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COVARIANCE REALISM IS NOT ENOUGH

J. Russell Carpenter∗

A great deal of effort has been put into improving the practice of space sit-
uational awareness such that covariance data associated with predicted close ap-
proaches is more “realistic.” However, “realistic” usually has meant “larger” and
this presents a problem. In many cases, there exist multiple sources for predic-
tive ephemerides, which may be fused to produce predictive states with smaller
associated covariances. Ancillary to the fusion computation is the capability to
assess consistency of the estimates. If actionable covariance information becomes
available, interval estimates for the miss distance provide a more informative al-
ternative to collision probability for risk assessment.

INTRODUCTION

A great deal of effort has been put into improving the practice of space situational awareness
(SSA) such that covariance data associated with predicted close approaches is more “realistic.”
Reference 1 provides an comprehensive summary of such efforts to date. However, “realistic”
usually has meant “larger” and this presents a problem. From the standpoint of an owner/operator
who must decide what to do about a potentially hazardous close approach, if the covariance of the
relative position near the likely interval of closest approach is too large, then the data available for
making a decision are likely to produce a false alarm. These problems are exacerbated by the fact
that the current standard for dissemination of covariance data permits the publication of defective
covariances.

A long-standing concern with the covariances associated with the relative state between the pri-
mary and secondary objects, which are necessary for many conjunction assessment calculations, is
that any non-zero cross-covariance between the solutions is ignored. As will be shown below, it is
relatively easy to reconstruct such a cross-covariance, and there is good reason to believe that it is
not zero (although in practice the resulting correction may be quite small).

In many cases, there exist multiple sources for predictive ephemerides, which may be fused to
produce predictive states with smaller associated covariances. Unlike many applications of estimate
fusion, the cross-covariance of the estimates to be fused is known. Ancillary to the fusion compu-
tation is the capability to assess consistency of the estimates. Covariance inflation factors may be
explicitly computed to assess covariance realism. This paper contributes a description of aforemen-
tioned fusion techniques, and provides an example to illustrate their use in a hypothetical spacecraft
conjunction.

∗Deputy Project Manager/Technical, Space Science Mission Operations Project, NASA Goddard Space Flight Center,
8800 Greenbelt Rd, Greenbelt, MD 20771
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If actionable covariance information becomes available, there remains the question of what to
do with it. The current practice for most Earth orbiting missions is to use covariances to compute
collision probabilities, but Reference 2 discusses some of shortcomings of this approach. This
paper also describes how the same integrals used to compute collision probabilities may be used
to compute interval estimates for the miss distance, expanding and clarifying the presentation in
Reference 2, and illustrates the approach for a hypothetical conjunction.

COVARIANCE REPRESENTATION IN THE CONJUNCTION DATA MESSAGE

The current standard for exchanging conjunction information is the Conjunction Data Message
(CDM), specified in a Consultative Committee for Space Data Systems Standard.3 As currently
implemented, the CDM provides the lower triangular elements of the covariance matrix, in a radial,
tangent, normal (RTN) coordinate frame. This can be problematic, because there is no guarantee that
the covariance reconstructed from such a representation will be positive definite. Not infrequently,
non-positive-definite (NPD) covariances do occur in operational usage of CDMs. Consideration of
other representations seems warranted.

There are many alternatives for representing a covariance matrix that ensure positive definiteness,
and some of these also increase numerical precision, in terms of, for example, condition number.
Alternatives that retain the precision of the original covariance include singular-value/eigenvalue
decompositions, and UDUT (or LDLT) factorizations. The UDUT is a particularly efficient and
compact representation and hence has been recommended as a best practice for navigation filter-
ing.4 Alternatives that increase the precision are “square-root” factorizations, such as the Cholesky
factorization. Not to be forgotten, if only for its readability, is a representation that utilizes standard
deviations for its diagonal, and correlation coefficients for its off-diagonal elements; this method
also increases numerical precision relative to a covariance representation. Unlike Cholesky how-
ever, the latter method does not require the original covariance to be strictly positive definite, or
enforce that the reconstructed covariance will be positive either. Some of these alternatives may
offer better interpolation properties as well. In any case, interpolation methods must be used with
caution, particularly if they have the potential to introduce non-physical oscillations that can nega-
tively affect the covariance eigenstructure.

Regardless of the representation chosen to avoid transmission of NPD covariances, additional
consideration to the coordinatization is warranted. In addition to RTN, Reference 3 supports deliv-
ery of covariances in a tangent, velocity, normal (TVN) frame. The TVN frame would be expected
to be superior to RTN for any orbit that is not perfectly circular, since its primary basis vector is the
unit velocity vector, which is the direction of fastest growth when predicting covariances. If some
SSA providers or owner/operators do not currently support delivery in the TVN frame, this should
not be a sustainable justification for continuing to employ the inferior RTN representation.

