Model Based Engineering for Software Assurance

Lui Wang, Michel 1zygon* - NASA /JSC

Spacecraft Software Engineering Branch
Software Robotics Simulation Division
* Tietronix Software Inc.

John Evans - NASA / OSMA

Presented by
Tim Crumbley

NASA Software Assurance Technical Fellow

October 1, 2019

-,

LYYy The Challenge

« Spacecraft designers and operation stakeholders create models and artifacts of the same
system with different processes, tools, and representations.

* These uncoordinated modeling approaches create
locally successful products but also create a
communication barrier among the various
stakeholders (the “Tower of Babel” Effect).

* The same information is captured multiple
times, in multiple places, with multiple
representations, creating a maintenance challenge.

Addressing Engineering Complexity

« Model Based Systems Engineering (MBSE)
From: document-centric (presentation slides, textual documents, miscellaneous spreadsheets)

To: model-centric (objects, their attributes, and interrelationships)

 Systems engineering information of:
components, their organization, the functions they perform, the requirements they fulfill, the

behaviors they exhibit, the ways they may fail, ...

MBSE Benefits

Characteristics

Benefits

Agreed-upon* meaning

Avoid ambiguity &
misunderstanding

Single source of truth

Avoid replication and subsequent
Inconsistencies

Formal/mathematical

Computer support for checks
(e.g., for missing things),
analyses, gueries, Views

* Standard representations of generic systems engineering
information (e.g., component/ subcomponent), with domain-specific
extensions (e.g., “mission”, “trajectory”)

Software Assurance challenges

« Traditional approaches in performing mission assurance largely decoupled from the main
system engineering activities, and occurs late in the design process.

* Mostly reactive, evaluating a system to determine if the system is safe.

* Risk based design approach starts to engage Safety and Mission Assurance earlier in the
design. But still often requires creating independent model to support Safety Assurance
analysis.

Uses of System Models

Safety Analysis

" Mission
Capalaling Resource Operation
Impact Management perat
A t Planning
ssessmen SC)éII;/IL Schedule i / S
Master Eqliipment List Diagran
FM Cost & |

Fault Trees RBD — SI\,/éodellca
Reliability XML
Bock Diegss SVSML MOdE'S EI ; ;
FMEA (representation of the XTCE ectronic
VA system - architecture ~J ATML Procedure

System
Design

Connectivi
Masis
fEquipment List

~

System Design
Validation

Model Once and Use Many Times

FMEA

Diagram

Requirement
Traceability
Reliability Bock

T XTCE
l Connectivity

System
Displays

and behavior models)

SCXML
A
Connectiw

AN

Integrated System
Health Management
and
Caution/Warnings

System
Requirements

Experience with SysML Modeling

Developed a modeling methodology

System Engineering Design and Analysis
Model Based Fault Management Engineering (MBFME)

Developed SysML Models for Multiple NASA Projects:

Deep Space Habitat (DSH)/ Habitat Demonstration Unit (HDU)
Exploration Augmentation Module (EAM)
Advanced Exploration System (AES) Life Support System (LSS)
» Cascade Distiller System (CDS)
» Capillary Brine Residual in Containment (CapiBric) System
» AES LSS reference architecture

Human Exploration Testbed Integration and Analysis (HESTIA)
AES Modular Power Systems (AMPS)

Integrated Power and Avionics System (IPAS)

Ascent Abort 2 — Software Modeling

NASA Gateway — SE&I

Developed SysML Library Repository

Collection of SysML Models

+ Provide a suite of data exchange tools
— To extract System Engineering products from the models
— To build models by extracting automatically or semi automatically information from existing

sources

— To support Fault Management engineering

/ Data Exchange Tools

. e

~

(Import Plug-Ins

« CSV

<

Experience with SysML Tool Set Development

1

€] + XML
* SW Config Fil
SYSML Models onfig Files
(ex: physical Export Plug-Ins
architecture, et e
behavior models) !

