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Nomenclature

an = spatial filter coefficient at stencil point n
C = logarithmic layer intercept constant
Cf = skin-friction coefficient
Cp = pressure coefficient
c = chord length
f = unfiltered quantity
�f = filtered quantity
K = turbulent kinetic energy
N = spatial filter stencil width parameter
n = spatial filter stencil point index
p = pressure
Rec = chord-based Reynolds number; ρ∞u∞c∕μ∞
r = radial direction
rwall = wall radius
U = mean axial velocity component
u = axial velocity component
ui = velocity component in Cartesian coordinate system
uτ = friction velocity
v = radial velocity component
x = axial direction
xj = Cartesian coordinate system
αf = filtering parameter
Δt = computational time step
εn = numerical dissipation of turbulent kinetic energy
εp = physical dissipation of turbulent kinetic energy
κ = von Kármán constant
μ = molecular viscosity
ν = kinematic viscosity; μ∕ρ
ρ = fluid density
�ρ = mean fluid density
σji = fluctuating viscous stress tensor
τwall = wall shear stress
hi = temporal and/or azimuthal averaging operator
∇ = gradient operator

Subscripts

i = value at grid point i; velocity component in Cartesian
coordinate system

j = Cartesian coordinate system index
w = distance from wall
∞ = freestream value

Superscripts

a = after filter application
b = before filter application
0 = perturbation from mean value
0 0 = Favré fluctuation
� = value given in wall units

I. Introduction

THE relatively high Reynolds number of turbulent flows
encountered in various applications puts these problems well

beyond the reach of direct numerical simulation (DNS) at present.
Meanwhile, lower-fidelity Reynolds-averaged Navier–Stokes (RANS)
calculations are known to be not accurate enough in complex problems,
such as smooth-body flow separation and other flows involving highly
unsteadyphenomena.Hence, given the current infeasibility ofDNSand
the unsatisfactory performance of RANS, intermediate techniques such
as large-eddy simulation (LES) and hybrid RANS–LES, for which the
fidelity lies betweenRANS andDNS, have receivedmuch attention for
application to various problems of practical importance.
Modeling of the effect of missing scales on resolved scales, also

known as subgrid-scale (SGS) modeling, is an important subject for
LES. SGS models can be broadly categorized as explicit or implicit
approaches. The explicit approach is based on an SGS model that
explicitly appears in the governing equations expressed in the form of
so-called “filtered Navier–Stokes equations,” which describe the
evolution of the turbulence scales resolved by the LES grid. The
effect of the scales unresolved by the grid is represented by the SGS
model. The implicit modeling approach, on the other hand, does not
employ an explicit model but instead treats the intrinsic dissipation of
the numerical discretization scheme as an implicit SGS model. An
LES without an explicit SGS model is commonly termed as an
implicit LES (ILES). The relative merits of one SGS modeling
approach over another is a subject of ongoing debate.
We have opted to employ an ILES methodology, based on high-

order compact finite difference and spatial filtering schemes, in our
recent investigations of separated flow problems [1,2]. Further
discussion of our preference of ILES over explicit LESwas provided
by Uzun and Malik [2]. The ILES methodology adopted in our work
is very similar to that originally devised by Visbal and Rizetta [3] and
Visbal et al. [4]. The spatial filtering operation, described in the next
section, is treated as an implicit SGS model for the ILES. Some
observations made during the course of our recent investigations,
which pointed out excessive numerical dissipation in certain parts of
the flowfield, prompted us to take a closer look at the potential effect
of the spatial filter on ILES predictions. This technical Note is
therefore devoted to spatial filter effects in the context of a high-
Reynolds-number transonic shock-induced separated flow.

