
Model Based Engineering for Software Assurance

Lui Wang, Michel Izygon* - NASA /JSC
Spacecraft Software Engineering Branch

Software Robotics Simulation Division
* Tietronix Software Inc.

John Evans - NASA / OSMA

Presented by
Tim Crumbley

NASA Software Assurance Technical Fellow

October 1, 2019

The Challenge

• Spacecraft designers and operation stakeholders create models and artifacts of the same
system with different processes, tools, and representations.

• These uncoordinated modeling approaches create
locally successful products but also create a
communication barrier among the various
stakeholders (the “Tower of Babel” Effect).

• The same information is captured multiple
times, in multiple places, with multiple
representations, creating a maintenance challenge.

• Model Based Systems Engineering (MBSE)
From: document-centric (presentation slides, textual documents, miscellaneous spreadsheets)
To: model-centric (objects, their attributes, and interrelationships)

• Systems engineering information of:
components, their organization, the functions they perform, the requirements they fulfill, the
behaviors they exhibit, the ways they may fail, …

3

Addressing Engineering Complexity

MBSE Benefits

4

Characteristics Benefits

Agreed-upon* meaning Avoid ambiguity &
misunderstanding

Single source of truth Avoid replication and subsequent
inconsistencies

Formal/mathematical Computer support for checks
(e.g., for missing things),
analyses, queries, views

* Standard representations of generic systems engineering
information (e.g., component/ subcomponent), with domain-specific
extensions (e.g., “mission”, “trajectory”)

Software Assurance challenges

• Traditional approaches in performing mission assurance largely decoupled from the main
system engineering activities, and occurs late in the design process.

• Mostly reactive, evaluating a system to determine if the system is safe.

• Risk based design approach starts to engage Safety and Mission Assurance earlier in the
design. But still often requires creating independent model to support Safety Assurance
analysis.

5

Activity
Diagrams

SCXML
XTCE
FMEA
RBD

Schedule
Master Equipment List
Cost

FMEA
Connectivity
Master
Equipment List

Capability/
Impact

Assessment

Resource
Management

Electronic
Procedure

System
Design

Integrated System
Health Management

and
Caution/Warnings

Model Once and Use Many Times

Mission
Operation
Planning

Safety Analysis

System Design
Validation System

Displays

System
Requirements

Simulation

XTCE
ATML

XTCE
Connectivity

Fault Trees
Reliability
Bock Diagram
FMEA

FMEA
Requirement
Traceability
Reliability Bock
Diagram

Modelica
SCXML

SCXML
FMEA

Connectivity

Uses of System Models

6

SysML Models
(representation of the
system - architecture
and behavior models)

Experience with SysML Modeling

• Developed a modeling methodology
– System Engineering Design and Analysis
– Model Based Fault Management Engineering (MBFME)

• Developed SysML Models for Multiple NASA Projects:
– Deep Space Habitat (DSH)/ Habitat Demonstration Unit (HDU)
– Exploration Augmentation Module (EAM)
– Advanced Exploration System (AES) Life Support System (LSS)

• Cascade Distiller System (CDS)
• Capillary Brine Residual in Containment (CapiBric) System
• AES LSS reference architecture

– Human Exploration Testbed Integration and Analysis (HESTIA)
– AES Modular Power Systems (AMPS)
– Integrated Power and Avionics System (IPAS)
– Ascent Abort 2 – Software Modeling
– NASA Gateway – SE&I

• Developed SysML Library Repository
– Collection of SysML Models

7

Experience with SysML Tool Set Development

♦ Provide a suite of data exchange tools
– To extract System Engineering products from the models
– To build models by extracting automatically or semi automatically information from existing

sources
– To support Fault Management engineering

8

(ex: physical
architecture,

behavior models)

SysML Models
Export Plug-Ins

•XTCE, EDS
•CSV, XML, 3rd party tool
format files

(ex : MagicDraw, Rhapsody,
EA Plugins)