CORRELATION BETWEEN PRIMARY AND SECONDARY OBJECT STATE ESTIMATES

The covariance corresponding to the relative state between two objects is given by

Prel = E
[
(e1 − e2)(e1 − e2)

T
]

(1)

= P1 + P2 −P12 −PT
12 (2)

Usually, Conjunction Assessment (CA) applications assume that P12 = 0. But suppose the Orbit
Determination (OD) process for the two objects is estimating a common state, e.g. a density bias.
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To see that P12 6= 0, consider the covariance of an estimate of all the states together.

Let α index the state unique to object 1, β the states unique to object 2, and γ the states common
to both. Let the estimation error in the combined state be e∗ = [eα, eβ, eγ ], and let e1 = [eα, eγ ]
and e2 = [eβ, eγ ] be the errors of individual object estimates. Then

e1 =

[
Iα 0 0
0 0 Iγ

]
e∗ = M1e∗ and e2 =

[
0 Iβ 0
0 0 Iγ

]
e∗ = M2e∗ (3)

Let P∗ = E
[
e∗e

T
∗
]
. Then, P12 will be given by

P12 = M1P∗M
T
2 (4)

=

[
Iα 0 0
0 0 Iγ

]Pαα Pαβ Pαγ

Pβα Pββ Pβγ

Pγα Pγβ Pγγ

 0 0
Iβ 0
0 Iγ

 (5)

=

[
Pαβ Pαγ

Pγβ Pγγ

]
(6)

Even if the prior cross-covariances Pαβ , Pαγ , and Pγβ are all zero, so long as the prior value
of Pγγ 6= 0, then the posterior value of P12 could be a full matrix. This is especially interesting
because one might expect that the cross-covariance Pαβ would not be recoverable from two separate
estimators, which do not share the α and β states in common.

In the context of separate batch least-squares orbit determination (BLSOD) processes for each
of the objects, the computation of the cross-covariance could proceed as follows. Normally, the
BLSOD differential correction at the anchor time, x̂, is cast in terms of a solution to the normal
equation as follows, which may be (inefficiently) written

x̂ =
(
P
−1

+ H̃
T
R−1H̃

)−1 (
P
−1

x + H̃
T
R−1y

)
(7)

where P is assumed to approximate the prior covariance at the anchor time, x is the associated
prior correction (usually taken to be zero), H̃ is the mapping of the measurement partials to the
anchor time, R−1 is the (usually diagonal) weighting matrix for the measurement innovations, and
y are the measurement innovations (differences between observed and computed measurements).
The posterior covariance associated with the error in the differential correction is often approxi-

mated in BLSOD processes as P̂ =
(
P
−1

+ H̃
T
R−1H̃

)−1
. Letting K̃ = P̂H̃

T
R−1, the posterior

covariance may be algebraically manipulated into the following form:

P̂ =
(
I− K̃H̃

)
P (8)

However, in either of these forms, P̂ will only represent the actual covariance if K̃ is the optimal
gain. If a suboptimal gain is used, it can be shown that the covariance is actually given by

P̂ =
(
I− K̃H̃

)
P
(
I− K̃H̃

)T
+ K̃RK̃

T
(9)

If the BLSOD process were estimating all of the states in one “full” vector, the cross-covariance
Pαβ would be present as a partition of the full covariance, P̂∗ given by one of the forms above.
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Since the individual BLSOD processes only estimate their own states, then P̂1 and P̂2, and the
corresponding gain matrices K̃1 and K̃2, will be missing some terms containing Pαβ , as well as
products of cross-covariances they do contain with the weighting matrices of the measurements on
the other object they do not process. For this reason, such estimators are suboptimal. Nonetheless,
so long as they are both estimating some common states, then as described above, a non-zero pos-
terior cross-covariance may arise. Assuming both estimators use the same prior covariance for the
common states, this approximate posterior cross-covariance will be given by

P̂12 =
(
I− K̃1H̃1

)
P12

(
I− K̃2H̃2

)T
(10)

= P̂1P
−1
1 P12P

−1
2 P̂2 (11)

=

[
P̂1αα P̂1αγ

P̂1γα P̂1γγ

][
P
−1
αα 0

0 P
−1
γγ

] [
0 0

0 Pγγ

][
P
−1
ββ 0

0 P
−1
γγ

][
P̂2ββ P̂2βγ

P̂2γβ P̂2γγ

]
(12)

=

[
P̂1αγP

−1
γγ P̂

T

2βγ P̂1αγP
−1
γγ P̂2γγ

P̂1γγP
−1
γγ P̂

T

2βγ P̂1γγP
−1
γγ P̂2γγ

]
(13)

Note that this result is unchanged if either or both P
−1
αα = 0 or P−1ββ = 0. In practice, so long as

Pγγ is large relative to P̂1γγ and P̂2γγ , then subtraction of P̂12 and its transpose from the sum of
P̂1 and P̂2 will be a small correction to Prel.

