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Abstract

A modeling approach is proposed to simulate delamination propagation in fatigue that combines the

Virtual Crack Closure Technique (VCCT) with a progressive nodal release strategy. The progressive

nodal release alleviates the artificial stress concentrations found when using the VCCT with instantaneous

release to model 3D delamination without re-meshing. This enables crack shapes that do not conform

to the underlying mesh to be readily simulated. The progressive release is formulated such that

no artificial growth or healing occurs as a result of a change in loading conditions. Furthermore,

expressions for calculating energy release rates at partially released nodes are proposed and applied to

arbitrarily shaped delamination fronts. The shape of the delamination front is considered explicitly in

the energy release rate calculations, and is determined by considering the normalized crack positions

associated with the partial nodal release. Contrary to previous implementations, the local delamination

propagation direction is not assumed to follow mesh lines, but instead is computed as part of the

iterative procedure proposed to determine the maximum energy release along the crack front. The

results obtained suggest the approach can accurately simulate Mode I, Mixed Mode I/II and Mode II

fatigue delamination growth and be used to simulate growth of arbitrarily shaped cracks that do not

conform to the underlying mesh.
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1. Introduction

Delamination is one of the most common and critical failure modes in composites [1]. Within

the Finite Element Method framework, the Virtual Crack Closure Technique (VCCT) [2, 3] and

Cohesive Zone (CZ) approaches (e.g. [4, 5]) have become the most commonly used techniques for

simulating delamination propagation in composites. Implementations of these techniques, mostly

aimed at simulating quasi-static delamination growth, can now be found in several commercial software

packages. However, modeling delamination growth, particularly under fatigue loading, remains a

challenge and an active area of research. Although approaches requiring enhanced element formulations

[6] or alternative numerical frameworks [7] have been proposed recently, most of the research on the

simulation of delamination growth in fatigue focuses on the enhancement and maturing of the VCCT

and CZ approaches and their application, e.g. [8–10].

The present work proposes a new technique that couples the VCCT with a progressive nodal

release strategy to enable the modeling of fatigue crack growth of arbitrarily shaped delaminations

without re-meshing. The VCCT is a numerical method used to determine Energy Release Rate (ERR)

components. However, modeling crack growth in an automatic fashion, based on the ERRs computed

using the VCCT, requires a separate strategy. One such strategy consists of updating the mesh near the

crack front such that, at each growth increment, it conforms to the crack shape. This method typically

renders very accurate results [11–13]. However, challenges arise when modeling the interaction of

multiple in-plane delaminations [12], as well as overlapping through-thickness delaminations. These are

non-trivial challenges to re-meshing algorithms that have not yet, to the best of the authors’ knowledge,

been unequivocally addressed. Alternatively, a second strategy can be found in literature, in which a

delamination is propagated without updating the mesh, by fully releasing penalty stiffnesses associated

with each element or node, e.g., [14, 15]. However, as a result of this procedure, the shape of the crack

front is forced to conform to the underlying mesh, resulting in jagged crack fronts that cause artificial

stress concentrations which in turn affect the accuracy of the ERR calculations. For 2D problems,

where each crack tip is at a single node, or simple 3D geometries in which crack front and mesh remain

aligned as the crack propagates, this procedure may provide sufficiently accurate results, e.g., [14, 15].

However, recognizing this limitation, particularly for cracks that develop with an arbitrary shape,
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several methods have been proposed to alleviate the artificial local stress concentrations and their

effect on the ERR calculation. These methods typically focus on the use of correction factors applied

to the VCCT expressions, e.g., [16–18]. These correction factors can be non-trivial both to implement,

in particular if accounting for multiple interacting delaminations, and to verify. Furthermore, they

only partially alleviate the effect of the artificial stress concentrations on the ERR calculation and,

more importantly, do not remove the artificial stress concentrations.

The present work is based on the methodology proposed in [19]. In [19], an alternative approach was

proposed in which intermediate crack positions that do not conform to the mesh are accommodated

by allowing the nodes to be released progressively via the use of kinematic constraints that change

as the crack grows between node pairs. The approach was implemented via an interface element [19]

and applied to the simulation of quasi-static delamination growth in 2D. A similar approach has been

implemented in Abaqus/Standard [20] and can be applied to simulate delamination growth in 3D, but

is presently limited to quasi-static applications. The use of progressive release alleviates the stress

concentrations caused by a potential mismatch between the underlying mesh and the crack front. The

present work follows recent efforts from the authors [21] and extends the methodology proposed in

[19] to fatigue applications. A new treatment of the progressive release under mixed-mode conditions

is formalized which ensures that no artificial crack growth/healing occurs as a result of a change in

mode-mixity. In addition, a new procedure to determine ERR that explicitly takes into account the

local crack shape and does not assume the local delamination growth direction is proposed and applied

to arbitrarily shaped planar cracks.

