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Motivation

STARC-ABL

• Reduced energy consumption, emissions, and noise of commercial transport aircraft [1]

• Electrified aircraft propulsion (EAP) enables system-level benefits to these metrics

• EAP concepts require advances to electric machines

• NASA’s High-Efficiency Megawatt Motor (HEMM) sized as generator for NASA’s STARC-ABL 

concept

Refined analysis of baseline STARC-ABL (96% elec. machines with 13.2 kW/kg):

STARC-ABL uses 4% less fuel than future vehicle with assumed technology advancement

With HEMM

(>98% electric machines with 16 kW/kg)

Fuel burn, % –1 to –2

Waste heat in generator
½ to ¼

(–30 to –44 kW)

Performance impact of HEMM

(relative to STARC-ABL rev A: 96% elec. machines with 13.2 kW/kg)
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• Wound-field synchronous machine

• Tolerant of stator fault

• Superconducting rotor

• Negligible energy loss

• Very strong magnetic excitation

NASA’s High-Efficiency Megawatt Motor (HEMM)

Parameter Value

Rated continuous

power
1.4 MW

Nominal speed 6,800 rpm

Tip speed Mach 0.31

Rated torque 2 kNm

Specific power goal 16 kW/kg

Efficiency goal > 98%

Copper stator

(> 60 ºC)

Superconducting rotor 

coils & core (~ 60 K)

Rotating 

cryocooler

Rotating 

shaft

Housing

Slip ring
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Rotor Design

Dovetail retainer

Coil fixture Solid FeCo

back ironHigh temperature 

superconducting coil

Ring retainer
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Rotor Design



National Aeronautics and Space Administration Progress Toward the Critical Design of the Superconducting Rotor for NASA’s HEMM 8

Coil Design

Parameter Value

Operating temperature < 62.8 K

Operating current (DC) 51.5 A

# of turns ~ 920

Parameter Value

Material REBCO

Width 4 mm

Thickness 65 micron

Min. bend radius 15 mm

Superconductor characteristics

Coil characteristics

Coil’s cross-section

Separating plate

Superconductor

Cryogenic epoxy

Superconducting 

jumper
Low melting 

temperature solder
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Coil Design

Non-superconducting 

(“normal”) region

Current path

Self protection via no 

turn-to-turn insulation

.

No-insulation superconducting coils are very promising, but have not 

been studied for rotating systems

• High temperature superconductor (ribbon-

shaped)

• No electrical insulation between turns of conductor

– Benefits:

• Fault tolerant – Inherent protection from 

loss of superconductivity

• Can fit more turns into same cross 

section

• Higher mechanical strength

– Requirement:

• Sufficient contact between turns 

everywhere (for current transfer and heat 

transfer)
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Refined coil model

• Ideal, but practically impossible: explicitly 

model each turn with mechanical contact 

between adjacent turns

• Was unable to approximate mechanical contact 

between turns by including a Young’s modulus in 

the turn-to-turn direction that depends on strain

Coil’s cross-section
Old model

Copper

(isotropic)

Refined model

Copper

(anisotropic shear 

modulus)

𝐸1, 𝐸2, GPa 150

𝐸3, GPa 150

𝜈12 0.32

𝜈23, 𝜈13 0.32

𝐺12, GPa
56.8

(= 0.5𝐸1/ 1 + 𝜈12 )

𝐺23, 𝐺13, GPa 3.5

1

2

3
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Combined Thermal, Centrifugal, and Electromagnetic Loading Model

• Previous simulations neglected thermal response & electromagnetic forces

• Refined model considers full combined loading & temperature-dependent 

material properties

• Cool down from RT to 60 K (thermal forces),

• Then rotation of cold rotor (centrifugal force),

• Then rotor current (electromagnetic forces on coil)
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Combined Thermal, Centrifugal, and Electromagnetic Loading Model

• Interesting observations of this machine

• Superconducting rotor coils are significantly stronger than copper stator coils

• Thus, stator current ripple has negligible effect on rotor’s magnetic response

• When optimizing specific power or torque, pushing FeCo back iron far into saturation is favored

• Thus, Lorentz forces on rotor coils are considerable 

2D simulation of 𝑩 (T) 2D simulation of Lorentz force per volume (N/m3)
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Combined Thermal, Centrifugal, and Electromagnetic Loading Model

