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All-weather radiative transfer calculations

Cost function for 3D-Var Data Assimilation:

J(~x) =

Jb︷ ︸︸ ︷
1

2
(~x − ~xb)T ~B−1(~x − ~xb) +

Jo︷ ︸︸ ︷
1

2
(H(~x)− ~y)T ~R−1(H(~x)− ~y)

Relation between the observations (y) and the forward operator (H) can be expressed
as: y = H(~x , ~pb, ~ps) + ε
~x state vector, ~pb parameters such as shape and size distribution of hydrometers, ~ps
indicates the scattering parameters (e.g., phase function)

dIν
dx

= −(αν + Sν)Iν + ανBν(T ) + SνJν

Jν =

∫
pν(Ω)IνdΩ



Limitations of direct assimilation of cloudy radiances

Inaccuracy in the first-guess: the models do not provide a close first guess for cloud
parameters or clouds are often displaced.

Lack of required RT inputs: ~ps neither provided by the model nor fully measurable
thus estimated from limited in-situ/aircraft measurements.

Non-linearity in the forward model: ~x is the mean value of the model variables
within grid-box and because H is non-linear: H(~x) 6= H(~̄x).



Limitations of direct assimilation of cloudy radiances

Inaccuracy in the first-guess: the models do not provide a close first guess for cloud
parameters or clouds are often displaced.

Lack of required RT inputs: ~ps neither provided by the model nor fully measurable
thus estimated from limited in-situ/aircraft measurements.

Non-linearity in the forward model: ~x is the mean value of the model variables
within grid-box and because H is non-linear: H(~x) 6= H(~̄x).

Simplified RT models: Operational RT models that use a simplified RT framework,
such as spherical hydrometeors, which is not appropriate at higher microwave
frequencies where ice scattering is important.

Assuming Gaussian Errors: DA systems assume Gaussian error statistics, examined
using the departures, but in the case of cloudy radiances the departures are likely
to be non-Gaussian.



The BMCI technique

The BMCI technique can be summarized in three steps:

I generation of a retrieval database of atmospheric state and cloud variables
using a-priori information. The database should also include extreme cases
as the extrapolation is not allowed.

I the atmospheric state and cloud variables are fed into the RT model to gen-
erate the synthetic observations. In addition to the state variables such as
temperature, water vapor, and cloud profiles, cloud microphysics and param-
eterization such as particles’ shape and size distribution are also utilized as
input.

I real measurements along with the generated database are given to the re-
trieval package, then the retrieval package will select the cases which are
close to the real measurements and integrate them according to the Bayes’
theorem to give the estimate of the mean and uncertainty of the state and
cloud variables.



Beam filling
Beam filling was calculated as the difference between the brightness temperatures weighted
according to an elliptical Gaussian beam pattern and Tbs calculated using the average profiles.
The profiles were generated with 5km resolution using stochastic statistics derived from GPM
DPR and central profiles IWP and rain rate.
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Top: SkinTemp (left), IWP (right), Bottom: Rain WP (left), Surface Wind Speed (right)



Correlated observation errors
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SST Analysis
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SST Analysis
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Analysis Intensity Error
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Forecast Intensity Error
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Forecast Track Error
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Forecast Track Error vs. GEOS operational run
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Conclusions

I Conventional data assimilation schemes cannot properly assimilate satellite
radiances in the rainband of tropical cyclones due to inaccuracy in RT
scattering parameters as well as inaccuracy in the first guess provided by
NWP models

I A new technique is proposed that does not depend on the minimization of
the cost function.

I Preliminary results from BMCI technique are encouraging but require
extensive validation, though validation itself is challenging

I These retrieved profiles are valuable for both analyzing the structure of the
hurricanes as well as to provide more accurate initial conditions for the NWP
models



Thank you for
your attention!
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