A summary of the methodology used to determine ERRs is provided in the next section (Section

2). Subsequently, the progressive release procedure and its implementation to model fatigue crack

growth are presented in Section 3. Illustrative numerical results are presented in Section 4, including

quantitative and qualitative comparison to existing benchmarks, followed a discussion of the results

obtained and conclusions in Sections 5 and 6, respectively.
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2. Energy release rate calculation

Progressive nodal release is used, in the present study, to represent intermediate crack positions

between node pairs. The concept of progressive nodal release, in the context of VCCT, is illustrated

in Figure 1 as proposed in [19]. Assume the crack grows past node position i to some intermediate

position between node i and j+2. In the method proposed in [19], the propagation to an intermediate

position between nodes is represented by a kinematic constraint inserted between the top and bottom

surface nodes at the nodal position i. This kinematic constraint can be thought of as springs connecting

the degrees of freedom of nodes i+ and i−. The stiffness of these springs is assigned according to the

algorithm detailed in Section 3. The progressive release procedure results in a region across the crack

front where nodes may be at an intermediate stage of release, held by kinematic constraints. This

region is akin to a process zone obtained in cohesive element formulations. However, contrary to a

process zone obtained in cohesive element formulations, this region is always defined by the distance

between adjacent node pairs and does not intend to represent a material constitutive response.
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Figure 1: Progressive release procedure and the use of a spring-like kinematic constraint to represent intermediate crack
positions.

The present section provides a detailed overview of the procedure used to determine the ERR for

unreleased and partially released nodes in a general form suitable for arbitrarily shaped crack fronts.

The expressions presented assume regular meshes of brick elements.
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2.1. Unreleased and partially released nodes

The Mode I/II/III ERR components for node i in Fig. 1 are determined by:

G̃I =
F izδ

j
z + F j+2

z δiz
2Ai

(1)

G̃II =
F ixδ

j
x + F j+2

x δix
2Ai

(2)

G̃III =
F iyδ

j
y + F j+2

y δiy
2Ai

(3)

in which F kn and δkn are the force and displacement jump (difference between the displacement of the

top and bottom surfaces), respectively, computed at node pair k along direction n, and Ak is the area

associated with node k. The expression for Ak is provided in the following section. Equations 1 to 3

enable the determination of ERR for partially released nodes explicitly. In both [19] and [21], the ERR

of partially released nodes was implicitly determined via the assumed unloading curve. Equations 1

to 3 reduce to the classic VCCT expressions, see [2, 3], if the node being considered, in this case node

i, has not yet started to release and hence δixmax
= δiymax

= δizmax
= 0. As in [2, 3], Eqs. 1 to 3 assume

the element size is approximately the same at the front and wake of the crack.

2.2. Arbitrarily shaped crack fronts

The procedure proposed for determining the ERR for a node at an arbitrarily shaped delamination

front has two new key features, compared to [19, 21]. The first is that intermediate crack positions,

represented by partially released nodes, are explicitly determined and used for estimating the actual

crack front shape. The second is that the local crack direction is not assumed but instead estimated

as part of the calculation of the ERRs.

The VCCT Eqs. 1 to 3 are derived based on a self-similar crack growth assumption. From an

application perspective, this assumption does not impose a limitation on the accuracy of the method

and its mesh objectivity. In general, if the crack shape or ERR change dramatically with crack length,

one can refine the mesh as required. Furthermore, in propagation simulations, since the self-similar

growth assumption is only used locally (in each ERR calculation), the approach tends to self-correct as
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the crack propagates, enabling non-self-similar crack growth to be predicted, as will be demonstrated

later in this study, e.g. Fig. 16. However, when using Eqs. 1 to 3 to estimate ERR, the displacements,

area and force should adhere, as closely as possible, to the self-similar growth assumption used when

deriving 1 to 3.

Consider a crack front with an arbitrary shape as illustrated in Fig. 2a, where node i is not yet

released and the two adjacent nodes along the crack front have been partially released. To apply

Eqs. 1 to 3, one needs to determine the position where displacements should be extracted and their

magnitude, as well as the area associated with the release of node i, such that the assumption of

local self-similar growth is preserved as closely as possible. Adjacent nodes j to j + 3 are referred to

as “antenna” nodes, following the nomenclature in [14, 19]. The procedure is exemplified using the

antenna node j. In general, this procedure should be repeated for all antenna nodes j + 1 to j + 3

that are completely released (if any). The ERR at node i is then assumed to be the maximum of

the tentative ERRs associated with each antenna node. The progressive nodal release is defined by

the crack position d, as will be discussed in Section 3, and is available for all node pairs at the crack

front. The crack front position can be estimated based on the values of normalized crack position d at

neighboring nodes. An idealized crack front shape, based on the estimation of the crack front position

using d, is illustrated in Fig. 2a. The normalized crack position of a node j + 3, dj+3, see Fig. 2a, can

be defined as the cracked length along an edge connecting adjacent node pairs, aj+3
acc , divided by the

distance between node pairs, al; hence dj+3 =
aiacc

al
. Knowing dj+3 and the position, xj+3, of the node

j + 3, the crack position, x̃j+3, associated with node j + 3 can be determined by adding dj+3al along

the edge defined by the nodes i and the antenna node j being considered in this case. This procedure is

repeated any partially released nodes at the crack front. The angles γ and β are defined as the angles

between the mesh lines connecting xi to xj+1 and xj+3 and the lines connecting the crack position

associated with node i, xi in Fig. 2a, to the crack positions along adjacent mesh lines, x̃j+1 and x̃j+3

in Fig. 2a.

