

Progress Toward the Critical Design of the Superconducting Rotor for NASA's 1.4 MW High Efficiency Electric Machine

Dr. Justin Scheidler

Thomas Tallerico

NASA Glenn Research Center Materials & Structures Division Rotating & Drive Systems Branch Wesley Miller

Vantage Partners

William Torres

Wolf Creek Federal Services

2019 AIAA/IEEE Electric Aircraft Technologies Symposium Indianapolis, IN August 24, 2019

www.nasa.gov

Progress Toward the Critical Design of the Superconducting Rotor for NASA's HEMM

Outline

- Motivation & background
- Summary of the rotor & coil design
- Refined finite element analysis
 - Coil model
 - Combined thermal, centrifugal, & electromagnetic loading
- Risk reduction testing
 - Coil fabrication
 - Thermal cycling testing
- Conclusions & future work

Motivation

- Reduced energy consumption, emissions, and noise of commercial transport aircraft [1]
 - Electrified aircraft propulsion (EAP) enables system-level benefits to these metrics
- EAP concepts require advances to electric machines
- NASA's High-Efficiency Megawatt Motor (HEMM) sized as generator for NASA's STARC-ABL concept

Performance impact of HEMM

(relative to STARC-ABL rev A: 96% elec. machines with 13.2 kW/kg)

		With HEMM
	(>98	% electric machines with 16 kW/kg)
STARC-ABL	Fuel burn, %	−1 to −2
	Wasta haat in generator	1/2 to 1/4
	waste near in generator	(–30 to –44 kW)

Refined analysis of baseline STARC-ABL (96% elec. machines with 13.2 kW/kg):

STARC-ABL uses 4% less fuel than future vehicle with assumed technology advancement

National Aeronautics and Space Administration

Progress Toward the Critical Design of the Superconducting Rotor for NASA's HEMM

NASA's High-Efficiency Megawatt Motor (HEMM)

Parameter	Value
Rated continuous power	1.4 MW
Nominal speed	6,800 rpm
Tip speed	Mach 0.31
Rated torque	2 kNm
Specific power goal	16 kW/kg
Efficiency goal	> 98%

- Wound-field synchronous machine
 - Tolerant of stator fault
- Superconducting rotor
 - Negligible energy loss
 - Very strong magnetic excitation

Outline

- Motivation & background
- Summary of the rotor & coil design
- Refined finite element analysis
- Risk reduction testing
- Conclusions & future work

Rotor Design

Rotor Design

Coil Design

Coil characteristics

	Parameter	Value
Op	perating temperature	< 62.8 K
Ор	erating current (DC)	51.5 A
	# of turns	~ 920
	Superconductor ch	aracteristics
_	Parameter	Value
-	Parameter Material	Value REBCO
	Parameter Material Width	Value REBCO 4 mm
	Parameter Material Width Thickness	ValueREBCO4 mm65 micron

Coil Design

- High temperature superconductor (ribbonshaped)
- No electrical insulation between turns of conductor
 - Benefits:
 - Fault tolerant Inherent protection from loss of superconductivity
 - Can fit more turns into same cross section
 - Higher mechanical strength
 - Requirement:
 - Sufficient contact between turns everywhere (for current transfer and heat transfer)

No-insulation superconducting coils are very promising, but have not been studied for rotating systems

Outline

- Motivation & background
- Summary of the rotor & coil design
- Refined finite element analysis
 - Coil model
 - Combined thermal, centrifugal, & electromagnetic loading
- Risk reduction testing
- Conclusions & future work

Refined coil model

- Ideal, but practically impossible: explicitly model each turn with mechanical contact between adjacent turns
- Was unable to approximate mechanical contact between turns by including a Young's modulus in the turn-to-turn direction that depends on strain

- Previous simulations neglected thermal response & electromagnetic forces
- Refined model considers full combined loading & temperature-dependent material properties
 - Cool down from RT to 60 K (thermal forces),
 - Then rotation of cold rotor (centrifugal force),
 - Then rotor current (electromagnetic forces on coil)

