

# **Spectral Bands**

- Wealth of spectral bands onboard new geostationary sensors allows for enhanced aerosol algorithms
  - ➤ Robust cloud masking techniques
  - >Improved aerosol classification
- Differences in channel combinations primarily in the VIS and NIR
  - > 1.3 μm on ABI, AMI for improved cirrus cloud detection
  - > 2.3 μm on AHI for improved land/cloud properties
- Temporal resolution 10 to 15 min for Full Disk scan
- Spatial resolution 0.5 to 2 km from VIS to IR
- Flexibility for regional area selection at higher temporal resolution ... down to 30 sec for GOES-R.

| ar Darras |            |        |            |       |  |  |  |
|-----------|------------|--------|------------|-------|--|--|--|
| Bands     | Resolution | GOES-R | Himawari-8 | GK-2A |  |  |  |
| Darias    | (km)       | (ABI)  | (AHI)      | (AMI) |  |  |  |
| VISO.4    | 1          | 0.47   | 0.46       | 0.47  |  |  |  |
| VISO.5    | 1          |        | 0.51       | 0.508 |  |  |  |
| VISO.6    | 0.5        | 0.64   | 0.64       | 0.64  |  |  |  |
| VISO.8    | 1          | 0.865  | 0.86       | 0.863 |  |  |  |
| NIR1.3    | 2          | 1.378  |            | 1.374 |  |  |  |
| NIR1.6    | 2          | 1.61   | 1.6        | 1.609 |  |  |  |
| NIR2.2    | 2          | 3.35   | 2.3        |       |  |  |  |
| IR3.8     | 2          | 3.9    | 3.9        | 3.832 |  |  |  |
| IR6.3     | 2          | 6.185  | 6.2        | 6.21  |  |  |  |
| IR6.9     | 2          | 6.95   | 7          | 6.94  |  |  |  |
| IR7.3     | 2          | 7.34   | 7.3        | 7.327 |  |  |  |
| IR8.7     | 2          | 8.5    | 8.6        | 8.59  |  |  |  |
| IR9.6     | 2          | 9.61   | 9.6        | 9.62  |  |  |  |
| IR10.5    | 2          | 10.35  | 10.4       | 10.35 |  |  |  |
| IR11.2    | 2          | 11.2   | 11.2       | 11.23 |  |  |  |
| IR12.3    | 2          | 12.3   | 12.3       | 12.37 |  |  |  |
| IR13.3    | 2          | 13.3   | 13.3       | 13.29 |  |  |  |





# Dust RGB Recipe & Product Basics

| Color | Band/Band<br>Diff. (µm) | Physically relates to         | Small contribution to pixel indicates     | Large contribution to pixel indicates       |
|-------|-------------------------|-------------------------------|-------------------------------------------|---------------------------------------------|
| Red   | 12.3-10.3               | Optical depth/cloud thickness | Thin clouds                               | Thick clouds, dust plume                    |
| Green | 11.2-8.4                | Particle phase                | Ice and particles of uniform shape (dust) | Water particles or thin cirrus over deserts |
| Blue  | 10.3                    | Surface temperature           | Cold surface                              | Warm surface                                |

- 12.3 μm is semi-transparent to dust
  - large red intensity compared to clouds
- "Warm" dust at low levels
  - large blue intensity
- Dust plume magenta color
- Dust RGB valid day and night (benefit over typical use of visible or true color imagery to analyze dust plumes)



# **Enhanced Dust RGB imagery**

23 UTC 23 March - 02 UTC 24 March 2017





GOES-16 Visible band 2 (0.64 µm)

**GOES-16 Dust RGB** 

> Allows for enhanced capabilities for monitoring dust plumes, with some caveats including qualitative nature of the product and degradation of night





# Enhanced Dust RGB imagery



- Similar spectral bands onboard Himawari AHI allows for robust monitoring of dust plumes over East Asia
- Combined use of AHI and GK-2A will monitor dust sources across most of Asia.