As an illustrative example, consider the following “one-dimensional” case:

P̂1 =

[
P̂1αα P̂1αγ

P̂1γα P̂1γγ

]
=

[
1× 108 50

50 1× 10−4

]
,

P̂2 =

[
P̂2ββ P̂2βγ

P̂2γβ P̂2γγ

]
=

[
2.5× 107 12.5

12.5 2.5× 10−5

]
P̂1 + P̂2 =

[
1.25× 108 62.5

62.5 1.25× 10−4

]
(14)

Suppose Pγγ = 100. Then

P̂12 =

[
6.25 12.5
12.5 2.5× 10−11

]
and

P̂1 + P̂2 − P̂12 − P̂
T

12 =

[
1.249999875× 108 62.499975

62.499975 1.2499995× 10−4

]
which is a negligible change from Eq. (14). Suppose Pγγ = 1× 10−4. Then

P̂12 =

[
6.25× 106 12.5× 10−6

12.5× 10−6 2.5× 10−5

]
and

P̂1 + P̂2 − P̂12 − P̂
T

12 =

[
1.125× 108 37.5

37.5 7.5× 10−5

]
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which is a notable change from Eq. (14).

In practice, the large Pγγ scenario illustrated by the first subcase above is likely far more typ-
ical than a small Pγγ scenario. Nonetheless, given the simplicity of the above computation, SSA
providers employing BLSOD should communicate any common a priori covariance values used to
constrain both primary and secondary object solutions, so that owner/operators have the option to
include a cross-covariance in their computations of Prel. SSA providers employing sequential fil-
tering methods that simultaneously estimate both objects in one state vector can merely supply the
full covariance, from which the cross-covariance can be extracted∗. Adopting such practices would
also comply with ASA Principle 4 “Proper inference requires full reporting and transparency.”2

FUSION

Bar-Shalom described fusion in terms of a measurement innovation that is the difference between
two Kalman filters’ posterior estimates of a common state.5, 6, 7, 8 This work was generalized by
Carpenter and Bishop,9 who developed a posterior estimate fusion approach that optimally utilizes
cross-covariances between common and non-common states within and between the two estimators.
Julier and Uhlmann formulated an alternative10 known as covariance intersection that does not
require knowledge of cross-covariances; for reasons discussed below, this method is not applicable
nor desirable in the present case.

Let a denote a random vector whose realization is the true state for one of the estimators, and
b the state of the other. Let ξ denote the states common to both estimators, η the states unique to
estimator whose state is a, and ζ the states unique to estimator whose state is b. Ref. 9 shows that
assuming a linear, unbiased fusion of the common states,

ĉξ = (I−W)âξ + Wb̂ξ (15)

and choosing the gain matrix, W, to minimize the trace of Pc, results in

W∗ = (Paξξ −Pabξξ)(Paξξ + Pbξξ −Pabξξ −PT
abξξ)

−1 (16)

Using the optimal gain, the various partitions of Pc become

Pcξξ = Paξξ −W∗(Paξξ −PT
abξξ) (17)

Pcξη = Paξη −W∗(Paξη −PT
abξη) (18)

Pcξζ = Pabξζ −W∗(Pabξζ −PT
bξζ) (19)

Pcηη = Paηη, Pcζζ = Pbζζ , Pcηζ = Pabηζ (20)

Noting that fusion gain given by Eq. (16) contains the covariance of the difference between the
common states of the two estimators d = aξ − bξ,

E
[
(aξ − bξ)(aξ − bξ)

T
]

= Pd = Paξξ + Pbξξ −Pabξξ −PT
abξξ (21)

a test for consistency between the estimates may be readily performed using a χ2 statistic

k2d = dTP−1d d (22)

If a consistency threshold is exceeded, i.e. k2d > χ2
1−α, covariance realism may be in doubt, and the

ratio r = k2d/χ
2
1−α may be used to inflate the constituent covariances to rPaξξ, rPbξξ, and rPabξξ.