The next steps are to determine: (i) the tentative projection of the crack front that ensures the

complete release of node i for the various assumed crack growth directions ri, and (ii) the correspondent

wake position that would provide an estimate for the displacement jump registered at nodal position
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i if the crack advanced along the direction ri (see Figs. 3a and 3c) while preserving its shape. These

projections are illustrated in Figs. 3a and 3c as a green dotted line for the tentative projections of the

crack front position associated with node i and a red dashed line for the correspondent wake positions.

The red dotted line and green dashed line are defined by the angles γfw and βfw, considered to be

positive as depicted in Fig. 3b. The angles γfw and βfw are assumed to be equal to angles γ and β if

these are positive. However, if the angles γ and β are negative, the angles γfw and βcw and respective

green and red lines are not defined, limiting the range of directions that can be sampled, see Fig. 3d.

Indeed, in the case where either γ or β are negative, ensuring the complete release of node i would

require that the projection of the crack position associated with node i would lay outside the four

elements neighboring node i, which has not been pursued in the present study. With this definition

of γfw and βfw, and assuming the crack preserves its shape, the tentative projections of the crack

position at node i ensure the complete release of node i such that the overall crack front projection

intersects node j + 2 for the various assumed crack growth directions ri as illustrated in Fig. 3. The

following step is to define a range of tentative crack direction vectors ri with direction given by the

angle Ω, Fig. 3. The magnitude of ri, passing through node i, is determined by considering the origin

of ri lies at a point along the red dotted line and that it terminates at a correspondent point along the

green dashed line. The value |Ωmax| = 45◦ is used in the present study, limiting the range of tentative

directions tried with each antenna node. This avoids redundancy in the calculation of ERRs when

using regular meshes, since the procedure is repeated for the other antenna nodes j + 1 to j + 3. A

detailed discussion on the effect of Ωmax and the overall effect of considering multiple tentative crack

directions in the ERR calculations is presented in Section 4. The ERR is calculated, for each tentative

direction ri, using the VCCT expressions given in Eqs. 1 to 3. The force f i is obtained at node i,

while the displacement jump δj is replaced by δj∗ obtained via interpolation using the element’s shape

functions at a location j∗. Self-similar growth is assumed by considering that the local crack front

shape is preserved as the crack advances along a tentative crack direction ri to a crack front position

that leads to the complete release of node i. With this assumption, the displacement jump that will be

registered at node i can be approximated by the displacement at a correspondent crack wake position

j∗ (along the red dotted line). An area Ai consistent with this crack advancement definition, and that
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ensures the applicability of Eqs. 1 to 3, can be estimated by:

Ai =
ri × ci,j+1 + ri × ci,j+3

4
(4)

where the vectors ci,j+1, ci,j+3 define the local crack front shape and are given for Fig. 3b by:

ci,j+1 = x̃j+1 − xi (5)

ci,j+3 = x̃j+3 − xi (6)

where xi is the position of node i and x̃j+1 and x̃j+3 are the crack front positions associated with

nodes j+ 1 and j+ 3, respectively. In this case, the second term in Eqs. 1 to 3 is zero since node i has

not started to release yet, hence δi = 0. While the procedure is generically illustrated for the node pair

i, j, it is repeated for all nodes j + 1 to j + 3 that have been completely released. The ERR and crack

direction are assumed to correspond to the maximum ERR computed for the various tentative crack

directions associated with all antenna nodes. Finally, Fig. 4 illustrates the calculations performed for

a case where node i has been partially released. In this case, the virtual position associated with node

i is taken into account when determining γ and β and hence γfw and βfw. The remaining calculation

follows the description outlined previously. Likewise, in this case, the displacement jump is obtained

at a tentative crack position j∗ via interpolation using the element’s shape functions. The vector ri

and area Ai are approximated in a similar fashion, using Eqs. 4 to 6, in which xi is replaced by x̃i.

However, the second term in Eqs. 1 to 3 may be nonzero since node i has started to release; hence δi

may not be zero.
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3. Simulating fatigue crack growth via progressive nodal release

In the present study, the progressive release algorithm is implemented using Floating Node Method

(FNM) [22] concepts as illustrated Fig. 5. A 3D solid continuum brick FNM element, fully integrated,

comprising twelve real nodes and four floating nodes, was implemented. The twelve real nodes are used

to model the interface and the material above and below it, as shown in Fig. 5a. Before the interface

is delaminated, the floating nodes are not used. As the interface delaminates, the floating nodes are

used as required to represent the delaminated interface, see Fig. 5b. This strategy avoids the use of

duplicate nodes held by high penalty stiffness springs, to represent regions of the interface that did not

yet delaminate [19]. However, the progressive release procedure and accompanying calculations are

applicable in general and do not require the use of the FNM. The present section provides a detailed

description of the progressive release procedure.

Floating node

Interface

Sub-element 
1

Sub-element 
2

4 Floating 
Nodes

Real node

(a) Split FNM element to model a generic interface
0/θ.

Delaminated 
interface

Sub-element 
1

Sub-element 
2

(b) Fully delaminated element

Figure 5: Floating Node Method element.