# Geostationary AOD retrievals



- Discrepancies still exist (cloud masking, anomalous AOD), so more work is needed to further refine the geostationary retrievals



120°E

130°E



### Geostationary AOD retrievals







120°E

130°E



### Constellation of Geostationary Satellites



 Geostationary spectrometers aligned for unprecedented hourly monitoring of air quality



### Sensors & Baseline Products

| Sensor Specs                | TEMPO                                                                                                  | GEMS                                                                          |
|-----------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Wavelength<br>Range (nm)    | 290-490 &<br>540-740 nm                                                                                | 300-500                                                                       |
| Spectral<br>Resolution (nm) | 0.6                                                                                                    | < 0.6                                                                         |
| Spectral<br>Sampling (nm)   | 0.2                                                                                                    | < 0.2                                                                         |
| Spatial Resolution (km²)    | 2.1 x 4.5                                                                                              | 8 x 7                                                                         |
| Baseline<br>Products        | $O_3$ , trop $O_3$ ,<br>$0-2 \text{ km } O_3$ ,<br>$NO_2$ , $SO_2$ ,<br>HCHO,<br>CHOCHO,<br>AOD, $AAI$ | O <sub>3</sub> , NO <sub>2</sub> , SO <sub>2</sub> ,<br>HCHO, AOD, AI,<br>AEH |

- Multi-band UV-VIS capabilities will provide revolutionary diurnal information on O<sub>3</sub> profile
  - ➤ 0-2 km O<sub>3</sub> profile for diagnosing AQ where people live
- Higher spatial resolution of TEMPO for enhanced monitoring of local emissions
- Larger Field of Regard (FOR) of GEMS, greater area coverage for monitoring AQ





Assimilation of GEMS data



- High spatial resolution of TROPOMI helps better resolve emissions, but limited temporal resolution
- Assimilation of GEO (GEMS) trace gas products within regional modeling system over South Asia aims to improve AQ forecasting capabilities



**MODIS Terra 12 Jan 2019** 



https://weather.msfc.nasa.gov/tem



### Synthetic TEMPO data



 Synthetic TEMPO data generated via spatiotemporal interpolation of simulated gaseous and aerosol composition from GEOS-NR (~12 x 12 km<sup>2</sup>)

- Accounts for instrument and algorithm effects
- Generating 1-year of synthetic TEMPO data at NASA SPoRT from July 2013 -**June 2014**
- Conducting analysis into possible extension of synthetic dataset for post-2017 period











### Synthetic TEMPO NO<sub>2</sub>





- 10 granules compose hourly scan over TEMPO Field of Regard
- Goal: Utilize TEMPO proxy data to assess and adopt applications in pre-launch phase and accelerate operational use of TEMPO products after launch

**Document Title** 





10/1/2019

### TEMPO vs OMI NO<sub>2</sub>



OMI NO<sub>2</sub> ~21 UTC

118°W

36°N

34°N

TEMPO NO2



 TEMPO will observe diurnally varying mobile source and smoke emissions



https://weather.msfc.nasa.gov/tempo/

#### **ESRI Visualization for TEMPO**





• ESRI includes point and click feature for retrieving raw geophysical variables at pixel level for on-the-fly analysis



https://weather.msfc.nasa.gov/tempo/

10/1/2019 Document Title 14



#### Pre-launch R2O/O2R Activities



#### **Keys to successful day 1 readiness**

- Data in the end users' display system
- Targeted training
- Assessments to gather feedback from users for the mission scientists

Pre-launch R2O/O2R activities can provide valuable input to mission scientists, algorithm developers, and guide products/capabilities

### Accelerate operational use of products after launch!









#### Much more to come!



- Actively engage with end users/stakeholders during pre-launch phase of **TEMPO** mission
- Utilize GEMS for demonstrating potential applications of TEMPO mission
- Design tailored TEMPO products/files for fulfilling needs of end users/stakeholders
- Assess Data Fusion and Machine Learning techniques



- Synthesize TEMPO and MAIA measurements to develop unprecedented merged products for AQ and health applications
- Synthesize health, low-cost AQ sensors, and satellite data to build advanced exposure models





**Document Title** 





### Thanks! **Questions/Comments**

**Aaron Naeger** 

**Deputy Program Applications (DPA) Lead of TEMPO Mission** 

aaron.naeger@nasa.gov

**TEMPO Health Applications Workshop in Huntsville, AL** 

October 10, 2019

https://weather.msfc.nasa.gov/tempo/meetings.html