∗Providing a full covariance for both objects simultaneously via the existing CDM mechanism would require a revision
to Reference 3
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Application to Conjunction Assessment

In a typical operational context, conjunction data messages (CDM) containing predictive states
and covariances for both objects are available from a space situational awareness (SSA) data provider,
such as the United States Department of Defense Combined Space Operations Center. In many
cases, one or both of the objects will also have conjunction data products available from its owner/operator
(O/O). Table 1 summarizes the permutations of states potentially available for fusion. The partition

Table 1: Fusion Permutations.

State a Source State b Source Absolute
Fusion States

Relative Cross-
Covariance StatesPrimary Secondary Primary Secondary

O/O SSA SSA SSA Primary Secondary
SSA SSA O/O SSA Primary Secondary
O/O O/O SSA O/O Primary Secondary
SSA O/O O/O O/O Primary Secondary
SSA O/O SSA SSA Secondary Primary
SSA SSA SSA O/O Secondary Primary
O/O O/O O/O SSA Secondary Primary
O/O SSA O/O O/O Secondary Primary
O/O O/O SSA SSA Both None
SSA SSA O/O O/O Both None

of common states, ξ, to be fused according to Eq. (15) will include at least the position and velocity
of one of the two objects, and may also include some common parameters, e.g. related to ballistic
modeling.

Fusion of the absolute states of either the primary, the secondary, or both object(s) may be per-
formed, according the penultimate column of Table 1. The rows paired within horizontal rules are
similar conjunction assessments, i.e. the first two rows both result in fusion of the state of the pri-
mary object for comparison with the SSA provider’s estimate of the secondary object. In the case
of such absolute state fusion, the cross-covariance Pab may safely be assumed to be zero.∗

Alternatively, the two object states may be differenced to produce a relative state, and their co-

∗The relevant cross-covariance in this context must be the formal cross-covariance of the two estimators, i.e. the
cross-covariance arising from shared modeling assumptions, such as common a priori covariance, common process
noise, or common measurement noise. There are two conditions that could violate this assumption, both of which
appear to be relatively unlikely, at least in the present operational paradigm: (1) the O/O and SSA provider are using
common measurements in their orbit determination process, and/or (2) the O/O and the SSA provider are using the same
astrodynamics software with the same settings. Any “true” or empirical cross-covariance arising from common mis-
modeling by the two estimators is not relevant to the fusion gain calculation, and if it were to be used would not guarantee
the invertibility of Pd.
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variances summed to produce a relative covariance.∗

âr = â2 − â1, Par = Pa2 + Pa1 (23)

b̂r = b̂2 − b̂1, Pbr = Pb2 + Pb1 (24)

(25)

where the subscripts 1 and 2 denote the primary and secondary object, respectively; as with absolute
fusion, the differences may include not only position and velocity, but may also include applicable
parameters. If the relative states are fused, then the object in the relative combination whose state
derives from a common source will correlate the estimates. Hence, the cross-covariance Pab be-
tween the estimators must be equal to the absolute covariance of the object common to both relative
state solutions, as shown in the final column of Table 1, assuming the source provider’s estimates of
the objects are uncorrelated. For example, considering the first row of Table 1, b̂2 = â2 as both are
the same SSA provider estimate of the secondary object, and thus

Pab = E
[
(a2 − a1)(a2 − b1)

T
]

= Pa2 = Pb2 (26)

Note that Eq. (26) implies that Pabξξ = Paξξ, Pabξη = Paξη and Pabξζ = PT
bξζ , which in turn

implies from Eqs. (18) and (19) that Pcξη = Paξη and Pcξζ = PT
bξζ . Thus, only Eq. (17) need be

computed in the present context. Note also that for the last two rows of Table 1, Pab = 0, since
there are no common absolute state estimates.

In practice the CDM associated with â and b̂ may have small differences in their predicted times
of closest approach (TCA). While mapping the states and covariances to a common TCA can be per-
formed with either absolute or relative states, relative state fusion may be preferable, since simpler
approximations for the mapping may be applicable. In particular, if the short encounter assump-
tions11, 12 for the conjunction hold, velocity uncertainty may be neglected, and only the relative
position vector and its error covariance at TCA are needed. The mapping of the state and covari-
ance associated with b from t̂b to t̂a thus becomes

b̂r(t̂a) = b̂r(t̂b) (27)

Pbr(t̂a) = Pbr(t̂b) (28)

where t̂i, i ∈ {a, b} denotes the TCA associated with â and b̂, respectively.