Consider a pure mode I loading, i.e., GI = GT and assume that node i is at the crack front as

shown in Fig. 1. The ERR associated with node i is given by Eq. 1 and can be written simply as:

G̃I =
F izmax

δjzmax

2Ai
(7)
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since node i is at the crack tip and hence δizmax
= 0. Let us now assume the crack starts growing past

node i to an intermediate location between node i and the next node position (j + 2). For a linear

elastic case, assuming self-similar conditions as the crack propagates, the force F izmax
, from Eq. 8, is

assumed to decrease linearly:

F iz = F izmax

(
1− ∆A

Ai

)
= F izmax

(1− d) (8)

where ∆A represents an intermediate crack position. The normalized crack position d ∈ [0, 1] is

defined as d = ∆A
Ai , such that if d = 1 the node is completely released, and the force F iz at the node

pair i reduces to zero. Using the same assumptions, a relationship similar to Eq. 8 can be written for

the displacement jump:

δiz = δizmax
d (9)

where δiz is the displacement jump at node position i, which will equal δjzmax
when the node pair is

completely released. Alternatively, the relationships given in Eq. 8 and 9 can be combined and written

as:

F iz = mzδ
i
z + F izmax

(10)

where mz = −F
i
zmax

δjzmax

. For a given value d, Eq. 10 can also be written as:

F iz = kzδ
i
z = mz

(
1− 1

d

)
δiz (11)

and hence the stiffness of the spring kz between node pair i+ and i− can be expressed as:

kz = mz

(
1− 1

d

)
(12)

and Eq. 11 can be generally written for all degrees of freedom as:

f iV CCT = M

(
1− 1

d

)
δi (13)
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where:

M =


mx 0 0

0 my 0

0 0 mz

 (14)

In Figs. 6a and 6b, the relationships given by Eqs. 10 and 11 are represented graphically for z and

x directions. Both F ilmax
and δjlmax

are typically different for each direction l = {x, y, z} leading to

different slopes of the unloading curves, as illustrated in Fig. 6. Assume that conditions change during

the progressive release, and the updated G̃I
new

, G̃II
new

are different from the initial G̃I , G̃II that led

to a finite amount of growth, illustrated in Figs 6c and 6d. This can occur as the crack propagates in a

non-self-similar fashion as a result of unloading after some initial release and re-loading with different

loading conditions. Despite the different loading conditions, if no growth occurs during unloading and

re-loading according to the fracture criterion/growth law assumed, the spring stiffnesses, kUz and kRz :

kUz = mU
z

(
1− 1

dU

)
(15)

kRz = mR
z

(
1− 1

dR

)
(16)

where the superscripts U and R designate variables associated with unloading (U) and re-loading (R),

should be identical and equal to kz:

kUz = kRz = kz (17)

In addition, since no growth occurs:

dU = dR = d (18)

Recalling Eq. 11, Eqs. 17 and 18 are satisfied if:

mU
z = mR

z = mz (19)

and thus mz is considered constant during the progressive release. Using similar arguments, mx and
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my are also considered constant during the progressive release. This guarantees that no artificial crack

healing or crack growth occurs as a result of variation of loading conditions without a fracture criterion

or growth law being met.
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3.1. Fatigue crack growth

For simplicity, let us assume the growth rate at each node i can be given by an exponential

expression of the type: (
da

dN

)i
= C

(
GiTmax

)n (20)

similar to a Paris-Law, where C and n are determined experimentally. Note that C and n can also

be a function of mode-mixity or other variables and hence can be different for each node i. For the

purpose of the subsequent explanation, C and n are assumed constant. Indeed, other expressions for

da
dN , such as provided in [23, 24], can also be used. Knowing the growth rate

(
da
dN

)i
, it is possible to

estimate the number of cycles needed for the crack to propagate by a fraction 0 < λ ≤ 1 of the length

that would lead to complete nodal release ail∗ :

∆N i
λ =

λail∗(
da
dN

)i (21)

The fraction λ designates the “crack growth increment”. In the present study, λ was defined globally

for simplicity. A local definition for λ may be more appropriate, for cases where dissimilar element

sizes may be present. Additionally, the cycles needed for the crack to propagate to the next nodal

position are also computed:

∆N i
al

=
ail∗
(
1− di

)(
da
dN

)i (22)

where:

di =
aiacc
ail∗

(23)

and aiacc represents the accumulated crack growth. Subsequently, for each node i at the crack front,

∆N i is determined:

∆N i = min
{
∆N i

λ, ∆N
i
al∗

}
(24)

where ∆N i is the minimum number of cycles needed to either propagate the crack by the set increment

length λail∗ or to grow it to the next nodal position. Subsequently the minimum of all ∆N i determined
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for each node i along the crack front is computed:

∆Ninc = min
{
∆N1, ...,∆N i, ...,∆Nm

}
(25)

where the superscript m designates the total number of nodes at the crack front. Further, it is assumed

that, in this increment, all nodes at the crack front are fatigued by ∆Ninc cycles. This ensures that the

set crack increment λail∗ is not exceeded anywhere in the model and that the crack does not accumulate

beyond ail∗ such that at any time di≤1. Knowing ∆Ninc, the increment ∆di can be computed by:

∆di =

(
da
dN

)i
∆Ninc

ail∗
(26)

and the updated dinew can be computed as:

dinew = di + ∆di (27)

A node initiates its progressive release when:

dinew > ζ (28)

The value for ζ does not affect the solution, provided ζ is sufficiently small. In this study, it is assumed

ζ = 0.001. However, not defining ζ may lead to convergence issues due to very high stiffnesses k being

computed at the onset of the progressive release for very small dinew, see Eq. 12. Finally, a node is

considered to completely release when:

dinew = 1− ξ (29)