- Interesting observations of this machine
 - Superconducting rotor coils are significantly stronger than copper stator coils
 - Thus, stator current ripple has negligible effect on rotor's magnetic response
 - When optimizing specific power or torque, pushing FeCo back iron far into saturation is favored
 - Thus, Lorentz forces on rotor coils are considerable -
 - 2D simulation of |B| (T)

2D simulation of Lorentz force per volume (N/m³)

** excludes assembly & geometry errors, deflection due to unbalance

Old model vs. refined model

Comparison of maximum von Mises stress (MPa) in each component

Component	Old FEA model	New FEA model	%	'Failure' strength,
Component	(Rotation-only)	(Cool down + rotation)	change	МРа
Coil	124	127	+ 2.4	See next slide
Back iron	436	433	- 0.7	694**
Coil fixture	519	507	- 2.3	1100
Dovetail	1260	1260	0	1100
Ring	349	368	+ 5.4	1100

- Here, minimal differences in peak von Mises stress between old & refined models, but...
 - Peak stress & stress distribution in end turn of coil now captured
 - Radial deformation greatly over predicted before

Range of each stress component (MPa) in the superconductor

Stress con	nponent	'Failure' strength	End of cool down to 60 K	End of cold spin up to 6,800 rpm	At full power (60 K, 6,800 rpm, max current)
	σ_{11}	> 550	-86.1 to 63.5	-145 to 80.3	-137 to 90.2
Normal	σ_{22}	Low (?) in tension	-18.8 to 27.8	-181 to 24.8	-162 to 24.1
stress σ_{33}	σ_{33}	Very low in tension	-37.1 to 9.8	-91.1 to 16.2	-89.8 to 15.2
	σ_{12}, σ_{21}	Low (?)	-10.1 to 6.5	-19.8 to 40.6	-19.4 to 37.5
Shear stress	σ_{23}, σ_{32}	Very low	-5.8 to 6.8	-6.0 to 12.0	-5.8 to 11.5
	σ_{13}, σ_{31}	Very low	-0.4 to 1.4	-2.1 to 2.8	-2.1 to 3.1

Stress components in relation to conductor orientation

Outline

- Motivation & background
- Summary of the rotor & coil design
- Refined finite element analysis
- Risk reduction testing
 - Coil fabrication
 - Thermal cycling testing
- Conclusions & future work

Risk reduction testing

Questions to answer

- Can we maintain superconductivity in the operating environment?
- Are we confident enough to spend \$\$\$ on superconductor?

Key risks of the rotor

- 1. Rotor heat load will be higher than expected
- 2. Superconducting coils will not be able to handle the centrifugal loads
- 3. Superconducting coils will be difficult to manufacture

Addressing these risks in this talk

19

4. Superconducting coils will not survive the thermal cycling

Why thermal cycling?

- The problem: superconductor has anisotropic thermal contraction \rightarrow tensile stress
- Limited success in literature & only demonstrated for 1 to 7 thermal cycles

Coil fabrication process

Experimental Setup

- Coil mounted to G10 plate & suspended in liquid nitrogen
- Measurements: DC voltage & DC current

Thermal Cycling Procedure (summarized)

- 1. Very slowly lower the coil into LN2
 - 1. Wait ~5 minutes to reach steady state
- 2. Measure voltage vs. current response
 - 1. Change DC current at a rate of < 0.05 A/s
- 3. Thermally cycle
 - 1. Remove coil from LN2 and air quench for > 5 minutes
 - 2. Use fan for 3 minutes to finish warming up coil to room temperature
 - 3. Very slowly lower coil into LN2, wait ~5 minutes
- 4. Repeat steps 2 & 3

1 thermal cycle = room temperature to 77 K to room temperature

Superconductor performance metrics

- *"n*-value" indicates combined quality of superconductor & measurement
- Using 1 μ V/cm criterion for V_c