II. Spatial Filter Formulation

Details of the simulation methodology can be found in our recent
publications [1,2]. The spatial filter [5,6] employed in our
methodology is given by the following expression:
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αf �fi−1 � �fi � αf �fi�1 �
XN

n�0

an
2
�fi�n � fi−n� (1)

where �fi denotes the filtered value of quantity f at grid point i; αf is
the filtering parameter in the range −0.5 < αf ≤ 0.5; and N � 3, 4,
and 5 for the sixth-, eighth-, and tenth-order filters, respectively. A
less dissipative filter is obtained as αf is varied toward its upper limit.
The coefficients an depend onN and αf. The preceding expression is
valid for the interior grid points away from the boundaries. In the
vicinity of the boundaries, one-sided biased schemes that preserve the
original order of accuracy of the interior formulation are used [5] in
the present study. To further enhance robustness and numerical
stability, lower-order one-sided biased formulations that step up the
order of the accuracy toward the interior may also be applied.
Although such a strategy is not explored here, it could prove
particularly useful in problems involving more complex curvilinear
grids with less than optimal near-wall grid spacings. The boundary
points are left unfiltered in the present work. The filter is applied
sequentially along each of the three spatial directions. The solution,
represented in the form of conserved flow variables, is normally
filtered once after each subiteration of the implicit time advancement
scheme [7].
As the filter order of accuracy is increased at a fixed αf, the amount

of numerical dissipation added by the spatial filter decreases. On
relatively coarse grids, the combination of the optimized fourth-order
compact finite difference scheme [8], which is used in our
methodology, with the eighth- or tenth-order filters is usually
unstable. In our experience, these higher-order filters generally
require fairly high-resolution grids for numerical stability. The sixth-
order filter, on the other hand, has shown robustness on a wide range
of grids with varying resolutions used in past problems. Determining
the minimal amount of numerical dissipation needed to keep the
simulation stable on a given grid requires numerical experimentation
with filters of varying orders of accuracy. This way, the highest-order
filter that is stable on a given grid resolution can be identified. The
filtering parameter can also be varied to control the dissipation;
however, a significant deviation from αf ≈ 0.49would also lead to an
excessive amount of numerical dissipation. In the present study, we
keep αf � 0.49 while varying the filter order of accuracy.

III. Test Case: Transonic Shock-Induced Flow
Separation

The test case of the present study involves the shock-induced
boundary-layer separation over an axisymmetric bumpmounted on a
straight cylinder, which is representative of the upper surface of a
transonic airfoil. Figure 1 depicts the main features of the problem of
interest. This test case, also known as the Bachalo–Johnson flow [9],
was simulated recently using up to 24 billion grid points [2]. The
freestream Mach number is 0.875. The Reynolds number based on
the chord length c and the freestream velocity u∞ is Rec � 2.763
million. In the present study, filtering is applied throughout the entire
domain, including the shock-containing region. Additional adaptive
artificial dissipation [10] is added in the shock vicinity. A shock
sensor, similar to that proposed by Ducros et al. [11], identifies the
shock-containing region to which adaptive artificial dissipation is
applied. Without this additional artificial dissipation, filtering alone
causes noticeable ringing across the shock. Such wiggles generated

around the shock, which will eventually lead to numerical instability
if left untreated, are eliminated by the additional artificial dissipation
added in that region. Further details of this test case and the
experiment were given by Uzun and Malik [2].

A. Simulation Details

We consider a 120 deg slice of the axisymmetric body with
periodic boundary conditions applied on the edges of the slice. The
number of grid points is 24 billion. Two calculations are performed as
an ILES that respectively, employs the sixth- and tenth-order filters as
an implicit SGS model. The tenth-order filter results are averaged up
to 15 chord flow times (based on freestream velocity), whereas the
sixth-order filter results are averaged over 6.5 chord flow times. The
sixth-order filter ILES was performed before the tenth-order filter
ILES. Because of the very large grid point count and limited
computational resources, it was not run as long as the tenth-order case
once the intermediate results gathered during this simulation revealed
evidence of excessive numerical dissipation added by the sixth-order
filter. Nevertheless, the shorter time average of the sixth-order filter
results is not expected to make a dramatic difference in the
comparisons to be made between the two cases and does not detract
from the main conclusions of this study. For the tenth-order filter
case, the results averaged over 10 chord flow times are shown in this
Note. The results averaged over 15 chord flow times can be found in
the work of Uzun and Malik [2], wherein further computational
details are also available.