*CSV, XML, 3 party tool
format files

(ex : MagicDraw, Rhapsody,

\EA Plugins)

2/

SE Artifacts
(ex: Equipment List, Interface Définition, Con Ops)
1
3'd Party Tools
o

S

{7

NASA Model Based Fault Management Engineering (MBFME) Approach

« Metamodel Structure

bdd [Package] MBFME[|8 Metalodel_ver2 U MBFME Meta-Model MBFME Meta-Model
(Behavior Model)
stm [State Machine] Component [% Component y
erequirements «Function» eblocks
Requirement g PO - ablock>» _ _ «dllocates > Component
d="1" Cornpone:l: Function ga"(; AP
N : values eration
Text=". derives from» _ JcriticaltyLevel : Integer SRS sperforms» Oseration2()
l —a Operational
g " State
/ \ —
«NonPerformance Of» / \ «Performance Of»
/ \ Corrective
/ \ Action FM Cause (Malf)
/ \
eEffects «Effects estatemachines
«block» eblock» Component Behavior
Effect of Behavior1 Effect of Behavior2
allocatedTo = allocatedTo= O
O Operational State Off Operational State On
OFailed State T
=, criticalityLevel : Integer
criticalityLevel : Integer

ibd [Block] Component [) Connectivity U

’ : Component A L_‘.L_]

. : Component C i N : Component D
>
& 1

’ : Component B |—_‘j
]

r\lﬂ"@ﬁ MBFME Meta Model for Hardware-Software

[@ MBEFME Metz-Model] o —
SEnlE 0.1 <<Subsystems=> 0.- <<System=> 0.* <<Mission==
Base Classifier = —JSysML Blook 0.* |Base Classifier = =SysML Block £— Base Classifier = [=SysML Block
Meta-Model Legend 01 o
=<Com ponent==
1__ : 0. p.* 0.1
<<Hardw are=> << Software==
=<M is s ionEnvironm e nt>> J]
[£ SysM L Block
Q
; Alooated To i 1 ‘ l bp -
[ek — 1- LML Class Allocat=d To s<Function== H 0= <=M issionPhase>=
- - i .- |Base Classifier = K Base Classifier =
0.1 =Activity HsysmL Block
P - 5 o v
ML Blodk Ak
I - Owned By
a.*
.<-<EI"I’E|::1>> State Machine Elem e nt
Base Classifier =
Hactivity
Hsys ML Block 0.*
+Criticalitylevel : Integer
+Severity : hieger K - Owned By
X - Allocated To
5
0 o.-
==Failed State=> State
Base Classifier = HStats 4°| L - Owned By
SStart |1 +En +5tart State | 1 +End Stz
Y EE
+Transition Startdd +End Transition |1
Ad +End Trans ition Q.-
1 Guard
z 5t 0. 0.*
1
1
g o Signal
0.1
0.1 4 N
Bperatinn Exprassion
+FailureProbability - Mumber +Berment Vale : St 2.7]
+Bement Value 2 : Operation [1..<]= and, or 10
#String Literal [0.%] = {.)

MBFME Hardware Modeling Approach

» Allocate Requirements to “Function” Blocks

 Allocate “Function” Blocks to “Component” Blocks

Define a criticality level for the project

Assign criticality levels to functions

|dentify the Operational States and Potential Failed States for a component

|dentify the immediate effects of each state

Assign criticality levels to the “Effect” Blocks

|dentify the transitions (aka: the causes) between states

 derive Fault and Effect propagation paths and determine End (system and mission) effects

11

MBFME Software Modeling Approach

(‘act [actiiy] Execute RPC Commands | 5 Execute Case 01 Hi ;J . - . .
~ Typical software activity diagram
: Read RPC : Send 16
Commands (16 BitDto - Analegste | _ _
Q- 5“1':':,%'1“’ ~ -0 __5 from . — - >AConverter - ~ ~ ~ ° RPCCards TE——-——3
Memory
rh - Command @
"> gard2 _--29
RPCs . AS
Card 2 RPCs
_ _ = :iSend E
“| Case 01HI - 4BitDto : Send 4 e wm==
ADRtodBit | — = — > » | = = — = Analogsto |
DA A Converter RPC Carde
th

Methodology to extract fault propagation paths from the activity diagrams:
 Start from each Control Flow stereotyped as “Error”.

Trace to the End point of the Activity diagram.

If encounter a Join action treat it as an AND gate. All inputs are required to generate an output. Include the additional
Control Flows as part of the fault path. May need to trace the additional Control Flows back to the start of the module.

The Immediate Effect is the first Action element encountered in the path

Module Effect (System Effect) is the last Action element encountered before exiting the module
12

MBFME Hardware Software Integration

 Modeling both Hardware and Software components:

Hardware components are controlled and monitored by software components.

Faulty behavior of software components can cause improper behavior of the hardware and contribute
toward failure of the system.

Faulty behavior of hardware components can cause software to fail functioning.