National Aeronautics and Space Administration

Progress Toward the Critical Design of the Superconducting Rotor for NASA's HEMM

Prediction of Experimental Critical Current

Thermal Cycling – Sub-scale, 4-layer coil

- Critical current (Ic) prediction: 60.5 A to 67.5 A
- Coil thermally cycled 50 times
- No clear trend in critical current or n-value
- Linear fit has nearly flat slope

Thermal Cycling – Full-scale, 2-layer coil

- Critical current (Ic) prediction: 32 A to 38 A
- Coil thermally cycled 13 times
- No clear trend in critical current or n-value
- Slope of linear fits small & have opposite polarity

Outline

- Motivation & background
- Summary of the rotor & coil design
- Refined finite element analysis
- Risk reduction testing
- Conclusions & future work

Conclusions

Analysis

- Added fidelity to superconducting coil model
- Developed a multiphysics model that includes the thermal, centrifugal, and electromagnetic forces
 - Radial deflection calculated at each operating state \rightarrow enables proper sizing or air gap
 - After fixing 1 stress concentration, structural components will have healthy margins
 - Superconductor's stress components seem sufficiently low at each operating state

Testing

- Developed a fabrication process for no-insulation superconducting coils that can reliably survive thermal cycling
- Thermally cycled 9 superconducting coils up to 50 times from 293 K to 77 K
 - Need more repeatable solder joints between coil and copper terminals
 - Only very small and acceptable level of degradation

Future work

Analysis

- Refined optimization of geometry (2D model)
- Re-evaluate combined thermal, centrifugal, and electromagnetic loading (3D model)

Testing

- Risk reduction testing high speed rotation of superconducting coil & structural parts
 - Measure superconductor performance metrics before & after spinning on purpose-built rotor
- Stationary superconducting test at designed electrical, thermal, & magnetic operating point

ICE-Box test rig at NASA GRC

Acknowledgements

- NASA's Advanced Air Transport Technology (AATT) Project
- NASA's Convergent Aeronautics Solutions (CAS) Project

THANK YOU

Superconductor current & thermal limits

- Critical current $(I_C) = I_C(T, B, \theta)$
 - Datasheet values $\theta = 0^{\circ}$ and 90° are insufficient
- Datasheet specs de-rated twice: angular dependence & safety factor

Safety factor

 $\pm 20\%$ Estimate of wire variation

+ ±15% Modeling inaccuracy

±35% (≈1.5 safety factor)

National Aeronautics and Space Administration

Superconductor current & thermal limits

• Measurements at B = 2 T obtained from manufacturer

Rotor Design

Parameter	Value
Electrical frequency	DC
Number of poles	12
Material	Solid Fe _{49.15} Co _{48.75} V ₂
Outer diameter	30 cm
Inner diameter	18.9 to 20 cm
Axial length	12.5 cm

Design process (see 2018 AIAA P&E paper)

- Defined current & thermal limits
 - Based on manufacturer data & safety factors
- Parametric studies of back iron's width w and thickness t (2D & 3D, nonlinear FEA)
 - Optimized coil's geometry by numerically maximizing # of turns in coil
 - Custom extrapolation of back iron's *B* vs *H* response
 - Metrics: performance performance/mass performance/cost
- Stress analysis of centrifugal loading (2D & 3D FEA)

Soft magnetic material (back iron)

Region available for containment structure & clearances

National Aeronautics and Space Administration

Thermal design

- Rotor is cooled by pulse-tube cryocooler which is connected to the backiron via a high thermal conductivity, low rigidity thermal bridge.
 - Cryocooler is designed to lift 55 W of heat with a 50 K cold end.
- Primary structural connection is high rigidity, low thermal conductivity Ti6AI4V shaft to reduce heat transfer from hot end.
- Other thermal design aspects
 - Rotor operates in vacuum to reduce convection and windage losses
 - Low emissivity coatings on rotor components and vacuum tube to reduce radiation heat transfer
 - Current lead (not shown) size and length optimized to minimize I²R losses and conductive heat transfer
 National Aeronautics and Space Administration

