

Computational Materials Techniques for Thermal Protection Solutions: *Materials and Process Design*

Justin Haskins,¹ Lauren Abbott,² Joshua Monk²

¹Thermal Protection Materials Branch, NASA Ames Research Center

²AMA, Inc., Thermal Protection Materials Branch, NASA Ames Research Center

Materials Science and Technology 2019 | Portland, Oregon

Thermal Protection Materials Branch

Ablative Heat Shield Composites

PICA

HEEET

Reusable Thermal Protection Coatings

TUFROC (X-37B)

Computational Materials Applications

Compression Pad

Void Mitigation in Compression Pad Material

Material Selection for Nuclear Thermal Propulsion

NASA

Void Mitigation in Compression Pad Material

Collaborators: Jay Feldman and Peter Gage (NASA ARC)

Compression Pads – serves as a structural and ablative TPS/separates crew module from the service module

Properties – must withstand mechanical loading during transit and thermal loading during entry

3D-MAT – Three-Dimensional Multi-Functional Ablative Thermal Protection System (woven silica preform infused with resin)

Challenge – void formation during processing (resin curing)

Manufacturing/Integration Process

Manufacturing Process

Preform 13x8x3" in Vessel Bake-Out (cycles of high-T and low-P)

Resin Infusion at High-P

Cure at High-T – void formation

Gas Adsorption – gaseous species adsorbed on surface and driven to center during infusion and cure

Cure Shrinkage – shrinkage of the resin during the curing reaction

Gas Adsorption: Likely Species?

Silica Fiber

Aminosilane

Atomistic models of silica fiber and aminosilane coatings

Gas Adsorption: Likely Species?

Gas Adsorption: Likely Species?

Water strongly adsorbs to the aminosilane coating

Lines - BET Adsorption Theory Computations

Significant moisture exists, but not enough to account for voids

Cure Shrinkage

Heat equation

$$\rho C_p \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial z^2}$$

$$\frac{\partial a}{\partial t} = Ka$$

Gradient formula

$$\frac{\partial^2 T}{\partial z^2} = \frac{T_{i-1} - 2T_i - T_{i+1}}{dz^2}$$

1-D finite volume model of heating and cure

Experimental Cure Data

Reaction kinetics parameterized from curing experiments for cyanate ester - Gelation is 60 % conversion (BADcy)

Temperature and Cure Profiles

0.2 m inch thick preform; elevated temperature cure

Cure is heterogeneous with the boundaries reaching the gel point first

Refined Picture of Void Formation

Shrinkage and Gas Driving

Critical Shrinkage, Gas Expansion, and Void Nucleation

Thermal driving of vapor

Interior pressure reduction from shrinkage

Cooperative effect of gas adsorption and shrinkage

Cure Shrinkage Profile

Expected cure shrinkage leads to void diameters of 0.5-1.4 inches across potential cure conditions

Void Mitigation: Cure Conditions

Asymmetric Curing at Elevated-T

Asymmetrically Heated to Elevated-T

Asymmetric curing will mitigate:

- temperature gradient driving of gas to center
- decrease in pressure at the center

- Water is problematic species on silica/aminosilane
- Symmetric curing can drive gas to center of billet, reduce pressure, and lead to void nucleation
- Asymmetric curing a possible route to void mitigation

Material Selection for Nuclear Thermal Propulsion (NTP)

Collaborators: Charles Bauschlicher, Piyas Chowdhury, BJ Tucker (NASA ARC); Dean Cheikh (JPL); Kelsa Benensky (MSFC)

Mechanism – heat hydrogen and exhaust it through a nozzle for propulsion

Heat Source – nuclear fission reaction in solid fuel reactor core heats hydrogen

Benefits – I_{sp} ~900 s to halve time to Mars

NERVA – last substantial tests of NTP ended in early 70s

Reactor Core

Challenging to find coatings for propellant channels that withstand 2800 K in hot hydrogen for multiple hours

Materials for NTP/STP

- Coatings must be sized to not react and ablate to failure
- Coatings should restrict hydrogen diffusion to the carbon substrate
- Coatings should be mechanically stable on the carbon substrate

Mid-Range Corrosion

Mid-Range Corrosion

Damage dramatically reduced when temperature is above the processing temperature

Initial Approach to Estimate Mass Loss

Key Reaction at Surface:

Reactants	Products	Free Energy (2500 K)
ZrC(s) + 2H ₂	$Zr(s) + CH_4$	1.96 eV

ernal energy per atom of solid and $\Delta G_{c,s \to g} = \Delta E_{c,s \to g} - TS_g + P_g V_g$ in the gas phase, and T is temperat

stablish equilibrium. $\frac{\partial P_g}{\partial Q_g} N_{c,g} = A_c \Delta z_c \rho_c$ epresented as

- Make an equilibrium assumption for surface reaction
- Use quantum computations to define reaction energetics and solid thermodynamics
- Compare to original NERVA rocket data (1957-1972) - only at temperature reactor data available

Formulation for Mass Loss Estimates

Estimates agree well with heritage data in pristine region of the channel; variability due to material property variances

Multiscale Coating Corrosion and Mechanics

-Thermodynamics -Gas-Surface Interactions -Transport

-Crack Initiation/Propagation -Hydrogen Embrittlement -Mechanical Properties -Residual Stress-Delamination-Net Corrosion Rates

- NTP presents a highly challenging environment for fuel materials
- Chemical reactions can be characterized to provide a match for corrosion rates in high temperature regime
- Tools developed to understand cracking and erosion

Questions?

Matrix

Fuel Element

Fuel Element

If we go with graphite fuel elements:

(1) channel coating needs to be stable to hydrogen and compatible with low expansion graphite(2) fuel particle coating generally to prevent aggregation, but can utilize tristructural-isotrpic(TRISO) coatings to trap fission products that damage the matrix

Solar Thermal Propulsion

Mechanism – heat hydrogen and exhaust it through a nozzle for propulsion

Heat Source – craft closely approaches sun and uses solar energy to heat hydrogen

Benefits $-I_{sp}$ ~1200 s for fast travel to the ISM

Challenge – requires a coated carbon heat exchanger than can withstand up to 3500 K in hot hydrogen

NASA Partners – JPL (STP project) GRC (experimental coatings)

Cure Shrinkage

Maximum shrinkage: 4% Thermal expansion: 3 % Total Shrinkage: 1 %

Volume in Preform: 3 cubic in. Diameter: 1.44 in.

Given a 2 GPa modulus of the resin, final interior pressure falls from 300 psi to a negative value

Experimental shrinkage after curing cycle

(10) Patent No.: US 10,068,675 B1
(45) Date of Patent: Sep. 4, 2018

Graded Coatings to Prevent Expansion Mismatch Stress - Sai, et al

