12E.5 Forecasting Frost: Using high resolution WRF runs to predict frost occurrence in the tea growing regions of Kenya

Emily C Adams, NASA SERVIR / UAH James W Nyaga, RCMRD W. Lee Ellenburg, NASA SERVIR / UAH Ashutosh Limaye, NASA SERVIR Robinson Mugo, RCMRD

Africa Flores, NASA SERVIR / UAH Dan Irwin, NASA SERVIR Jon Case, NASA SPoRT / ENSCO Inc Susan Malaso Absea Sedah

CIAT

SERVIR is a partnership of NASA, USAID, and leading technical organizations. SERVIR develops innovative solutions to improve livelihoods and foster self-reliance in Asia, Africa, and the Americas.

SERVIR Focuses on Countries in Asia, Africa, and the Americas

SERVIR #

Countries Around the World Need Satellite Data

Problem

- Complex challenges occur in data-scarce environments
- Most countries lack the capacity to use satellite data and geospatial technologies to manage risk

Approach

- Build lasting capacity through regional partners in the spirit of self-reliance
- Ensure needs-driven and collaborative solutions for accurate problem identification, buy-in, and sustainability
- Leverage US leadership in applied technology

Kenya Tea Development Agency (KTDA)- the agency responsible for production and marketing of the produce from more than 500,000 small scale tea farmers, recorded losses of about 9.6 million USD within a week following a frost event in January 2012

Stakeholder engagement workshop

Image sources: SERVIR Global

SERV

Study Area

SERVIR

•Frost season: December - March (dry season) characterized by cloudless nights.

Characterized by highly undulating to rolling topography
Altitude varying between 1500 m asl and 2400 m asl.
Complex microclimates often override mesoscale systems hence the challenge in predicting LST and weather variables especially given the paucity of meteorological data.

Tea growing counties highlighted in pink

FROST MAPPING, MONITORING, AND FORECASTING SYSTEM IN KENYA

The Kenya **tea industry** supports **10 percent** of Kenya's population, around **3 million families**. This industry is prone to **damage by frost** due to the altitudes in which it is grown. SERVIR, in partnership with its regional partner the Regional Center for Mapping of Resources for Development, developed **a tool to map the frost potential with up to three days' warning**.

25 days

of household

food spending

A full year

of school tuition

for one child

60 days

of household

health spending

Frost Forecasting

1. Evaluation of sample WRF outputs using the Model Evaluation Tool

SERV

Evaluation of sample WRF outputs using the MET tool

- 4 km outputs from 3/01/16 7/01/16 18 z start time (Study area is GMT+3)
 - Control run standard UEMS config

SER

Evaluation of sample WRF outputs using the MET tool

SER

Assessment of Hindcast runs to predict frost

- 1. Evaluation of sample WRF outputs using the MET tool
 - 1. Confidence in WRF as a system
- 2. Systematic UEMSv18.3 (WRF v3) 9:3:1 runs for all recorded frost points

SERVI

Systematic WRF 9:3:1 runs for all recorded SERVIR

 Case studies using base UEMS physics parametrizations for all 100 frost observations from January 1994 – February 2017

Lowest Forecasted 2m Temperature at Frost Locations

Assessment of Hindcast runs to predict frost

- 1. Evaluation of sample WRF outputs using the MET tool
 - 1. Confidence in WRF as a system
- 2. Systematic UEMSv18.3 (WRF v3) 9:3:1 runs for all recorded frost points
 - 1. Base UEMS physics do not represent field conditions conducive to frost at known frost locations
- 3. Case study example on 12/16/16 with various physics combinations

SER

Case study examples with various physics combinations

Selected based on reviewed literature on high resolution WRF and minimal literature from runs using WRF in East Africa

Land Surface Models -

- NOAH
- NOAH Multi-Physics (MP)
- Pleim Xiu Land Surface Model (PXLSM)
- RUC

Additional parameterizations

- Lakes on / off
- Cumulus Schemes
 - On (BMJ / Grell 3D) /
 Off
- Topo Wind Correction
- SST off and on
- Snow/ Ice / Grapuel off / on

Planetary Boundary Schemes

- Asymmetrical Convective Model v2 (ACM2)
- Mellor-Yamada-Janjic (MYJ)
- Yonsei University Scheme (YSU)

Longwave Radiation Schemes

- RRTM
- CAM

Shortwave Radiation Schemes

Dudhia

Microphysics

- ETA
- Lin
- WSM Single Moment 6
 class

SERV

Goddard

Cumulus Schemes

- BMJ
- Grell 3D

Case study examples with various physics SERV combinations

FH 9 Surface Temperature at Frost Locations

Coolest Scheme:

- YSU PBL
- Unified Noah LSM
- Goddard Microphysics

Assessment of Hindcast runs to predict frost

- 1. Evaluation of sample WRF outputs using the MET tool
 - 1. Confidence in WRF as a system
- 2. Systematic UEMSv18.3 (WRF v3) 9:3:1 runs for all recorded frost points
 - 1. Base UEMS physics do not represent field conditions conducive to frost at known frost locations