The tolerance ξ provides a measure of the accumulation of crack growth required before a node

is completely released. By increasing the tolerance ξ, more nodes will be released per increment,

accelerating the analysis at the expense of a coarser solution. The effects of varying tolerance ξ will

be discussed further in Section 4.
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3.2. Equilibrium Equations

Consider the equilibrium of a generic linear elastic solid of volume Ξ subject to external forces,

fext, with internal stresses, σ, in which partially released springs, fV CCT (δ), are included to represent

intermediate crack positions: ∫
Ξ

σdΞ + fV CCT (δ) + fext = 0 (30)

Using the principal of virtual work, and recalling Eq. 13:

∫
Ξ

BtCBudΞ + DtM

(
1− 1

d

)
Du︸ ︷︷ ︸

fV CCT

+ fext = 0 (31)

where ε = Bu, σ = Cε and δ = Du. Following the procedure outlined in the previous section, d is

updated at the end of each converged increment leading to an explicit crack propagation. In this case,

Eq. 31 is linear and easily solvable. The explicit crack propagation used in this study leads to a linear

system of equations and hence no convergence difficulties.

3.3. Implementation

This section provides an overview of how the approach is implemented. The method is implemented

in Abaqus/Standard R© via the user element depicted in Fig. 5. As mentioned previously, different

forms of the element may be acceptable, e.g. [19], and combined with the progressive release algorithm

proposed. Although not pursued at this time, the application and extension of the methodology

to other element types, such as prisms or tetrahedrons, is considered of interest. Additionally, the

optimization of the algorithm to accommodate transition regions from fine to coarse meshes and/or

distorted elements has also not been pursued.

The present algorithm assumes that the growth rate da
dN is written as given in Eq. 20. Other

functional forms for da
dN , (see [23]), may require modifications to the algorithm, including additional

finite element analysis. The proposed algorithm is event-based, where an event is defined as a growth

increment or a node being completely released, or both. Therefore, the number of cycles is calculated

as a function of the assumed growth increment as part of the solution. The event-based algorithm is
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chosen for illustrative purposes; however, other algorithms, such as cycle-based, could also be explored

using the same overall methodology. In such a case, a fixed number of cycles is assumed, and the

corresponding growth increment is calculated as part of the solution. In the present implementation,

the solution is obtained as follows:

1. An implicit finite element analysis is performed, through which nodal forces and displacements

are obtained for all nodes at the crack front (Eq. 31). The ERRs are determined using Eqs. 1

to 3 and the procedure outlined in Section 2.

2. Once the ERR at each node is known, the growth rate can be determined, (Eq. 20).

3. The cycle increment, ∆Ninc, is computed, (Eq. 25).

4. The incremental crack growth for each node i at the front, ∆di, is computed using Eq. 26 and

accumulated via Eq. 27, obtaining an updated dinew.

5. dinew is set to 1 for all nodes at the crack front for which Eq. 29 is satisfied.

6. All nodes that satisfy Eq. 28 initiate their progressive release.

7. The total cycle count is updated, NTotal = NTotal + ∆Ninc , and the procedure is repeated.

In the present Abaqus/Standard R© implementation, the calculation of ERRs is performed externally to

the user element via a python script. The information from the user elements, namely displacements

and forces, is passed to the python script via an Abaqus/Standard R© user subroutine UEXTERNALDB.f

and auxiliary text files.

4. Results

The present section starts with a description of the finite element models used to assess the

methodology proposed, (Section 4.1). This assessment focuses first on the ERR calculation and in

particular on the effect of Ωmax, (Section 4.2). Subsequently, the results obtained from the verification

of the propagation algorithm for Mode I, including a brief sensitivity study, are provided in Section 4.3.

These are followed by the verification results for mixed-Mode I/II and Mode II, Sections 4.4 and 4.5,

respectively. This section concludes by reporting results from verification exercises which evaluate the

suitability of the algorithm to capture the propagation of arbitrary crack shapes that do not conform

to the underlying mesh (Section 4.6).
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4.1. Finite element models

Finite element models of the Double Cantilever Beam (DCB), Mixed Mode Bending (MMB), and

End Notch Flexure (ENF) test specimens were built and are shown in Fig. 7. These models are

used to verify the approach proposed for mode-mixity ranging from pure Mode I to pure Mode II.

Dimensions, mesh refinement, boundary conditions and material properties are based on those used

in the benchmarks given in [8, 25, 26] so that the accuracy of the proposed approach can be assessed

by comparison to the benchmarks. The material properties are summarized in Tables 1 to 3. In

addition, to assess the ability of the approach to model the growth of delaminations with arbitrary

shapes, simulations of an elliptical and a circular planar crack under uniform cyclic tension and shear

were performed. The initial shapes are approximately prescribed following the mesh lines and hence

are not smooth. The models used are illustrated in Figure 8. The solid is considered to be made of

an isotropic material with Young’s modulus E = 7000 GPa and Poisson ratio ν = 0.33, and the Paris

Law coefficient and exponent are assumed as given in Table 1. This exercise is based on a similar

verification study performed in [13]. In both cases, the cracks are assumed to remain planar as they

propagate.
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Figure 7: DCB, MMB and ENF models. Dimensions, mesh and boundary conditions based on [8, 25, 26]. All dimensions
shown are in mm.
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Figure 8: Numerical model of an isotropic solid with (a) embedded elliptical crack under uniform tension, (b) embedded
circular crack under uniform shear. Mesh sizes are illustrated as well as the initial cracks and how they conform to the
underlying mesh. All dimensions are given in mm.