B. Simulation Results

Figure 2 shows the pressure and skin-friction coefficient
distributions from the two simulations and the comparison with the
other data. The experimental surface pressure measurements were
taken separately in a 2 × 2 ft transonic tunnel [9] and a 6 × 6 ft
supersonic tunnel [12,13]. The small tunnel data are available from
NASA Langley Research Center’s Turbulence Modeling Resource
database.‡ Two sets of the large tunnel surface pressure data are
extracted separately from the relevant figures given by Horstman and
Johnson [12] and Johnson [13]. Besides the shock location difference
between the two tunnel tests, some scatter in the postshock region
pressure data is also present. No skin-friction measurements were
taken in the experiment. The pressure and skin-friction coefficients
are defined as

Cp � p − p∞

�1∕2�ρ∞u2∞
and Cf � τwall

�1∕2�ρ∞u2∞
(2)

where ρ and p, respectively, are the density and pressure; τwall is the
wall shear stress; and the subscript ∞ denotes the reference
freestream conditions.
The present simulations do not model the tunnel wall effects and

use characteristic freestream boundary conditions at the outer
boundary that are more likely to replicate the large tunnel results. As
seen in Fig. 2a, relative to the sixth-order filter result, the tenth-order
filter ILES predicts the shock position in slightly better agreement
with the large tunnel data. This is one potential indicator of the

Fig. 1 Numerical schlieren (depicted in terms of normalized density gradientmagnitude) visualizing shock-induced flow separation in Bachalo–Johnson
flow.

‡Data available online at https://turbmodels.larc.nasa.gov [retrieved 5
August 2019].
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improved solution accuracy obtained with the tenth-order filter.
Some variation in the postshock region Cp predictions between the
two cases is also evident in the figure. The two ILES predictions are
nearly identical downstream of the trailing edge. Figure 2b shows

important differences in the Cf predictions with the two cases. The
peak Cf value observed upstream of separation is nearly 10% higher
with the tenth-order filter. This shows that the sixth-order filter has a
considerable impact on the attached flow behavior near thewall in the
accelerating region upstream of flow separation. Because of the

upstream shift in the shock position, the tenth-order filter result shows
slightly earlier separation relative to the sixth-order case. The
separation point is predicted at x∕c ≈ 0.69 and 0.68 by the sixth- and
tenth-order filter simulations, respectively. These agree well with the

corresponding observation made in the large tunnel experiment,
which showed the separation in the vicinity of x∕c ≈ 0.66–0.69. Both
cases predict a nearly identical reattachment location, at x∕c ≈ 1.16,
which is fairly close to the value of 1.17 observed in the large tunnel

experiment.
The significant difference in the peak Cf region predictions

between the two cases also leads to some differences in the near-
wall grid resolution in terms of wall units. Table 1 compares the
streamwise, radial, and azimuthal spacings in wall units in the region

where 0.2 ≤ x∕c ≤ 0.5. The higher skin-friction level computedwith
the tenth-order filter in the peak region naturally leads to larger grid
spacings in wall units. In that region, the differences in wall unit
spacings between the two cases vary from about 5 to 7%.
Figures 3 and 4 show the effect of the filter on the mean velocity

and Reynolds stress profiles, respectively. In these figures, rw∕c
denotes the radial distance measured from the wall normalized by
the chord; u and v are the axial and radial velocity components,
respectively; and the hi operator denotes averaging in time and along
the azimuthal span. The superscript 0 on u or v denotes the velocity
fluctuation. These predictions are compared with corresponding
experimental measurements, which are only available from the small
tunnel experiment [9]. The first axial station is located upstream of
the bump leading edge, at x∕c � −0.25; whereas the remaining ones
are located within the separation bubble and the reattachment region.
The predictedmeanvelocity profiles, depicted in Fig. 3, are generally
similar between the two cases,with only somemodest differences. As
will be seen, the main effect of the filter on the mean velocity profiles
is felt in the logarithmic layer behavior near the wall in the attached
flow region. The velocity profile predictions at x∕c � −0.25, which
is located in the attached region well upstream of separation, show
reasonable agreement with the experiment. As discussed by Uzun
and Malik [2], because of the wall interference effects in the small
tunnel experiment, the separated shear layer in the experiment
reattaches considerably earlier relative to the simulations, at around
x∕c ≈ 1.1. The simulations predict a delayed reattachment due to the
missing wall interference effects. Nevertheless, the velocity profile
comparisons within the separation bubble (where x∕c � 0.813,
0.938, and 1) display reasonable similarity to the experiment.
Because of the delayed reattachment in the calculations relative to the
small tunnel experiment, the comparisons in the vicinity of the
experimental reattachment location and downstream show greater
differences relative to the experiment, as can be seen at x∕c � 1.125
and 1.25.
Reynolds stress comparisons, shown in Fig. 4, reveal significant

