, a nucleon of initial energy, EL, in the nuclear rest frame (laboratory) is accelerated across the
nuclear boundary by the nuclear binding potential well of depth 32 MeV so that its energy on entrance
to the nuclear domain is E0 = EL + V0. Nucleons within the nuclear domain of energy E experience
deceleration upon crossing the nuclear boundary to a final energy in the laboratory of EF = E−V0 after
exiting the nucleus.

Although the energy shifts at each boundary, the fluence in crossing the boundary is conserved. As a
result of the energy increase on entrance to the nuclear volume, the net effect on the two-nucleon cross
sections within nuclear matter is to effectively shift the interaction energy to higher values, as shown in
Fig. 10, resulting from a shift in energy by V0 (e.g., compare Fig. 10 with Fig. 3).

A second effect is that nucleons with E below V0 are reflected at the nuclear boundary and trapped
within the nuclear volume, which adds to the excitation energy of the nucleus. A useful quantity in this
respect is the sticking factor, which is found by using equation (29)

SFS(z, EL) =

V0∫
εF

ψms(z, E,EL + V0)dE. (42)

This is the total number of the nucleons at depth z that contribute to the excitation energy (which will
be communicated in a subsequent manuscript). The recoil nucleons are likewise distributed in energy
according to equation (40). The nucleons with recoil fluence energy below V0 are also trapped within the
nucleus as

SFR(z, EL) =

V0∫
εF

ψmr(z, E,EL + V0)dE (43)

and add to the nuclear excitation energy. The sticking factors for multiple scattering (SFS) and multiple
recoil (SFR) are shown in Fig. 11. As expected, the sticking factors generally decrease with increasing
laboratory energy. The multiple scattering sticking factor increases with increasing depth as the modera-
tion of the incident nucleon is more complete. A sizable fraction of the multiple recoil energy is committed
to nuclear excitation, as expected.

3.6. Connection to the Nuclear Model

Integration of the above formalism into a nuclear model is discussed next. The separation into
multiple-scattered and multiple-recoil components will allow us to connect to the projectile and target
participants. Spectra given by equations (29) and (40) will be used to evaluate the nucleon spectra from
nucleon induced reactions in nuclei. In this evaluation, ψms(z, E,E0) and ψmr(z, E,E0) are solutions to
the transport of a nucleon in the nuclear media with initial energy E0 leading to spectral modification by
collisions with the media. In the present form of the theory, ψms(z, E,E0) is accurately evaluated, and
only branching ratios in relation to the cross sections are required. After traveling a distance z, the mono-
energetic spectrum is modified to a spectrum of energy ψms(z, E,E0) and produces a fluence of recoiling
nucleons given by ψmr(z, E,E0) (that is the dominant solution with other terms neglected). Within the
media, the energy, E, takes on values above the top of the Fermi sea, εF , but nucleons with E < V0 are
trapped within the nuclear domain. The quasi-elastic differential spectral distributions, Fjk,qe(EF , EL),
of energy EF (varies from 0 to EL) are found with the fluence of equation (29) at each impact parameter
averaged over the impact plane as

Fjk,qe(EF , EL) ≡ 2π

πR2
fjk,qe

∫
ψms[z(b), EF + V0, EL + V0]bdb. (44)
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Figure 10: The binding modified free cross section, σ(E), and binding Pauli modified cross section,
σm(E), within a nucleus as a function of laboratory energy EL (V0 = 32 MeV).
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Figure 11: Multiple scattering and multiple recoil sticking factors as a function of penetration depth for
four values of laboratory energies of 100, 200, 300, and 400 MeV.
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fjk,qe = Njk,qe/
∑
lNlk,qe are the Bertini/Ranft quasi-elastic branching ratios for energy EL and z(b) is

the chord at impact parameter b (Wilson et al., 1986, 2017a). For simplicity, uniform nuclear spherical
densities are used (consistent with the liquid drop model).