SER

- 3. Case study example on 12/16/16 with various physics combinations
 - 1. Still not representative of field conditions
- 4. Comparison of forecasted temperatures with 1 station

Comparison with Station Data

Comparison with Station Data

SERV

1

T2 WRF

Assessment of Hindcast runs to predict frost

- 1. Evaluation of sample WRF outputs using the MET tool
 - 1. Confidence in WRF as a system
- 2. Systematic UEMSv18.3 (WRF v3) 9:3:1 runs for all recorded frost points
 - 1. Base UEMS physics do not represent field conditions conducive to frost at known frost locations

SER

- 3. Case study example on 12/16/16 with various physics combinations
 - 1. Still not representative of field conditions
- 4. Comparison of forecasted temperatures with 1 station
 - 1. Not a strong relationship with limited in situ station data

Conclusions

SERVIR

Conclusions:

- High resolution WRF runs in the highlands of Kenya alone do not capture the variability in temperature accurately
 - 1. Variable topography
 - 2. Effects from Lake Victoria

Limitations :

- 1. Limited availability of in situ data stations particularly during frost events
- 2. Limited availability of frost and nonfrost events
- 3. Compute power limitations

The Potential Ways Forward

1. Exploration of initialization of high resolution (3 km LIS LST outputs OR 1 km FLDAS LST outputs) and 4 km VIIRS Green Vegetation Fraction for improved forecasts

SERVI

- 2. Update to WRF v4
- 3. Exploration of Bias Correction of WRF temperature using LST trends

Questions?

Backup Slides

Evaluation of sample WRF outputs using the SERVIR MET tool

Evaluation of sample WRF outputs using the SERVIR MET tool

SPORT TMP MAE

Forecast Hour

Evaluation of sample WRF outputs using the **MET tool**

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 2 з 4 5 6 7 8 9 25

Forecast Hour

MYJ Test

.at I	Long F	PBL	LSM	Lakes	Mphys	Cu	LW	SW	ST @ FH 9	W @ FH 9	RH @ FH 9	Frost	Notes	
-0.3399217	35.3192017	MYJ	RUC	def	Goddard	off	def	def	9.04	5.9	75.34	0)	
-0.405817	35.3240383	MYJ	RUC	def	Goddard	off	def	def	8.42	7.5	69.65	0)	
-0.3399217	35.3192017	MYJ	RUC	def	Goddard	off	def	def	8.4	7.5	69.6			
-0.405817	35.3240383	MYJ	RUC	def	Goddard	off	def	def	8.9	5.9	78.24			
-0.3399217	35.3192017	ILAN	UnifiedNoah	def	Goddard	off	def	def	5.38	2.31	68.03			
			UnifiedNoah											
-0.405817	35.3240383	MYJ	LSM	def	Goddard	off	def	def	9.42	4.93	66.48			
-0.3399217	35.31920171	MYJ	MPNoah	def	Goddard	off	def	def	6.97	0.95	74	0)	
-0.405817	35.3240383	MYJ	MPNoah	def	Goddard	off	def	def	6.79	1.79	89.4	0)	
-0.3399217	35.3192017	MYJ	MPNoah	def	Goddard	off	def	def	7.02	1.36	72.69		engage show ice graupe	I in microphysics
-0.405817	35.3240383	MYJ	MPNoah	def	Goddard	off	def	def	8.34	2.89	80.04			
-0.3399217	35.3192017	MYJ	MPNoah	on	Goddard	off	def	def	7	1.35	72.74		SST on and snow ice gra	aupal
-0.405817	35.3240383	MYJ	MPNoah	on	Goddard	off	def	def	8.34	2.85	80.06		SST on	
-0.3399217	35.31920171	ЛХЛ	UnifiedNoah LSM	def	WSM Single moment 6 class	off	def	def	5.38	2.3	68.12			
-0.405817	35.32403831	МҮJ	UnifiedNoah LSM	def	WSM Single moment 6 class	off	def	def	9.6	4.97	66.69			
-0.3399217	35.31920171	MYJ	MPNoah	def		off	def	def	9.37	2.26	77.55			
-0.405817	35.32403831	MYJ	MPNoah	def		off	def	def	10.67	2.77	74.7			
-0.3399217	35.31920171	ИYJ	RUC	def	WSM Single class	moment 6	RRTM	Dudhia	8.49	7.64	69.76			
-0.405817	35.32403831	MYJ	RUC	def	WSM Single class	moment 6	RRTM	Dudhia	8.51	5.97	83.14			
-0.3399217	35.31920171	MYJ	RUC	def	WSM Single class	moment 6	RRTM	Dudhia	8.5	7.65	70.1		engage snow ice graupe	I in microphysics
-0.405817	35.32403831	MYJ	RUC	def	WSM Single class	moment 6	RRTM	Dudhia	9.4	5.87	72.67			