Import Plug-Ins
• CSV
• XML
• SW Config Files

Data Exchange Tools

SE Artifacts
(ex: Equipment List, Interface Définition, Con Ops)

3rd Party Tools

8

Model Based Fault Management Engineering (MBFME) Approach

• Metamodel Structure

9

MBFME Meta Model for Hardware-Software

10

MBFME Hardware Modeling Approach

11

• Allocate Requirements to “Function” Blocks

• Allocate “Function” Blocks to “Component” Blocks

• Define a criticality level for the project

• Assign criticality levels to functions

• Identify the Operational States and Potential Failed States for a component

• Identify the immediate effects of each state

• Assign criticality levels to the “Effect” Blocks

• Identify the transitions (aka: the causes) between states

• derive Fault and Effect propagation paths and determine End (system and mission) effects

MBFME Software Modeling Approach

12

Typical software activity diagram

Methodology to extract fault propagation paths from the activity diagrams:
• Start from each Control Flow stereotyped as “Error”.

• Trace to the End point of the Activity diagram.

• If encounter a Join action treat it as an AND gate. All inputs are required to generate an output. Include the additional
Control Flows as part of the fault path. May need to trace the additional Control Flows back to the start of the module.

• The Immediate Effect is the first Action element encountered in the path

• Module Effect (System Effect) is the last Action element encountered before exiting the module

MBFME Hardware Software Integration

• Modeling both Hardware and Software components:
• Hardware components are controlled and monitored by software components.
• Faulty behavior of software components can cause improper behavior of the hardware and contribute

toward failure of the system.
• Faulty behavior of hardware components can cause software to fail functioning.

• Hardware Component:
• Structural: Modeled as a Block
• Behavioral: Modeled using State Machine and Activity Diagrams

• Software Component:
• Structural: Modeled as a Class
• Behavioral: Modeled using Method (Activity) which describes the Operation at a high level.

• Focus on Commands, Failure of commands execution, and Effects of these failures

• Command Mapping:
• Mapping from software commands to the hardware using Activity with stereotype <<Command Mapping>>

13

MBFME Hardware Software Integration

• Example of Hardware and Software components

14

Next Steps and Future Work

• Continue to expand the SE & FM Modeling Methodology in support of
Hardware/Software integration and software assurance cases
– Refine methodology and toolset
– Expand modeling method to support Fault Recovery and FDIR (Fault Detection /Isolation/ Recovery)
– Work on generating software assurance cases

• Tailoring of the modeling methodology and plugins for specific NASA project
– Apply to multiple NASA projects
– Support ARTEMIS (Lunar Gateway)

15

Conclusions

• Model Based System Engineering
– Value added through product generation from a single source
– Supporting end to end communication
– Allows to maintain traceability from initial stakeholders expectations to the realized product

• Tools & Methods are critical to cost effective model creation
– Accelerate model development
– Provides capability to import, maintain, and stay current with model updates
– Capture system design knowledge that can be shared among all the stakeholders

• Allows early involvement of stakeholders (ex: Safety Mission Assurance)

• Supports risk informed decision making
– From an overall functionality perspective
– Architecture Trades
– Reliability Trades

 Instead of being reactive, evaluating a system to determine if the system is safe, we used
MBSE to be pro-active in design for safety mission assurance

16

	Model Based Engineering for Software Assurance
	The Challenge
	Addressing Engineering Complexity
	MBSE Benefits
	Software Assurance challenges
	Uses of System Models
	Experience with SysML Modeling
	Experience with SysML Tool Set Development
	Model Based Fault Management Engineering (MBFME) Approach
	MBFME Meta Model for Hardware-Software
	MBFME Hardware Modeling Approach
	MBFME Software Modeling Approach
	MBFME Hardware Software Integration
	MBFME Hardware Software Integration
	Next Steps and Future Work
	Conclusions