Thermal design (new design, no current lead heat loads)

- Real coils have anisotropic thermal conductivity
 - → 121 W/m/K
 - \rightarrow 121 W/m/K
 - \rightarrow Up to 8.9 W/m/K depending on contact pressure
- Currently modeling using various isotropic thermal conductivities to determine effect on coil temperatures
- Anisotropic model in development

Thermal design (new design, no current lead heat loads)

Coil Thermal Conductivity (W/m/K)	0.1	1.0	5.0	8.9
Maximum Coil Temperature (K)	64.0	60.7	58.8	58.4

Results depicted use 5.0 W/m/K.

 Analysis includes temperaturedependent properties, contact pressure results from stress analysis, and the following heat loads:

Heat Source	Flux			
Radiation				
Stator to Rotor Radiation	7.6 W			
Convection				
Windage Losses	1 W			
Stator to Rotor Convection	4 W			
Conduction				
Shaft Conduction	8.3 W			
Current Lead Conduction	0 W			
I ² R Losses	0 W			
	W			

Thermal design (older design, all heat loads)

• Analysis includes temperature-dependent properties, contact pressure results from stress analysis, and the following heat loads:

Heat Source	Flux			
Radiation				
Stator to Rotor Radiation	7.6 W			
Convection				
Windage Losses	1 W			
Stator to Rotor	4 W			
Convection				
Conduction				
Shaft Conduction	8.3 W			
Current Lead Conduction	6.2 W			
I ² R Losses	2.0 W			
	29.2 W			

National Aeronautics and Space Administration

Progress Toward the Critical Design of the Superconducting Rotor for NASA's HEMM

Von Mises stress (Pa) results

End of cold spin up to 6,800 rpm

Risk reduction testing

Superconductors produce much stronger magnetic fields, but they are...

- Strongly temperature sensitive -superconductors must be kept below a critical temperature during their entire operation
- **Relatively fragile** particularly to shear & transverse tensile loads
- **Difficult to accurately model** -- superconductors are anisotropic composite materials with stress/strain limits that are not well characterized
- **Significantly more expensive** -- \$40 to \$60 per meter

Thermal cycling

	Characteristic	HEMM coils	PTR-1 coils
	Material	ReBCO (2 nd gen high temperature superconductor)	Same
Superconductor	Width, mm	4 mm	Same
	Thickness, micron	65 micron	Same
	Min. bend radius, mm	15 mm	Same
	Turn-to-turn insulation	None	Same
	Operating temperature	62.8 K	77 K 🔶
	Cooling	Cryocooler (conductive)	LN2 (nucleate boiling)
Coil	Operating current	51.5 A	Varies 🗧
	# of layers per coil	4	Up to 4
	# of turns per layer	about 230	Up to 221
	Magnetic excitation	Up to 2 T	Up to about 0.9 T
	Cryogenic epoxy	Stycast 2850 FT black	Same

National Aeronautics and Space Administration

Thermal Cycling – Performance Metrics

- Performance metrics: critical current (I_c) and n
- Detect damage via changes in n and/or I_c
- Lesson learned: data more easily evaluated with logarithmic y-axis scale
 - Equation only fit to data above a current threshold

 $V = V_{\rm c} \left(\frac{I}{I_{\rm c}}\right)^{\rm T}$

Thermal Cycling – Sub-scale, 2-layer coil

- Coil thermally cycled 11 times
- No clear trend in critical current or n-value
- n-value close but lower than that of as-delivered superconductor (about n = 32)
 - No-insulation coil type
 - Appreciable uncertainty in n-value

National Aeronautics and Space Administration

Progress Toward the Critical Design of the Superconducting Rotor for NASA's HEMM