End of cold spin up to 6,800 rpmEnd of cool down to 60 K

Radial deformation (m) results
At full power

(60 K, 6,800 rpm, max current)

Outermost point’s radial deflection: 

-0.25 mm +0.08 mm

(old model: +0.32 mm)

+0.06 mm

Physical radial gap**:

1.25 mm 0.92 mm 0.94 mm

** excludes assembly & geometry errors, deflection due to unbalance
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Von Mises stress (Pa) results

End of cold spin up to 6,800 rpmEnd of cool down to 60 K

At full power

(60 K, 6,800 rpm, max current)

Cannot rotate to full speed 

before cooling down

Combined Thermal, Centrifugal, and Electromagnetic Loading Model
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Component
Old FEA model

(Rotation-only)

New FEA model

(Cool down + rotation)

% 

change

‘Failure’ strength, 

MPa

Coil 124 127 + 2.4 See next slide

Back iron 436 433 – 0.7 694**

Coil fixture 519 507 – 2.3 1100

Dovetail 1260 1260 0 1100

Ring 349 368 + 5.4 1100

Old model vs. refined model

Comparison of maximum von Mises stress (MPa) in each component

• Here, minimal differences in peak von Mises stress between old & refined 

models, but…

• Peak stress & stress distribution in end turn of coil now captured

• Radial deformation greatly over predicted before

Combined Thermal, Centrifugal, and Electromagnetic Loading Model
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1

2

3

Stress component ‘Failure’ strength
End of cool down 

to 60 K

End of cold spin up 

to 6,800 rpm

At full power

(60 K, 6,800 rpm, max current)

Normal 

stress

𝜎11 > 550 -86.1 to 63.5 -145 to 80.3 -137 to 90.2

𝜎22 Low (?) in tension -18.8 to 27.8 -181 to 24.8 -162 to 24.1

𝜎33
Very low in 

tension
-37.1 to 9.8 -91.1 to 16.2 -89.8 to 15.2

Shear stress

𝜎12, 𝜎21 Low (?) -10.1 to 6.5 -19.8 to 40.6 -19.4 to 37.5

𝜎23, 𝜎32 Very low -5.8 to 6.8 -6.0 to 12.0 -5.8 to 11.5

𝜎13, 𝜎31 Very low -0.4 to 1.4 -2.1 to 2.8 -2.1 to 3.1

Stress components in relation 

to conductor orientation

Range of each stress component (MPa) in the superconductor 

𝜎33

3

2

𝜎11

𝜎22

𝜎23
𝜎21
𝜎12

𝜎13
𝜎31

𝜎32

1

Combined Thermal, Centrifugal, and Electromagnetic Loading Model
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Risk reduction testing

Questions to answer

• Can we maintain superconductivity in the operating environment?

• Are we confident enough to spend $$$ on superconductor?

Key risks of the rotor

1. Rotor heat load will be higher than expected

2. Superconducting coils will not be able to handle the centrifugal loads

3. Superconducting coils will be difficult to manufacture

4. Superconducting coils will not survive the thermal cycling

Why thermal cycling?

• The problem: superconductor has anisotropic thermal contraction  tensile stress

• Limited success in literature & only demonstrated for 1 to 7 thermal cycles

Addressing these risks 

in this talk
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Coil fabrication process

fixture rotation direction

coil former

1

vertical 

positioning stage

2

side clamps

3 4

stainless steel 

plate

5 6

mass

coil-

shaped 

cap

7 8

Low CTE 

cryogenic epoxy
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Experimental Setup

• Coil mounted to G10 plate & suspended in liquid nitrogen

• Measurements: DC voltage & DC current

LN2

dewar

Amplifier

(constant current, 

voltage limited)

6 ½ digit 

multimeter
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Thermal Cycling Procedure (summarized)

1. Very slowly lower the coil into LN2

1. Wait ~5 minutes to reach steady state

2. Measure voltage vs. current response

1. Change DC current at a rate of < 0.05 A/s

3. Thermally cycle

1. Remove coil from LN2 and air quench for > 5 minutes

2. Use fan for 3 minutes to finish warming up coil to room temperature

3. Very slowly lower coil into LN2, wait ~5 minutes

4. Repeat steps 2 & 3

1 thermal cycle = room 

temperature to 77 K to 

room temperature
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• “𝑛-value” indicates combined quality of superconductor & measurement