Noting the less accurate evaluation of φmr(z, E,E0), it is assumed that the dominant term best
describes the spectrum of recoils but underestimates the mr multiplicity. The nucleon recoil multiplicities
of the exiting nucleons as given by the Bertini/Ranft formalism (Wilson et al., 1988b) are utilized.
The multiple-production spectra per exiting nucleon, Fjk,mp(EF , EL), are found with the Bertini/Ranft
multiple-production multiplicity, Njk,mp, as

Fjk,mp(EF , EL) ≡ Njk,mp

∫
ψmr[z(b), EF + V0, EL + V0]bdb∫

{Mmr[z(b), EL + V0]− SFR[z(b), EL]}bdb
, (45)

where the Njk,mp are the “multiple production” multiplicities at energy EL of the Bertini/Ranft model
and are related to equation (6) by

Njk,mp =

3∑
i=2

Njk,i. (46)

This asymmetrical treatment of multiple recoil relative to multiple scattering (compare equations (44) and
(45)) results because not all of the recoil terms are evaluated in the present treatment (only the dominant
term), which requires an absolute number of recoils to be used. The multiple scattering, however, includes
all terms that are known (to within 6 percent or better) and provides an accurate representation of the
multiple scattering multiplicity as seen in Fig. 7.

In the above, R = 1.29aA is the radius (fm) of the equivalent nuclear sphere appropriate to the liquid
drop model (Wilson, 1975; Wilson and Costner, 1975). The RMS radius determines the differential
scattering cross-section dependence providing the model independent spectral shape at low momentum
transfers. The root mean square (RMS) radius aA is found from the RMS charge radius ac given in Table
1 by aA =

√
a2c − 0.64.

Table 1: Root mean square nuclear charge radius ac (fm) for a nucleus of mass A (Hofstadter and Collard,
1967).

A ac
1 0.84
2 2.17
3 1.78
4 1.63
6 ≤ A ≤ 14 2.4

A > 14 0.58 + 0.82 A1/3

In this context, we will use the quasi-elastic cross section given by

σjk,qe(EF , EL) = σabsk (EL)Fjk,qe(EF , EL), (47)

where σabsk (EL) are the accurate total absorption cross sections of Tripathi et al. (1997, 1998, 1999,
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2002). Similarly, the multiple production cross sections become

σjk,mp(EF , EL) = σabsk (EL)Fjk,mp(EF , EL), (48)

which will be added to the evaporative de-excitation (see equation (7))

Fjk,evap(EF , EL) =
Njk,1
α1

(
e−

EF
α1

1− e−
EL
α1

)
. (49)

The Ranft energy parameters are taken from Wilson et al. (1988a,b, 1991). The related evaporative cross
section is

σjk,evap(EF , EL) = σabsk (EL)Fjk,evap(EF , EL), (50)

and is assumed to be isotropic. (Note 1/4π converts equation (50) to angular units.) The fragment
spectrum is obtained by summing equations (47), (48), and (50). Each of the model outputs (PHITS,
Geant4-Bertini, Geant4-INCL, Bertini/Ranft, and Serber) was normalized to unity so that the differences
in spectral shape could be studied. For this reason, the units are 1/MeV instead of mb/MeV.

In the following, equations (47) through (50) will be used as cross sections in light-ion/neutron trans-
port in tissue or shielding materials. For comparison with prior models, the quasi-elastic, multiple-
production, and evaporative cross sections were added. As an example, we show the EL =300 MeV
proton-aluminum cross sections for producing neutrons with the present results and compare to other
models in Fig. 12. Understanding differences in cross sections of various models, including the MC codes
as addressed in Fig. 12, will be helpful in relating differences in transported fluence evaluations from
the MC codes and earlier versions of 3DHZETRN. Transport code convergence will be measured using
variance techniques on transported fluence results from various codes and nuclear models in the next
section.