Table 1: Elastic properties, and Paris law coefficient C in mm
cycle

(
kJ
mm

)−n
and exponent n used in the DCB benchmark

[25].

E11

(GPa)
E22 = E33

(GPa)
ν12 = ν13 ν23 G12 = G13

(GPa)
G23

(GPa)
C n

139.4 10.16 0.3 0.44 4.6 3.99 2.44× 106 10.61

Table 2: Elastic properties used in the MMB and ENF benchmarks [8, 26].

E11

(GPa)
E22 = E33

(GPa)
ν12 = ν13 ν23 G12 = G13

(GPa)
G23

(GPa)

161 11.38 0.32 0.44 5.17 3.98
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Table 3: Paris law coefficient C in mm
cycle

(
kJ
mm

)−n
and exponent n used in the MMB and ENF benchmarks as a function

of mode-mixity β [8, 26].

β = 0.2 β = 0.5 β = 0.8 β = 1.0

C ( mm
cycle

(
kJ

mm

)−n
) 2412 6.79 4.58 0.33

n 8.4 5.4 4.1 5.55

4.2. Effect of Ωmax on energy release rate calculation and crack propagation

The value of Ωmax, as defined in Section 2.2, provides an upper bound to the tentative local crack

directions along which the ERR is computed. In this section, the effect of Ωmax on the ERR calculation

is illustrated. Scaled versions of the DCB (Mode I) and ENF (Mode II) models in Fig. 7 were built.

Contrary to the models presented in Fig. 7, the width of the models used in this section was reduced

to B = 2 mm, and the number of elements along the width was reduced to four.

To assess the effect of Ωmax in the ERR calculation for each model, two initial crack front shapes

were considered: (a) straight crack front and (b) chevron crack front obtained by completely releasing

the central node of the straight crack front. For each crack front, ERRs were determined as a function of

|Ωmax| which varied between 0
◦
and 45

◦
in 15

◦
increments. When applied along a crack front that has

not yet started to release, the ERRs determined by the proposed algorithm, assuming Ωmax = 0, are

expected to provide similar results to those obtained with the procedures used in [19–21]. In [19–21],

ERRs are determined from the forces at node i and the displacement jumps at the four antenna nodes

(along mesh lines). The upper limit, 45
◦
, was chosen since for square meshes |Ωmax| > 45

◦
results in

redundant values of ERRs being calculated. The results obtained are illustrated in Fig. 9, in which

additional results from equivalent models built with Abaqus/Standard R© native C3D8I elements are

also included. As can be seen in Fig. 9a for straight cracks, the ERRs along the crack front do not

seem to vary as a function of Ωmax. However, in Fig. 9b, it is clear that the ERRs computed at the

nodes immediately adjacent to the central node tend to increase with Ωmax. In the DCB case, the

ERR of the nodes adjacent to the central node is always larger than the ERR at the central node. This

indicates that the adjacent nodes would initiate their release before the central node, which would tend

to smooth the chevron crack shape. However, in the ENF case with Ωmax = 0, the ERRs obtained at
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adjacent nodes are very similar (smaller for ERRs obtained with Abaqus) than those obtained at the

central node. This suggests that the chevron shape would tend to be preserved (or further pronounced)

rather than smoothed. Only for values of Ωmax ≥ 30
◦
does the ERR at the nodes adjacent to the

central node become significantly larger than the central node, indicating that the crack would likely

tend to become smoother.

The effect of Ωmax on delamination propagation was further investigated by using the approach

proposed in this study to simulate the propagation of a chevron crack front while assuming different

values of Ωmax. For each model, DCB and ENF, two simulations were performed assuming Ωmax = 0

and Ωmax = 45
◦
. As can be seen in Fig. 10 in the DCB simulations, the initially prescribed chevron

shape smooths after a few increments of growth, and the typical concave (thumbnail) crack shape

is obtained regardless of Ωmax, with slightly smoother results obtained with Ωmax = 45
◦
. On the

other hand, the ENF simulations show that with Ωmax = 0, the chevron crack shape is not smoothed

but instead is further pronounced after a few increments of growth to form a zig-zag shape with

approximately one element length of amplitude, see Fig. 10. However, if Ωmax = 45
◦
is used instead,

a smooth convex crack shape, typical of ENF specimens, is obtained after a few increments of growth.