differences between the two cases. The tenth-order filter ILES
predicts generally higher peak Reynolds stress levels relative to the
sixth-order filter ILES at all stations. This suggests that the sixth-
order filter is generally more dissipative than the tenth-order filter on
the present grid. The Reynolds stress comparisons depict generally
similar qualitative behaviors between the simulations and the
experiment, but there are noticeable differences in the peak values at
some stations. The earlier flow reattachment in the small tunnel
experiment suggests a faster growth of the separated shear layer
relative to that in the simulations. The higher Reynolds stress levels
observed in much of the separated region in the experiment would
correlatewell with the faster shear layer growth. Further discussion of
theReynolds stresses can be found in thework ofUzun andMalik [2].
Figure 5a shows themean axial velocity profiles in wall units at the

bump apex (i.e., at x∕c � 0.5) obtained in the two cases. In this
figure, r�w � rwuτ∕ν, U� � U∕uτ, rw � r − rwall is the radial wall
distance (which is the same as the wall-normal distance because the
radial direction is aligned with the wall-normal direction at the bump
apex); U is the mean axial velocity; uτ �

��������������
τwall∕ρ

p
is the friction

velocity; τwall is thewall shear stress; and ρ and ν, respectively, are the
density and kinematic viscosity on the wall. Even though the
turbulent boundary layer is in an accelerated flow regime at this
location, the tenth-order filter ILES profile appears to possess a

Table 1 Near-wall grid spacings in wall units at several streamwise locations

Streamwise location Streamwise spacing Radial spacing Azimuthal spacing

x∕c � 0.2, sixth-order filter 27.5 0.88 15.6
x∕c � 0.2, tenth-order filter 29.6 0.95 16.8
x∕c � 0.3, sixth-order filter 27.8 0.89 16.5
x∕c � 0.3, tenth-order filter 29.8 0.95 17.6
x∕c � 0.4, sixth-order filter 27.1 0.87 16.4
x∕c � 0.4, tenth-order filter 28.6 0.92 17.4
x∕c � 0.5, sixth-order filter 25.9 0.83 15.8
x∕c � 0.5, tenth-order filter 27.2 0.87 16.6

Fig. 2 Effect of filter order of accuracy on Cp and Cf .
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well-defined logarithmic layer, for which the constants (von Kármán
constant of κ � 0.4 and an intercept constant of C � 5.2) agree with
the typical values valid for zero-pressure-gradient boundary layers.
The logarithmic layer is defined asU� � κ−1 ln �r�w � � C. The sixth-
order filter ILES mean velocity profile displays a shift above the
logarithmic layer by as much as 1.5 units.
To investigate the reason for the different logarithmic layer

behavior observed with the sixth-order filter, Fig. 5b plots the
physical dissipation of turbulent kinetic energy (TKE) at x∕c � 0.5
and compares it with the numerical dissipation of the filtering
operation with varying orders of accuracy. The profiles are

nondimensionalized using the bump chord length, ambient sound
speed, and freestream kinematic viscosity. The physical dissipation is
computed from the dissipation term in the Favré-averaged TKE

transport equation for compressible flow, which can be found in the
work of Adumitroaie et al. [14]. In Cartesian coordinates, the
physical dissipation is given by