4. Implementation into the 3DHZETRN-v2 Code

The connection of equations (47) through (50) to 3DHZETRN-v2 is through the double differential
cross sections given as

σjk(Ω,Ω′, E,E′) = σjk,qe(Ω,Ω
′, E,E′) + σjk,mp(Ω,Ω

′, E,E′) + σjk,rem(Ω,Ω′, E,E′), (51)

where the “quasi-elastic term”, σjk,qe(Ω,Ω
′, E,E′), is related to equation (47), and the “multiple-

production term”, σjk,mp(Ω,Ω
′, E,E′), is related to equation (48). The last term of equation (51)

includes the evaporation as described by the Bertini/Ranft model and the elastic scattering contribution
that was discussed in connection with equation (7). Implementation into 3DHZETRN-v2 assumes the
quasi-elastic term is well approximated by the straight-ahead approximation,

σjk,qe(Ω,Ω
′, E,E′) = δ(Ω−Ω′)σjk,qe(E,E

′), (52)

and the multiple production term is given as,

σjk,mp(Ω,Ω
′, E,E′) = gR(θ,E,AT )σjk,mp(E,E

′), (53)

with the energy spectral functions given by equations (47) through (50). The resulting code will be
labeled 3DHZETRN-v2.1 and utilizes the prior developments of Slaba et al. (2010, 2013, 2016, 2017).
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Figure 12: Comparison of spectral distributions for neutron production of 300 MeV protons projectiles
on aluminum using the new Serber model, Bertini/Ranft original values (Wilson et al., 1988b), and
the PHITS, Geant4-Bertini, and Geant4-INCL Monte Carlo results. Each of the model outputs was
normalized to unity so that the differences in spectral shape could be studied.
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Figure 13: Impact of current Serber model contribution to neutron and proton fluence spectra in an
aluminum sphere.

4.1. Monte Carlo Benchmarks

We now turn to benchmarking 3DHZETRN-v2.1, in which the added complications of 3D light-
ion treatments have been addressed. Code verification uses an established benchmark consisting of a
standard environment such as the Webber (1966) P0 = 100 MV Solar Proton Event (SPE) spectrum
with 109 protons/cm2 with energies greater than 30 MeV as given in equation (54),

φp(E) =
109(E + 938)

200p(E)
e

239.1−p(E)
100 , (54)

in units of protons/cm2 with p(E) =
√
E(E + 1876).

4.2. Webber SPE on an Aluminum Sphere

Upon implementation of equations (51) to (53), we again test with a benchmark. The shielding object
is taken as a 40 g/cm2 diameter aluminum sphere with the boundary condition being the Webber (1966)
spectrum for the 23 Feb 1956 Solar particle event (not an accurate representation but a historically useful
test spectrum with a 50 year history of usage) incident on the top of the sphere. The fluence on the center-
line at 35 and 40 g/cm2 depths are tabulated and presented in Fig. 13 with results from 3DHZETRN-v2.1
(Bertini/Ranft) (Wilson et al., 2017a) and results from three MC codes: Geant4 (Agostinelli et al., 2003),
FLUKA (Fasso et al., 2005; Battistoni et al., 2007), and PHITS (Sato et al., 2006, 2013). While the
proton spectrum at each of the evaluation points is little changed from prior results, the neutron spectra
produced by 3DHZETRN-v2.1 (Serber) has moved into closer alignment with Geant4 results, especially
in the 30 to 200 MeV region. It is clear from these results that the quasi-elastic contribution is better
represented by use of the nuclear transport theory that includes Pauli exclusion effects.

4.3. Benchmark in an Inhomogeneous Cube and Sphere

The induced neutron and proton fluence spectra were evaluated in the aluminum/tissue combinations
as 20/30/20 g/cm2 in cubical (Fig. 14) and spherical (Fig. 15) geometry by three MC codes (Geant4,
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Tissue (30gm/cm2)
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z = 0 g/cm2

z = 30 g/cm2

Figure 14: Aluminum shielded tissue cube exposed to Webber 1956 Solar Particle Event, Ω0. The depth
in tissue is represented by z, where z = 0 g/cm2 is the near interface located at the top of the tissue slab,
and z = 30 g/cm2 is the distal interface located at the bottom of the tissue slab.