SERVIR

ACM2 Test

Lat	Long	PBL	LSM	Lakes	Mphys	Cu	LW	SW	ST @ FH 9	W @ FH 9	RH @ FH 9 Fros	t Notes		
-0.3399217	35.3192017	ACM2	Noah	on	Eta	BMJ	RRTM	Dudhia	7.58	2.93	81.38	0 Model buste	d @FH 10	
-0.405817	35.3240383	ACM2	Noah	on	Eta	BMJ	RRTM	Dudhia	10.6	3.67	67.2	0 Model buste	d @FH 10	
-0.3399217	35.3192017	ACM2	Noah	on	Eta	Grell 3D	CAM	Dudhia	7.04	3.36	81.77	0 Model buste	d @FH 9	
-0.405817	35.3240383	ACM2	Noah	on	Eta	Grell 3D	CAM	Dudhia	10.13	3.87	69.01	0 Model buste	d @FH 9	
-0.3399217	35.3192017	ACM2	NOAH MP	def	def		def	def	9.69	6.69	77.73	0		
-0.405817	35.3240383	ACM2	NOAH MP	def	def		def	def	10.71	8.96	73.11	0		
-0.3399217	35.3192017	ACM2	NOAHMP	def	Lin	off	def	def	10.96	3.74	66.99	0		
-0.405817	35.3240383	ACM2	NOAHMP	def	Lin	off	def	def	8.18	3.07	81.07	Model buste	d @FH 10	
-0.3399217	35.3192017	ACM2	PXLSM	off	WSM Single6	off	def	def	11.43	0	2.35	0		
-0.405817	35.3240383	ACM2	PXLSM	off	WSM Single6	off	def	def	12.37	0	2.84			
-0.3399217	35.3192017	ACM2	RUC	def	Eta	Grell 3D	RRTM	Dudhia	9.689	6.58	77.67	0		
-0.405817	35.3240383	ACM2	RUC	def	Eta	Grell 3D	RRTM	Dudhia	10.71	8.94	72.98	0		
-0.3399217	35.3192017	ACM2	RUC	on	Eta	Grell 3D	RRTM	Dudhia	9.689	6.69	77.73	0		
-0.405817	35.3240383	ACM2	RUC	on	Eta	Grell 3D	RRTM	Dudhia	10.71	8.96	73.11	0		
-0.3399217	35.3192017	ACM2	RUC	def	Goddard	off	def	def	10.75	9.17	73.25			
-0.405817	35.3240383	ACM2	RUC	def	Goddard	off	def	def	9.7	6.2	77.68			

YSU Test

Lat	Long	PBL	LSM	Lakes	Mphys	Cu	LW	SW	ST @ FH 9	W @ FH 9	RH @ FH 9 Fros	st Notes
-0.3399217	35.3192017	YSU	CM	on	def		def	def	7.81	1.35	92.86	0
-0.405817	35.3240383	YSU	CM	on	def		def	def	6.07	7.29	9 94.12	0
-0.3399217	35.3192017	YSU	CM	on	Goddard	off	RRTM	Dudhia	6.8	0.61	93.2	SST and snow ice graupal on
-0.405817	35.3240383	YSU	CM	on	Goddard	off	RRTM	Dudhia	6.97	1.2	93.8	
-0.3399217	35.3192017	YSU	RUC	def	WSM Single moment 6 class	off	def	def	8.43	8.2	2 81.33	0 Topo wind correction = 1 Only for YSU
-0.405817	35.3240383	YSU	RUC	def	WSM Single moment 6 class	off	def	def	8.59	0.83	8 80.63	0Topo wind correction = 1
-0.3399217	35.3192017	YSU	RUC	def	WSM Single moment 6 class	off	def	def	8.86	7.87	7 80.1	0 Topo wind correction = 0
-0.405817	35.3240383	YSU	RUC	def	WSM Single moment 6 class	off	def	def	9.98	7.59	9 79.87	0 Topo wind correction = 0
-0.3399217	35.3192017	YSU	RUC	def	Goddard	off	def	def	9.89	0.589	95.2	0
-0.405817	35.3240383	YSU	RUC	def	Goddard	off	def	def	10.26	1.65	92.3	0
-0.3399217	35.3192017	YSU	UnifiedNoa hLSM	def	Goddard	off	def	def	4.77	1.86	69.83	0
-0.405817	35.3240383	YSU	UnifiedNoa hLSM	def	Goddard	off	def	def	6.94	3.15	5 76.4	0
-0.3399217	35.3192017	YSU	MPNoah	def	Goddard	off	def	def	7.87	1.47	7 74.5	0
-0.405817	35.3240383	YSU	MPNoah	def	Goddard	off	def	def	7.7	1.8	8 88.8	0
-0.3399217	35.3192017	YSU	MPNoah	on	Goddard	off	def	def	7.9	1.47	7 74.4	SST on
-0.405817	35.3240383	YSU	MPNoah	on	Goddard	off	def	def	7.74	1.82	2 88.9	SST on
-0.3399217	35.3192017	YSU	UnifiedNoa hLSM	def	WSM Single moment 6 class	off	def	def	5.22	2.35	5 71.3	
-0.405817	35.3240383	YSU	UnifiedNoa hLSM	def	WSM Single moment 6 class	off	def	def	7.51	3.97	7 74.8	