• Using 1 µV/cm criterion for 𝑉𝑐

𝑽 = 𝑽𝐜𝐫𝐢𝐭𝐢𝐜𝐚𝐥

𝑰

𝑰𝐜𝐫𝐢𝐭𝐢𝐜𝐚𝐥

𝒏

Superconductor’s voltage versus current 

response commonly described by:

Raw data

Corrected data

𝑰𝒄

𝑽𝒄

Superconductor performance metrics
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Thermal Cycling  – Sub-scale, 4-layer coil

• Critical current (Ic) prediction: 60.5 A to 67.5 A

• Coil thermally cycled 50 times

• No clear trend in critical current or n-value

• Linear fit has nearly flat slope
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Thermal Cycling  – Full-scale, 2-layer coil

• Critical current (Ic) prediction: 32 A to 38 A

• Coil thermally cycled 13 times

• No clear trend in critical current or n-value

• Slope of linear fits small & have opposite polarity
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Conclusions

Analysis

• Added fidelity to superconducting coil model

• Developed a multiphysics model that includes the thermal, centrifugal, and electromagnetic 

forces

• Radial deflection calculated at each operating state  enables proper sizing or air gap

• After fixing 1 stress concentration, structural components will have healthy margins

• Superconductor’s stress components seem sufficiently low at each operating state

Testing

• Developed a fabrication process for no-insulation superconducting coils that can reliably survive 

thermal cycling

• Thermally cycled 9 superconducting coils up to 50 times from 293 K to 77 K

• Need more repeatable solder joints between coil and copper terminals

• Only very small and acceptable level of degradation
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Future work

Analysis

• Refined optimization of geometry (2D model)

• Re-evaluate combined thermal, centrifugal, and electromagnetic loading (3D model)

Testing

• Risk reduction testing – high speed rotation of superconducting coil & structural parts

• Measure superconductor performance metrics before & after spinning on purpose-built rotor

• Stationary superconducting test at designed electrical, thermal, & magnetic operating point

Risk reduction test – purpose-built rotor
ICE-Box test rig at NASA GRC

Vacuum 

chamber

Cryocooler



National Aeronautics and Space Administration Progress Toward the Critical Design of the Superconducting Rotor for NASA’s HEMM 30

Acknowledgements

• NASA’s Advanced Air Transport Technology (AATT) Project

• NASA’s Convergent Aeronautics Solutions (CAS) Project



National Aeronautics and Space Administration Progress Toward the Critical Design of the Superconducting Rotor for NASA’s HEMM 31
Your Title Here

31

THANK YOU



National Aeronautics and Space Administration Progress Toward the Critical Design of the Superconducting Rotor for NASA’s HEMM 32
Your Title Here

32



National Aeronautics and Space Administration Progress Toward the Critical Design of the Superconducting Rotor for NASA’s HEMM 33

Safety factor

±20%

+ ±15%

±35% (≈1.5 safety factor)

Estimate of wire variation

Modeling inaccuracy

Superconductor current & thermal limits

• Critical current (𝐼𝐶) = 𝐼𝐶 𝑇, 𝐵, 𝜃

• Datasheet values 𝜃 = 0° and 90° are insufficient

• Datasheet specs de-rated twice:  angular dependence & safety factor

Manufacturer data



National Aeronautics and Space Administration Progress Toward the Critical Design of the Superconducting Rotor for NASA’s HEMM 34

• Measurements at 𝐵 = 2 T obtained from manufacturer

Design spec

current

temperature

51.5 A

≤ 62.8 K

Superconductor current & thermal limits

Valid 

operating 

regime
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Rotor Design

Design process (see 2018 AIAA P&E paper)

• Defined current & thermal limits 

• Based on manufacturer data & safety factors

• Parametric studies of back iron’s width 𝑤 and thickness 𝑡
(2D & 3D, nonlinear FEA)

• Optimized coil’s geometry by numerically maximizing 

# of turns in coil

• Custom extrapolation of back iron’s 𝐵 vs 𝐻 response

• Metrics: performance  ● performance/mass ●

performance/cost

• Stress analysis of centrifugal loading (2D & 3D FEA)

Parameter Value

Electrical frequency DC

Number of poles 12

Material Solid Fe49.15Co48.75V2

Outer diameter 30 cm

Inner diameter 18.9 to 20 cm

Axial length 12.5 cm

Soft magnetic material (back iron)

Region available for containment 

structure & clearances

15°

A

B

w

t
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Thermal design
• Rotor is cooled by pulse-tube cryocooler 

which is connected to the backiron via a 

high thermal conductivity, low rigidity 

thermal bridge.