PHITS and FLUKA), 3DHZETRN-v2.1 (Bertini/Ranft), and 3DHZETRN-v2.1 (Serber), with the results
at 0 and 30 g/cm2 depths in the tissue shown in Fig. 16 for the finite slab geometry (cube) and Fig. 17
for the shielded spherical geometry. The proton fluence among the four codes is in reasonable agreement
considering the different nuclear cross section sources. The larger discrepancy lies with the neutron
spectra, especially at the bottom of the tissue cube (z = 30 g/cm2) that is affected both by the penetration
of the aluminum shield and overlying tissue. The results of the codes in a shielded tissue sphere in Fig.
17 are similar to that in the shielded tissue cube. The more dependable nuclear transport model of
3DHZETRN-v2.1 (Serber) is in better agreement with the MC codes, where improvements are significant
at the bottom of the tissue (z = 30 g/cm2).

The proton fluence predictions of the codes are in reasonable agreement above 1 MeV, but there
are very large MC statistical uncertainties below 1 MeV (large error bars are not shown for protons
below 1 MeV). The larger discrepancy lies with the neutron spectra, where disagreement among the MC
results is on the same order as for 3DHZETRN-v2.1 (Serber). To further quantify differences among the
codes, the neutron spectra is converted into effective dose using conversion factors for isotropic neutrons
evaluated by Pelliccioni (2000) with FLUKA. The effective dose on the top and bottom of the tissue cube
is given for neutrons in Table 2, and dose equivalent for protons is given in Table 3. The 3DHZETRN-
v2.1 (Serber) model (N=30) compares reasonably well (about ten to fifteen percent) with the three MC
codes. The 3DHZETRN-v2.1 (Serber) code (N=1) corresponds to the older HZETRN code and provides
a conservative over-estimate, as expected. An additional measure of agreement is to evaluate the root
mean square (RMS) relative differences in the neutron fluence from the four codes, as given in Table 4
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Figure 15: Aluminum shielded tissue sphere exposed to Webber 1956 Solar Particle Event, Ω0. The depth
in tissue is represented by z, where z = 0 g/cm2 is the near interface located at the top of the tissue
sphere, and z = 30 g/cm2 is the distal interface located at the bottom of the tissue sphere.
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Figure 16: Webber SPE benchmark in cube geometry with N=30 compared with GEANT4, FLUKA,
and PHITS at the near and distal interfaces.

Table 2: Neutron effective dose rates in cube geometry at top (z = 0 g/cm2) and bottom (z = 30 g/cm2)
of ICRU tissue layer (mSv/event). Propagated MC statistical errors in neutron effective dose values were
all less than 2%. 3DHZETRN refers to the 3DHZETRN-v2.1 (Serber) model developed in the present
work.

z (g/cm2) 3DHZETRN (N=1) 3DHZETRN (N=30) Geant4 FLUKA PHITS
0 13.37 9.38 10.30 10.78 13.0
30 4.78 2.51 1.73 1.88 2.19

on the top and the bottom of the tissue cube. A similar result is found for the RMS relative differences
for the proton spectra among the four codes in Table 5. Again, it is observed that the agreement of
3DHZETRN-v2.1 with the MC codes is better than the agreement of the MC codes among themselves.