23



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2
y [mm]

𝛺 = 0 𝛺 = 15
𝛺 = 30 𝛺 = 45
Abaqus

GII
[kJ/m2]

GI
[kJ/m2]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2
y [mm]

𝛺 = 0 𝛺 = 15
𝛺 = 30 𝛺 = 45
Abaqus

Crack front
(plane view)

DCB ENF

Crack front
(plane view)

(a) Straight crack

DCB ENF

GII
[kJ/m2]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2
y [mm]

𝛺 = 0 𝛺 = 15
𝛺 = 30 𝛺 = 45
Abaqus

GI
[kJ/m2]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2
y [mm]

𝛺 = 0
𝛺 = 15
𝛺 = 30
𝛺 = 45
Abaqus Crack frontCrack front

(b) Chevron crack

Figure 9: Energy release rate as a function of Ωmax for DCB and ENF
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Figure 10: Chevron crack shape growth as a function of Ωmax for DCB and ENF
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4.3. Mode I (DCB)

In the present section, the ability of the procedure to simulate Mode I delamination growth is

assessed using the full scale model (with width B equal to 25 mm) illustrated in Fig. 7a. Mesh size

in the refined region was assumed elsize−x = 0.5 mm, elsize−y = 0.5 mm. All simulations reported

in the present study were performed with crack growth increment ratio and release tolerance set to

λ = 0.2 and ξ = 0.025, respectively, unless otherwise stated. A sensitivity study on the effect of these

parameters is presented in the next section. Figure 11a shows that the results obtained compare well

with the 2D benchmark from [25]. The discrepancy observed is due to the difference between the ERR

obtained with the 2D model used to define the benchmark and the 3D simulation performed in the

present study. This was verified by simulating growth while enforcing the crack to remain straight and

determining the growth rate at each increment using the ERR computed at the center of the specimen

(which approximates the plane strain conditions assumed in the 2D benchmark). The results from this

simulation are given in Fig. 11a and labeled “Simulation, quasi-2D”. As can be seen, they are nearly

identical to the 2D benchmark. Additionally, Fig. 11b shows a planar view of the simulated crack

front obtained after a few increments of growth. The gridlines correspond to element boundaries. The

thumbnail shape obtained is characteristic of DCB specimens, see e.g. [27]. Note that the crack was

initially straight, as highlighted in Fig. 11b. Indeed, Figure 11b indicates that the procedure proposed

is capable of accommodating a crack front which does not conform to the underlying mesh and can

develop in a mesh-independent fashion. The crack is seen to traverse multiple element boundaries

without any marked effect on its smoothness or shape.
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Figure 11: DCB (Mode I) results. (a) crack growth results obtained with the proposed approach compared with the 2D
benchmark obtained in [25]; (b) planar view of the crack front as simulated by the present approach that has propagated
a maximum of 4.5 mm.

4.3.1. Sensitivity study

In the present section, the ERR calculation and the simulated crack shape are assessed as a function

of mesh, crack growth increment λ, and release tolerance ξ.

In Fig. 12, the crack front shape and ERR along the crack front of a DCB specimen are illustrated.

Both ERR distribution and crack front shape were obtained for the increment corresponding to

a maximum crack growth of 4.5 mm. In this case, progressively finer meshes, with element sizes

correspondent to elsize = elsizex = elsizey = {1.0, 0.5 , 0.25} mm, were used. All meshes used captured

the typical thumbnail shape observed in DCB specimens. However, progressively finer meshes led,

in general, to a smoother crack front and more pronounced thumbnail shapes, (Fig. 12a), as well as

smoother ERR distributions along the crack front, (Fig. 12b).

Both crack increment λ and release tolerance ξ affect the overall smoothness of the solution.

Decreasing ξ and/or λ leads to progressively smoother crack front shapes and ERR distributions,

at the expense of a larger number of growth increments, and hence longer runtimes. This is illustrated

in Fig. 13 by progressively decreasing ξ for a fixed λ. If either value, ξ or λ, is much smaller than the

other, it will control the release after the first increments of growth.

The small oscillations in ERR observed, Fig. 12b and 13, are a function of the local crack front

smoothness and hence both mesh refinement and crack increment λ. Additionally, they are often
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associated with regions where the tolerance ξ is met, leading to a small crack jump. Hence, decreasing

mesh size and the crack increment λ, as well as ξ, systematically contributes to a smoother crack front.

In all cases simulated in this study, no convergence difficulties were encountered, independent of

chosen values for element size, crack increment λ, and tolerance ξ.
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4.4. Mixed-Mode I/II (MMB)

In this section, results obtained with MMB (Mixed Mode I/II) model, Fig. 7b, are shown and

compared to 2D benchmark results [8]. For all cases, the solution parameters were kept constant,
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including: mesh size elsize−x = 0.5 mm, elsize−y = 0.5 mm. All cases approximate well the benchmark

solution as shown in Fig. 14a. A representative steady state crack shape for GII

GT
= 0.5, as determined

by the simulations, is shown in Fig. 14b. The crack shape obtained is predominantly straight, as

observed experimentally, with slight tendency to become more concave/convex as a function of the the

mode-mixity applied.
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Figure 14: MMB (Mixed Mode I/II) results. (a) crack growth results obtained with the proposed approach compared
with the 2D benchmark obtained in [8]; (b) planar view of the crack front simulated by the present approach for GII

GT
= 0.5

and a crack which has grown to xmax = 10 mm.