Hardware Component:
« Structural: Modeled as a Block
« Behavioral: Modeled using State Machine and Activity Diagrams
Software Component:
« Structural: Modeled as a Class
» Behavioral: Modeled using Method (Activity) which describes the Operation at a high level.
* Focus on Commands, Failure of commands execution, and Effects of these failures

« Command Mapping:

Mapping from software commands to the hardware using Activity with stereotype <<Command Mapping>>
13

r\l{&.&g MBFME Hardware Software Integration

« Example of Hardware and Software components

ibd [Setaystem) Power_Subsystem| h-w:r_ﬁ:.-:-'.m_iwmzﬂ

SolarArrayd 1 Batteryd 1 Baiteryd
Frownges Tevametny
o e g Carmrmands DU
Hl;wr s Pewer_n-out [Posd_in-put Camrmands MASUY
% Commands MBSUZ
1= a - Comymand Lighi
14] :Iﬁslﬂ Ld ELEIHHHEI I :.I.-i'
il 'r ,_-_‘-:1 rne
[! 1
. 5 etheal
= P YL gthernes ,I_'| E }
&} J T]
Powers POUT & POUZ Chass : gnd S p—
& snerned 120 WACK | W :
. e i Pt _inl igabt | ethemat iFan Coois Main
[— Conirols Fower Source il = i
mros v TPOM [Frow alamatry Powers Main Compuder ! :
:. | |- BPCE W ies Telemelry Powars Fan arc:w L tPDA _RPCE Y -.—..'T
“ApcE: W L | a— MBSU Contralier Pewars Light ol [~ |1z:|w.|;n W 1: mthamat
e - el = C i :
[oF Twa instances of the MSBU RPC2:W L PLLRPCS .
RPCT -V RS FejmPca: v Controliar SoMwars are T I Light
E 1 used ta conrol sach MBSU RACA Y o . ek 120 vacn v L
“APCE: Ve [l "RRCH ;W 5 [
o = mPCa-v L oL RPCT ¥ .
B J R B - I Frovides Muminalion
.|' —{T] ..-—.-.._T:.J
Pre_nd *PS1. Chass Pr_ing —
G TNy S EOLS ey + PO Controfier
h30 VACK - v Le 1 pra Cortrals
| i E+ | Frovides Teiemetry
| TEEAM | au s] rois REC : Light Controser
; Prosides Telsmelry
! l_.i.:u* N 1
| = e . — it 32
e L {f] _1,, i, I
Generale Cabin Air Flow Poe o2 PSa-
Conlrols Caban A Temparaiure 7
Conlrols Cabin Alr Humidly | Porr_oat Pewse_n.out Pnan Jiod o
i ' i i=] ‘ihen a Stale Machine enfers a <Fadure Moder Siale an Activity is nwoked thal sends an <E ffect Swgral
t Solarfrray? Batteryd 1 Batteryd
‘Whan a5 Diperaticn thiows an exosphicn oF alurs Wodés | the <EMecis4 hal alare alacalad 35 e «Falss
Linder are ohgerved

Next Steps and Future Work

Continue to expand the SE & FM Modeling Methodology in support of
Hardware/Software integration and software assurance cases

— Refine methodology and toolset
— Expand modeling method to support Fault Recovery and FDIR (Fault Detection /Isolation/ Recovery)
— Work on generating software assurance cases

Tailoring of the modeling methodology and plugins for specific NASA project
— Apply to multiple NASA projects
— Support ARTEMIS (Lunar Gateway)

15

Conclusions

Model Based System Engineering

— Value added through product generation from a single source

— Supporting end to end communication

— Allows to maintain traceability from initial stakeholders expectations to the realized product

Tools & Methods are critical to cost effective model creation
— Accelerate model development
— Provides capability to import, maintain, and stay current with model updates
— Capture system design knowledge that can be shared among all the stakeholders

Allows early involvement of stakeholders (ex: Safety Mission Assurance)

Supports risk informed decision making
— From an overall functionality perspective
— Architecture Trades
— Reliability Trades

» Instead of being reactive, evaluating a system to determine if the system is safe, we used
MBSE to be pro-active in design for safety mission assurance

16

	Model Based Engineering for Software Assurance
	The Challenge
	Addressing Engineering Complexity
	MBSE Benefits
	Software Assurance challenges
	Uses of System Models
	Experience with SysML Modeling
	Experience with SysML Tool Set Development
	Model Based Fault Management Engineering (MBFME) Approach
	MBFME Meta Model for Hardware-Software
	MBFME Hardware Modeling Approach
	MBFME Software Modeling Approach
	MBFME Hardware Software Integration
	MBFME Hardware Software Integration
	Next Steps and Future Work
	Conclusions