A principle difference in the three codes is the computational efficiency. The time required by the three
codes to run these benchmarks is given in CPU seconds and is listed in Table 6. The 69 CPU seconds of
3DHZETRN-v2.1 (Serber) allows for the development of affordable means of design optimization software
on a commercial laptop while Geant4, PHITS and FLUKA software requires a multiprocessing mainframe
of more than a thousand processors to do a single evaluation within reasonable time (few days even for
this very simple geometry). Still, Monte Carlo methods provide an important test point for developing
codes capable of meeting operational and design requirements. Furthermore, computational speed has
proven to be important for spaceflight validation in LEO where the time structure of the environment can
be used to test various environmental components as was done using ISS and the Liulin instrument and
other dosimetric instruments (Wilson et al., 2002, 2004, 2007). The main limitation on such studies is the
uncertainty in the environmental models (especially for the trapped environment) as well as remaining
uncertainty in nuclear cross sections (HZE induced reactions) and vehicle mass and material distributions.
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Figure 17: Webber SPE benchmark in spherical geometry with N=30 compared with GEANT4, FLUKA,
and PHITS at the near and distal interfaces.

Table 3: Proton dose equivalent rates in cube geometry at top (z = 0 g/cm2) and bottom (z = 30 g/cm2)
of ICRU tissue layer (mSv/event). Propagated MC statistical errors in proton dose equivalent values
were all less than 10%. 3DHZETRN refers to the 3DHZETRN-v2.1 (Serber) model developed in the
present work.

z (g/cm2) 3DHZETRN (N=1) 3DHZETRN (N=30) Geant4 FLUKA PHITS
0 8.75 8.56 10.15 N/A 8.36
30 0.84 0.56 0.65 N/A 0.51

Table 4: Neutron fluence root mean square relative differences (dimensionless) of 3DHZETRN-v2.1 (Ser-
ber)and the MC codes at top (z = 0 g/cm2) and bottom (z = 30 g/cm2) of ICRU tissue layer in cube
geometry.

z (g/cm2) vs Geant4 vs FLUKA vs PHITS MC spread
0 0.520 0.446 0.445 0.646
30 0.441 0.418 0.370 0.705
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Table 5: Proton fluence (E > 1 MeV) root mean square relative differences (dimensionless) of
3DHZETRN-v2.1 (Serber) and MC codes at top (z = 0 g/cm2) and bottom (z = 30 g/cm2) of ICRU
tissue layer in cube geometry.

z (g/cm2) vs Geant4 vs FLUKA vs PHITS MC spread
0 0.133 N/A 0.212 0.322
30 0.250 N/A 0.217 0.314

Table 6: Computer power requirements for current results (CPU seconds).

Code/Test case 3DHZETRN-v2.1 Geant4 PHITS FLUKA
Webber SPE 69 2× 108 1× 108 1.8× 108

5. Conclusions

The further development of improved transport procedures required advances in the nuclear model
for nucleon-induced reactions in nuclei. An analytical treatment of the Serber model is shown to improve
3DHZETRN-v2.1 in the sense that the variance of the 3DHZETRN-v2.1 output for the Webber proton
event model when compared to the results of three MC codes (Geant4, PHITS, and FLUKA) is signif-
icantly reduced, thereby facilitating focus on numerical algorithms for nucleon transport. This recent
development of the Serber model may now be employed in future efforts that aim to improve the HZE
interaction database that is generated by the NUCFRG code. Spectral improvements in a HZE Serber
first step will be added in future transport developments.

6. Appendix: Solution to the Nuclear Transport Equation

The analytic solution of the transport equation used in the text depended on several assumptions:

a. σm ≡ σm(E0) ≈ σm(E) for E < E0

b. σ ≡ σ(E0) ≈ σ(E) for E < E0

c. B ≡ B(E0) ≈ B(E) for E < E0

d. N(E0) ≡ 1− e−BE0 ≈ 1− e−B(E)E ≡ N(E) for E < E0

In this Appendix, the effects of these assumptions will be examined.
The transport is described by a Volterra equation given as

φ(z, E,E0) = e−ρσm(E)z +

z∫
0

e−ρσm(E)(z−z′)
∞∫
E

ρσm(E,E′)φ(z′, E′, E0)dE′dz′, (55)

where the leading term is related to the boundary condition and describes the transport of the uncollided
primary particles. The first estimate of the fluence is

φ0(z, E,E0) = e−ρσm(E)zδ(E − E0). (56)

