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DART Mission

Demonstrate kinetic impactor deflection of a
representative threat asteroid

A controlled impact experiment to increase
confidence of kinetic impact predictions and
improve understanding of asteroid physical
properties and high speed collisions

Binary target allows measurement of deflection
by ground-based observatories

The primary launch period extends from 22 July
to 11 August 2021

DART will launch on a SpaceX Falcon 9 from
Vandenberg Air Force Base

The arrival dates vary from 30 September to 02
October 2022, optimized to achieve the impact
geometry requirements
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NEXT Use on DART Mission

Once the NEXT system has been checked-out, the DART mission will use it for TCMs and then exercise it using several “neutral burns”
- the burn has the objective of demonstrating NEXT-C without risking the ballistic impact
- NEXT will be operated for a total of ~ 1400 hours

The neutral burns are achieved by pointing DART’s +X axis to the Sun and rotating about the Sun-line with a 12 hour period
* Over the full period, the induced orbit change integrates to nearly zero change in velocity
* Fixes spacecraft geometry (solar arrays locked)
* Gives consistent low-gain-antenna gain to Earth
* Given its constant attitude state, it requires little propellant for attitude control

At any point, if NEXT-C thruster is turned off, the original impact conditions can be recovered for < 3.5 m/s with a TCM
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Test Objectives

Evaluate system performance across
anticipated DART flight conditions

Characterize drift in thrust vector across
Xe flow envelope

Demonstrate functionality and fault
detection of command and data handling
system

Provide baseline PPU/thruster for flight
hardware tests (fall 2019)
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Test Matrix

* Tests conducted at a beam current of 2.70 A, at three different voltage levels

Test Parameter Range

PPU Baseplate Temperatures -24°C, 40 °C, 55 °C

Propellant Flow Rates Main: +7% and -5% of nominal flow value
Disch. Cathode: +/- 6% of nominal flow value
Neut. Cathode: +21% and -6% of nominal flow value

PPU High Power Bus Input Voltages 80V,100V, 125V

PPU Low Power Bus Input Voltage 28V

Throttle Levels DETL2.7A, DTL28, DTL29
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Test Setup
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Thruster Performance

* Thruster performance invariant with high/low input power bus PPU voltages, PPU baseplate temp.
* Performance in-family with risk reduction data obtained with EM4 engine and commercial power supplies
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Thrust Vector Behavior at Various Throttle Levels

* Thrust vector varies by less than 0.2 deg. across all DART operating conditions
- within the uncertainty of the measurement
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Thruster Behavior During Automated Start-up
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SWIL Simulator Performance
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PPU Efficiency at Various Throttle Levels

* PPU efficiency > 90% at all conditions, increased performance at colder temps. and lower input voltages
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Summary

 Single string integration test was conducted across anticipated DART flight conditions
* Test included demonstrations of system performance, functionality, and fault handling

* Thruster performance was in-family with prior NEXT data
- minimal variations in thrust vector across different operating conditions

* SWIL simulator successfully executed DART {flight algorithms and captured fault
sequences

» PPU efficiency > 90% at all conditions, increased performance at colder temps. and
lower mput voltages

* Overall tests was successful, results fed into the development of the flight build of
software