4.5. Mode II (ENF)

The results obtained with the ENF model (Mode II), Fig. 7c, are illustrated in Figure 15. As

shown in Fig. 15a, and similarly to what is reported in the previous sections, the crack growth

simulation compares well with the respective 2D benchmark from [26]. As in the DCB case, the

small discrepancies observed are attributed to the 2D nature of the benchmark when compared with

the 3D simulation performed. Note that in both ENF and DCB simulations, the crack front shape

departs more from a straight crack front than in the MMB simulations, and hence a larger discrepancy

between simulation and benchmark. Figure 15b shows a planar view of the delamination front with

three results reported. The convex shape of the crack is typical of ENF specimens. The curve labeled

“Present study” corresponds to crack fronts obtained using the approach proposed. The curve labeled

“Ref. [21] - no smoothing” was obtained following the approach discussed in [21]. In [21], the ERR
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was calculated without accounting for the crack front shape and using only the displacements obtained

at antenna nodes j to j + 3 shown in Fig. 2, without performing any interpolation. In addition, an

alternative expression (rather than Eqs. 1 to 3) based on the unloading curve (force-displacement) was

used in [21] to determine ERRs in partially released nodes. The results obtained show that a zig-zag

crack front with amplitude similar to the element length, in this case elsizex = 0.5 mm, develops

after some crack growth. In [21], this non-physical behavior was alleviated by performing Gaussian

smoothing of the crack front after each growth increment. However, the smooth results obtained with

the present approach indicate that Gaussian smoothing may not be required if the procedure described

in Section 2 is adopted.
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Figure 15: ENF (Mode II) results. (a) crack growth results obtained compared with the proposed approach to the 2D
benchmark obtained in [26]; (b) planar view of three different crack front positions comparing the approach proposed in
this study with [21].

4.6. Arbitrarily shaped cracks

This section focuses on the qualitative assessment of the method’s capability to model growth of

delaminations with arbitrary shapes. The first verification exercise consists of an elliptical planar crack

embedded in an isotropic solid loaded in uniform cyclic tension, as shown in Fig. 16a. The mesh size

used was elsize = elsizex = elsizey = 0.0625 mm, as illustrated in Fig. 8. The results obtained are

shown in Fig. 16b. Note that the initial approximate crack shape is prescribed following mesh lines and

hence is not smooth. As the crack propagates, smoother shapes are obtained. Different intermediate
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shapes can be observed, progressively converging to a circular shape, as expected [13]. The second

case corresponds to the same solid but under uniform shear as depicted in Fig. 17a. However, in this

case the initial shape, conforming to the underlying mesh, approximates a circle rather than an ellipse.

As the crack grows, it smoothly elongates the circle along the axis aligned with the shear loading as

expected. It is worth noting that, in either case, the initial un-smooth shape that results from the

initial crack conforming to the underlying mesh rapidly evolves to a smooth crack shape after a small

number of growth increments.
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Figure 16: Embedded elliptical planar crack: uniform tension.
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Figure 17: Embedded circular planar crack: uniform shear.

5. Discussion

Overall, the results obtained in the previous section show good quantitative agreement between the

simulation method and 2D benchmarks obtained for DCB (Mode I), MMB (Mixed Mode I/II) and ENF

(Mode II) specimens. Also, qualitatively, the crack shapes typical of the characterization specimens

were successfully captured, e.g. thumbnail shape in the DCB specimen and opposed thumbnail shape in

the ENF specimen. Additionally, the simulations of planar growth of embedded circular and elliptical

cracks in an isotropic solid demonstrate that the method is capable of successfully capturing the

transition between crack shapes that do not conform to the underlying mesh. The effect of the range

of tentative crack directions, defined by |Ωmax|, was assessed. The results obtained indicate that

enabling the algorithm to search for a maximum ERR, by varying the tentative crack direction, is

key to obtaining a framework that does not result in the development of non-physical crack shapes.

The sensitivity study performed in Section 4.3.1 suggests that mesh size, release tolerance and crack

increment affect the smoothness of the results. Decreasing either of these tolerances or the mesh size

leads to progressively smoother solutions at the expense of longer computational times. As proposed,

the progressive release scheme only requires the solution of a linear system of equations and hence does
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not show convergence difficulty.

6. Concluding Remarks

An approach is proposed that combines progressive nodal release with the VCCT to model fatigue

crack growth in a mesh-independent fashion. Three new aspects are worth highlighting:

1. VCCT expressions are proposed that generalize the calculation of ERR for nodes at the crack

front that have not yet started to release and for nodes that are partially released.

2. ERRs along the crack front are calculated via a new procedure that explicitly accounts for the

local shape of the crack front and does not assume a local crack growth direction aligned with

mesh lines

3. Aspects 1 and 2 were combined with a progressive release scheme that is formulated such that

no artificial crack growth or healing occurs as a result of a change in loading conditions.

The approach was implemented as a user element in Abaqus/Standard R© and assessed by comparing

results obtained from simulating DCB, MMB and ENF test specimens with existing 2D benchmarks.

This comparison enabled the assessment of the approach for mode-mixity ranging from Mode I to

Mode II. Overall, the results compared well to the 2D benchmarks, demonstrating the accuracy of the

approach for the cases tested. The approach was further assessed by applying it to the simulation of

growth of circular and elliptical embedded cracks. These simulations qualitatively demonstrated the

ability of the approach to capture the transition between crack shapes that do not conform to the

underlying regular mesh.

The methodology can be used with any functional form of ERR that characterizes delamination

growth rate under mixed-mode conditions. It does not require any dedicated material model calibration

or characterization. Crack growth is determined as a post-processing step at the end of each increment,

and hence it shows no convergence issues associated with the progressive nodal release. Overall, the

results obtained suggest the approach may provide a suitable strategy to simulate mixed-mode fatigue

delamination growth in composite laminates.
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