Higher order corrections can be found by iterating the successive terms resulting from the Neumann series
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solution of equation (55) as

φn(z, E,E0) =

z∫
0

e−ρσm(E)(z−z′)
∫ E0−(εF−εa)

εF

ρσ(E′)fm(E,E′)φn−1(z′, E′, E0)dE′dz′, (57)

where the spatial integral z′ extends over 0 to z and the energy integral E′ extends over E to E0−(εF −ε);
the subscript m denotes Pauli blocking effects (in this Appendix we assume that the constituent nucleons
are replaced by nucleons of the average energy εa). The first correction to the uncollided primary beam
term of equation (56) is found by substituting φ0(z, E,E0) into the integral term on the right side of
equation (57), resulting in

φ1(z, E,E0) =

z∫
0

e−ρσm(E)(z−z′)
∫ E0−(εF−εa)

εF

ρσm(E,E′)φ0(z′, E′, E0)dE′dz′

= ze−ρσm(E0)zρσ(E0)fm(E,E0). (58)

The first scattered nucleons from equation (58) are then given by the σe(E,E
′) term as

φs1(z, E,E0) = ze−ρσm(E0)zρσ(E0)B(E0)

[
e−B(E0)(E0−E)

1− e−B(E0)E0

]
, (59)

for E on the interval {εF , E0 − (εf − εa)}, while the recoiling nuclear constituent produced by the first
scattering is given by the σr(E,E

′) term of equation (58) as

φr1(z, E,E0) = ze−ρσm(E0)zρσ(E0)B(E0)
e−B(E0)E

1− e−B(E0)E0
. (60)

Note, these results in equations (59) and (60) were found under assumptions (a)–(d). Furthermore,∫ E0−(εF−εa)

εF

φs1(z, E,E0)dE = ze−ρσm(E0)zρσ(E0)FP (E0), (61)

which is a functional form required for particle conservation. Clearly there are higher order terms for
both the subsequent scattering of the incident nucleon as it moves through the target nuclear material
with added recoiling nuclear constituents being produced. We now consider effects of various levels of
approximations on the development of these additional multiple interaction terms resulting from the first
interaction, as we have done before (Wilson et al., 1986, 2017b).

6.1. Multiple Scattering Series

To understand the scattering properties of the media, we only evaluate the σe(E,E
′) terms in equa-

tions (58) and (59). We now follow the interactions of the multiple scattering that generally have further
interactions prior to exit through the nuclear boundary. The next scattering term of the multiple scat-
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tering series represents the second scattered term as

φs2(z, E,E0) =

z∫
0

e−ρσm(E)(z−z′)
∫ E0−(εF−εa)

εF

ρσ(E′)fme(E,E
′)φs1(z′, E′, E0)dE′dz′

=

∫ E0−(εF−εa)

εF

ρσ(E′)fme(E,E
′)ρσ(E0)fme(E

′, E0)

ρσm(E0)− ρσm(E)

×

[(
1− e−ρσm(E′)z−ρσm(E)z

ρσm(E′)− ρσm(E)

)
−

(
1− eρσm(E0)z−ρσm(E′)z

ρσm(E0)− ρσm(E)

)]
dE′. (62)

Equation (62) can be evaluated numerically as a test on possible assumptions. Assumption (a), σm ≡
σm(E0) ≈ σ(E), leads to

φs2(z, E,E0) =

z∫
0

e−ρσm(z−z′)

E0−(εF−εa)∫
E

ρσ(E′)fme(E,E
′)z′e−ρσmz

′
ρσ(E0)fme(E

′, E0)dE′dz′

=
z2

2
e−ρσmz

E0−(εF−εa)∫
E

ρσ(E′)fme(E,E
′)z′e−ρσmz

′
ρσ(E0)fme(E

′, E0)dE′. (63)

Additionally, assumptions (b) σ ≡ σ(E0) ≈ σ(E) and (c) B ≡ B(E0) ≈ B(E) simplify equation (63) to

