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Thermal Protection Materials Branch

Ablative Heat Shield Composites Reusable Thermal Protection Coatings
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Void Mitigation in Compression

Pad Material
Collaborators: Jay Feldman and Peter Gage (NASA ARC)

Compression Pad

Compression Pads — serves as a
structural and ablative TPS/separates
crew module from the service module

Properties — must withstand
mechanical loading during transit and
thermal loading during entry

3D-MAT - Three-Dimensional Multi-
Functional Ablative Thermal
Protection System (woven silica
preform infused with resin)

Challenge - void formation during
processing (resin curing)



Resin Infusion
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3D Composite Billet

3D, Woven Quartz Fiber Preform
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Resin Infusion at High-P
High-T Boundary
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Preform 13x8x3” in Vessel
Bake-Out (cycles of high-T and low-P)

Cure at High-T - void formation




Gas Adsorption — gaseous species adsorbed on surface and
driven to center during infusion and cure

Cure Shrinkage — shrinkage of the resin during the curing
reaction



Gas Adsorptlon Likely Species?

Silica Fiber Aminosilane

Atomistic models of silica fiber and aminosilane coatings




Gas Adsorption: Likely Species?

Nitrogen Oxygen Carbon Dioxide Water

P 4 Lo
¢ p

AE =-1.3 kd/mol AE =-2.2 kd/mol AE =-1.1 kd/mol AE =-15.6 kdJ/mol

. ¥ 1;&1!

AE =-1.3 kd/mol AE =-0.9 kd/mol AE =-11.3 kd/mol AE =-33.7 kd/mol
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AE =-37.5 kd/mol AE =-34.8 kd/mol AE =-39.9 kd/mol

AE = -36.2 kdJ/mol AE =-40.2 kd/mol

Water strongly adsorbs to the aminosilane coating
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Lines - BET Adsorption Theory Computations

x - standard pressure

1 "Bake Out" Pressure

— 1000x
500x
— 100x

— 10x
— X
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T

Void Diameter (inches)

100 150 200 250 300
"Bake-Out" Temperature (°F)

Significant moisture exists, but not enough to account for voids
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1-D finite volume model of heating and cure
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Cure Times
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Reaction kinetics parameterized from curing experiments
for cyanate ester - Gelation is 60 % conversion (BADcy)
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Cure is heterogeneous with the boundaries reaching the gel point first
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Critical Shrinkage, Gas Expansion,

and Void Nucleation

Shrinkage and Gas Driving
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Cooperative effect of gas adsorption and shrinkage
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Figure 2. General reaction scheme for monomer synthesis.
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Expected cure shrinkage leads to void diameters of
0.5-1.4 inches across potential cure conditions
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« Water is problematic species on silica/aminosilane

« Symmetric curing can drive gas to center of billet,
reduce pressure, and lead to void nucleation

 Asymmetric curing a possible route to void mitigation
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Thermal Propulsion (NTP)

Collaborators: Charles Bauschlicher, Piyas Chowdhury, BJ Tucker
(NASA ARC); Dean Cheikh (JPL); Kelsa Benensky (MSFC)

Mechanism — heat hydrogen and
exhaust it through a nozzle for
propulsion

Heat Source — nuclear fission reaction
in solid fuel reactor core heats
hydrogen

Benefits — I;,~900 s to halve time to
Mars

NERVA - last substantial tests of NTP
ended in early 70s
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Shadow shield “‘f"lf. __—Pressure
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Liquid hydrogen '
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Reactor Core

Hydrogen Channel
(1mm)
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Rt

Hydrogen

ﬂ]T O O OO Particle
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Challenging to find coatings for propellant channels that
withstand 2800 K in hot hydrogen for multiple hours
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Materials for NTP/STP

- Coatings must be sized to not react and ablate to failure
- Coatings should restrict hydrogen diffusion to the carbon substrate
- Coatings should be mechanically stable on the carbon substrate

NTP
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Damage dramatically reduced when temperature
is above the processing temperature
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Key Reaction at Surface:

Reactants

Products

Free Energy (2500 K)

ZrC(s) + 2H,

Zr(s) + CH,4 1.96 eV

AGeysg = AE. oy — TS, + P,V,

=

Cc,S

S9 — exp(AGes—q/kpsT)

- Make an equilibrium assumption
for surface reaction

- Use quantum computations to
define reaction energetics and
solid thermodynamics

- Compare to original NERVA rocket
data (1957-1972) - only at
temperature reactor data available
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Estimates agree well with heritage data in pristine region of the
channel; variability due to material property variances
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¥ Multiscale Coating Corrosion and Mechanics

Atomistic Microscale Macroscale
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Summary

NTP presents a highly challenging environment for
fuel materials

Chemical reactions can be characterized to provide a
match for corrosion rates in high temperature regime

Tools developed to understand cracking and erosion
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@ Questions? .
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Nuclear Thermal Propulsion

NOZZLE SKIRT EXTENSION

Mechanism — heat hydrogen and e T
exhaust it through a nozzle for AN
propulsion

REACTOR CORE

TURBOP!
0PUMPS PROPELLANT LINE

EXTERNAL REFLECTOR

Heat Source — nuclear fission DISC SHELD

reaction in solid fuel reactor core

heats hydrogen Reactor Core
Hydrogen

Benefits —1,,~900 s to halve time tghannel (Imm)

Mars

Hydrogen

Challenge — requires coated
propellant channels that withstand
up to 2800 K in hot hydrogen Graphite

Matrix

Particle
Coating
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Fuel Element

Hydrogen Channel

Hydrogen Flow

Fuel Particle

Fuel Particle
Coating

Fuel Matrix

If we go with graphite fuel elements:
(1) channel coating needs to be stable to hydrogen and compatible with low expansion graphite
(2) fuel particle coating generally to prevent aggregation, but can utilize tristructural-isotrpic
(TRISO) coatings to trap fission products that damage the matrix
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Mechanism — heat hydrogen and exhaust it
through a nozzle for propulsion

Heat Source — craft closely approaches sun and
uses solar energy to heat hydrogen

Benefits —1;,~1200 s for fast travel to the ISM

Challenge — requires a coated carbon heat
exchanger than can withstand up to 3500 K in
hot hydrogen

NASA Partners — JPL (STP project)
GRC (experimental coatings)

Heat 7
Exchanger

Heat Exchan,

Solar Energy

Channel
Coating




Measured at 20°C
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Maximum shrinkage: 4%
Thermal expansion: 3 %
Total Shrinkage: 1 %

Volume in Preform: 3 cubic in.
Diameter: 1.44 in.

Given a 2 GPa modulus of the
resin, final interior pressure falls
from 300 psi to a negative value

Gel
| | |

40 60 80 100
% conversion

Experimental shrinkage after curing cycle
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Channel Coatings

a2 United States Patent (10) Patent No.:  US 10,068,675 B1
Raj et al. 45) Date of Patent: Sep. 4, 2018

Mo-y(%)Nb

Nb-x{%)Mo
GriuCizZrC

NbC or ZrC
coating

Graded Coatings to Prevent Expansion Mismatch Stress — Sai, et al
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*

AE = -41.7 kJ/mol
AE =-33.7 kd/mol

AE =-17.8 kd/mol

Water prefers to interact with aminosilane over resin
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