εp � 1

�ρ
hσji∂u 0 0

i ∕∂xji (3)

where �ρ is themean density, σji is the fluctuating viscous stress tensor
(computed using the velocity fluctuation field), u 0 0

i is the velocity

fluctuation component, xj is the spatial direction, and hi denotes

azimuthal averaging. An instantaneous snapshot of the flowfield,

obtained from the simulation performed with the sixth-order filter, is
used to compute the physical dissipation profiles at x∕c � 0.5 for all
azimuthal positions, which are then averaged to obtain the profile

shown here.
To determine the amount of TKE removed by the filtering

operation with varying orders of accuracy, the same instantaneous

flow solution is filtered separately using the sixth-, eighth-, and tenth-

order filters. The numerical dissipation of the respective filter is

computed as εn � �Kb − Ka�∕Δt, where K is the TKE; the
superscripts b and a denote “before” and “after” the filter appli-

cation, respectively; and Δt is the computational time step. The

instantaneous numerical dissipation profiles at x∕c � 0.5 are
computed for all azimuthal positions and are averaged to obtain the

profiles shown here. As expected, the physical dissipation peaks on

the wall and naturally decays with the wall distance. The numerical

dissipation of the sixth-order filter is found to be much higher than
that of the tenth-order filter and becomes comparable to the physical

dissipation for r�w greater than 20 or so, which is precisely in the

region where the deviation from the logarithmic layer occurs. The

sixth-order filter therefore applies significantly more numerical
dissipation than the tenth-order filter in the near-wall region, which

further manifests its effects in the form of a lowered skin friction and

an upward shift in the logarithmic layer of the mean velocity profile.

Fig. 3 Effect of filter order of accuracy on the mean axial velocity profiles.
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A simulation with an eighth-order filter was not considered in this
study,mainly because the simulation on the present grid was found to
be stable with the tenth-order filter. As seen in Fig. 5b, the numerical
dissipation profile of the eighth-order filter falls in between those of
the other two filters. As the numerical dissipation of the tenth-order
filter is enough to keep the simulation stable, the eighth-order filter
would add more than enough dissipation if it were to be used in a
simulation on the present grid. Hence, the results with the eighth-
order filter would likely differ from those obtained with the tenth-
order filter.

IV. Conclusions

The effect of spatial filtering order of accuracy in ILES has been
examined in a high-Reynolds-number transonic shock-induced
separated flow. The tenth-order filter provides a minimal amount of
numerical dissipation on the present grid, whereas the sixth-order
filter yields a significant amount of numerical dissipation as
compared to the physical turbulent dissipation. The predictions are
negatively impacted by the excessive numerical dissipation of the
sixth-order filter. The findings demonstrate that the numerical dissi-
pation of the implicit SGS model can introduce detrimental effects
that lead to erroneous predictions. It is therefore recommended to use

the highest-order filter that is stable on a given grid while keeping the

filtering parameter as close as possible to its upper limit. In problems

involvingmore complex curvilinear grids and geometries, rather than

operating on or near the edge of numerical stability of the highest-

order filter, one may opt to use a lower-order filter and add further

grid resolution to limit the numerical dissipation. Such a strategy can

help augment the robustness of the simulation methodology in

particularly complex cases. Regardless of the strategy adopted for a

given problem, grid resolution studies should also be performed

whenever feasible in order to ensure reasonable numerical conver-

gence of the results.

Finally, it is noted that the main conclusions in the present study

concur with the earlier related findings of Visbal et al. [4]. In that

study, the traditional fourth- and sixth-order compact finite difference

schemes were coupled with the same Padé-type filters used here.

Visbal et al. [4] concluded the following:

The filter must not introduce dissipation at thewavenumbers

captured accurately by the baseline discretization while

ensuring sufficient dissipation of high-frequency compo-

nents in order to maintain long-term numerical stability. The

use of fourth- and sixth-order interior Padé-filters in the

Fig. 4 Effect of filter order of accuracy on the Reynolds stress profiles.
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homogeneous directions was found to be inadequate even
when optimized for an improved spectral response.

The optimized prefactored fourth-order-accurate compact finite
difference scheme [8] used in the present work is derived from the
standard eighth-order compact scheme and has been shown to have
better resolution in the high–wave-number range than the standard
eighth-order compact scheme. The current analysis indicates that the
eighth-order filter would addmore dissipation than what is needed to
keep the simulation stable on the present grid and provides further
justification for the use of the tenth-order filter with minimal
numerical dissipation. It is hoped that the knowledge gained in this
study will contribute toward establishing the best practices for ILES
based on spatial filtering.
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