φs2(z, E,E0) =
(ρσz)2

2
e−ρσmz

E0−(εF−εa)∫
E

Be−B(E′−E)Be−B(E0−E′)

N(E′)N(E0)
dE′, (64)

while assumption (d) N(E0) ≡ 1− e−BE0 ≈ 1− e−B(E)E ≡ N(E) allows for a complete analytic solution
of equation (57) as

φsn(z, E,E0) =

z∫
0

e−ρσmz
E0−(εF−εa)∫

E

ρσ0(E,E′)φsn−1(z′, E′, E0)dE′dz′

=
[ρσBz]

n

n!(n− 1)! [1− e−BE0 ]
n e
−B(E0−E) [E0 − (εF − εa)− E]

n−1
e−σmz. (65)

To evaluate the assumptions used in deriving the analytic result, we will compare the analytic solution
with a numerical evaluation of the multiple scattering terms of equation (57). It is expected that the
assumptions are most inappropriate at low energy. The multiple scattering solution is compared with
the numerical evaluations (no assumptions) in Fig. 16 for 100 MeV initial energy. The adequacy of
assumptions (a)–(d) are borne out even at very large penetration depths (especially at the higher energies)
in the results in Fig. 16. Note the φs1(z, E,E0) term is always the analytic solution given by (60) and
never evaluated by a numerical procedure. This is the problem solved by Wilson et al. (1986) and is
helpful in verifying the numerical codes (in this case the numerical evaluation of the perturbation terms).
Similar results can be obtained for the initial recoiling particles (i.e., recoils from the collisions of the
multiply scattered primary particle) as well.
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Figure 18: Numerical perturbation series and analytic approximation for nucleon transport in nuclear
matter.
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6.2. Multiple Recoil Series

We now consider the recoiling nucleons produced by collisions of the incident particle given by the
σr(E,E

′) term. Note, an additional subsequent recoil collision from the fluence of recoiling nucleons is
inferior to the first recoil collision from the multiple scattering terms. The corresponding iterative terms
are given by

φrn(z, E,E0) =

z∫
0

e−ρσm(E)(z−z′)
∞∫
E

frm(E,E′)φsn−1(z′, E′, E0)dE′dz′. (66)

Hence, the recoil source consists only of recoils produced by the transport of the incident nucleon in its
multitude of collisions under assumptions (a)–(d) as

φrn =

z∫
0

e−ρσm(z−z′)
∞∫
E

ρσr(E,E
′)φsn(z′, E′, E0)dE′dz′, (67)

where the φsn−1(z, E,E0) is the solution of the multiple scattering series in equation (65) above. The
first production term results from the collisions of the uncollided incident particle, given as

φr1(z, E,E0) = ρσze−ρσmz
[

e−BE

1− e−BE0

]
, (68)

and the higher order terms can be evaluated analytically. The result is

φrn(z, E,E0) = B [ρσz]
n
e−ρσmze−B[E+(εF−εa)] ân−2{B [E0 − (εF − εa)− E]}

n!(n− 2)! [1− e−BE0 ]
n , (69)

where ân(t) are special functions used in the nucleon-nucleus model by Wilson et al. (1986) with recur-
rence relations given by equations (37) and (38).

A graphical display for εa = 15.7 MeV of the initial recoil series is given in Fig. 17 in comparison
to the numerical implementation of the perturbation solution from equation (68). It is clear from the
figure that the numerical implementation of the multiple recoil series is quite accurate and that use of
the numerical perturbation series solutions are adequate for solving the more general equation (7) with
energy independent interactions, as used in this Appendix. We now look to evaluation of the complete
solution with energy independent interaction parameters using marching procedures and verify with the
numerical perturbation series resulting in Fig. 17. In the text, we will implement a small correction for
the N(E) assumption and add a small correction for N(E) 6= N(E0).
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Figure 19: Numerical perturbation series and analytic approximation for nucleon recoils in nuclear matter.
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