– Cryocooler is designed to lift 55 W 

of heat with a 50 K cold end.

• Primary structural connection is high 

rigidity, low thermal conductivity Ti6Al4V 

shaft to reduce heat transfer from hot 

end.

• Other thermal design aspects

– Rotor operates in vacuum to reduce 

convection and windage losses

– Low emissivity coatings on rotor 

components and vacuum tube to 

reduce radiation heat transfer

– Current lead (not shown) size and 

length optimized to minimize I2R 

losses and conductive heat transfer
Vacuum enclosure (stator)

Cryocooler

Ti6Al4V 

shaft

FeCo backiron

Thermal 

bridge
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Thermal design (new design, no current lead heat loads)

• Real coils have anisotropic thermal 

conductivity

→ 121 W/m/K

→ 121 W/m/K

→ Up to 8.9 W/m/K depending on 

contact pressure

• Currently modeling using various isotropic 

thermal conductivities to determine effect 

on coil temperatures

• Anisotropic model in development
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Thermal design (new design, no current lead heat loads)

Heat Source Flux

Radiation

Stator to Rotor Radiation 7.6 W

Convection

Windage Losses 1 W

Stator to Rotor Convection 4 W

Conduction

Shaft Conduction 8.3 W

Current Lead Conduction 0 W

I2R Losses 0 W

W

• Analysis includes temperature-

dependent properties, contact 

pressure results from stress analysis, 

and the following heat loads:Results depicted use 5.0 W/m/K.

Coil Thermal Conductivity (W/m/K) 0.1 1.0 5.0 8.9

Maximum Coil Temperature (K) 64.0 60.7 58.8 58.4
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Thermal design (older design, all heat loads)

Heat Source Flux

Radiation

Stator to Rotor Radiation 7.6 W

Convection

Windage Losses 1 W

Stator to Rotor

Convection

4 W

Conduction

Shaft Conduction 8.3 W

Current Lead Conduction 6.2 W

I2R Losses 2.0 W

29.2 W

Max coil temp = 57.6 K
• Analysis includes temperature-dependent 

properties, contact pressure results from 

stress analysis, and the following heat loads:
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Stress concentration in 

dovetail part

Combined Thermal, Centrifugal, and Electromagnetic Loading Model

Von Mises stress (Pa) results

End of cold spin up to 6,800 rpm

Cannot rotate to full speed 

before cooling down
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Risk reduction testing

Superconductors produce much stronger magnetic 

fields, but they are…

• Strongly temperature sensitive --

superconductors must be kept below a critical 

temperature during their entire operation

• Relatively fragile – particularly to shear & 

transverse tensile loads

• Difficult to accurately model -- superconductors 

are anisotropic composite materials with 

stress/strain limits that are not well characterized

• Significantly more expensive -- $40 to $60 per 

meter

From manufacturer’s datasheet
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Thermal cycling

Characteristic HEMM coils PTR-1 coils

Superconductor

Material
ReBCO (2nd gen high 

temperature superconductor)
Same

Width, mm 4 mm Same

Thickness, micron 65 micron Same

Min. bend radius, mm 15 mm Same

Coil

Turn-to-turn insulation None Same

Operating temperature 62.8 K 77 K

Cooling Cryocooler (conductive)
LN2 (nucleate 

boiling)

Operating current 51.5 A Varies

# of layers per coil 4 Up to 4

# of turns per layer about 230 Up to 221

Magnetic excitation Up to 2 T Up to about 0.9 T

Cryogenic epoxy Stycast 2850 FT black Same
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Thermal Cycling  – Performance Metrics

• Performance metrics: critical current (𝐼c)  and  𝑛

• Detect damage via changes in 𝑛 and/or 𝐼c

• Lesson learned: data more easily evaluated with logarithmic y-axis scale

• Equation only fit to data above a current threshold 

𝑉 = 𝑉c
𝐼
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𝑛
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Thermal Cycling  – Sub-scale, 2-layer coil

No detectable degradation

• Coil thermally cycled 11 times

• No clear trend in critical current or n-value

• n-value close but lower than that of as-delivered 

superconductor (about n = 32)

– No-insulation coil type

– Appreciable uncertainty in n-value