When velocity uncertainty cannot be ignored,13, 14 the full state and covariance must be mapped
using an appropriate state transition matrix, Φ(t̂a, t̂b). In such cases, the relative cross-covariance
requires some additional manipulation when â and b̂ are not contemporaneous. Factorization of
Pab facilitates mapping of the factor arising from b̂ separately from the factor due to â. Again with
reference to the first row of Table 1 for specificity, such a factorization becomes

Pab(t̂a) = E
[{

a2(t̂a)− a1(t̂a)
}{

b2(t̂b)− b1(t̂b)
}T

ΦT(t̂a, t̂b)
]

(29)

=
C
√

Pa2(t̂a)

[
C
√

Φ(t̂a, t̂b)Pb2(t̂b)ΦT(t̂a, t̂b)

]T
(30)

∗For a given estimator, the cross-covariance between primary and secondary object states is typically assumed to be
zero, although use of common modeling within the same estimator for both objects, e.g. for ballistic properties, may
invalidate this assumption, as discussed in the previous section.
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where C√· indicates the Cholesky factor of the matrix under the radical, with the convention that

A =
C√
A
[

C√
A
]T

.

Fusion Example
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(a) Wide view, showing full extent of error ellipses
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(b) Zoomed view, showing details of fusion

Figure 1: Confidence regions for fusion example. The upper plots show 3σ error ellipses centered
on estimates indicated by asterisks. The lower plots show the difference between the estimates as
an asterisk, and its associated “6σ” confidence region. Dashed lines indicate covariances that have
been inflated.

To illustrate the techniques this paper describes, this section utilizes an hypothetical close ap-
proach between two space objects satisfying the aforementioned short encounter assumptions. For
such conjunctions, the relative position uncertainty near the nominal time of closest approach
projects entirely into a plane normal to the relative velocity vector, known as the conjunction plane.
The upper panels of Figure 1 illustrate the 3σ confidence regions projected into the conjunction
plane for the example. Under the short encounter assumptions, these confidence regions (CR) are
ellipses derived from the estimators’ covariance matrices, centered on the state estimates. For this
example, the O/O estimate has a large CR in comparison to the CR of the SSA provider. Because the
estimates are tightly grouped in comparison to the size of the error ellipses, one may observe that a
zero-mean error ellipse associated with the fusion of the estimates would lie within the intersection
of the zero-mean error ellipses from the the two estimators undergoing fusion, as had been observed
by Carpenter and Bishop.15

The dashed ellipses in Figure 1 indicate covariances that have been inflated in order to satisfy a
“6σ” consistency test per Eq. (22). What is meant by “6σ” is a probability threshold of 0.999999998,
which corresponds to 6σ for a scalar Gaussian, but must correspond to a χ ratio of 6.33 for the con-
junction plane projection, which has 2 degrees of freedom, or 6.59 if three degrees of freedom are
considered. The original unscaled ellipses are plotted with solid lines of the same color. The lower
panels of Figure 1show the difference between the estimates, also projected into the conjunction
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plane, and its corresponding “6σ” ellipse. Note in Figure 1(b) that the that the difference lies out-
side its “6σ” unscaled ellipse, plotted with a solid line, indicating an inconsistency between the
estimates and a need for inflation. This inconsistency is not obvious in the upper panel of Fig-
ure 1(b), where the estimates appear to lie within each others’ 3σ error ellipses, since these ellipses
do not account for the correlation between the estimates captured by Pab.

An interesting feature of the fusion in this case is how it accommodates the large difference be-
tween the size of the O/O-based estimate and the SSA-only estimate, and the strong correlations
present in each. A fusion which ignored the correlation structure associated with each estimate
would place the fused estimate on a line connecting the two estimates being fused, with the place-
ment of the fused estimate along that line dependent on the relative uncertainty between the es-
timates being fused. The upper panel of Figure 1(b) shows that the optimal fusion preferentially
offsets the fused estimate along the major axis of the more uncertain estimate, folding its strong
correlation structure into the fusion so as to follow a sort of probabilistic geodesic. To the extent
that the correlation structure among all the parameters being fused is dominated by the correlations
within the individual estimates, and not the correlations between the estimates modeled by Pab, the
covariance intersection method can also follow such geodesics. When the opposite is true, covari-
ance intersection cannot follow such geodesics, since it ignores the presence of Pab. While this may
seem like a minor point, note that the differences among the three estimates in Figure 1(b) are all
much greater than than the typical combined hard-body involved in a conjunction.

DISTRIBUTION AND DENSITY FUNCTIONS FOR THE MISS DISTANCE

Many conjunctions occur over very short time intervals, allowing relative velocity uncertainty
to be neglected. In such cases, the relative position uncertainty near the nominal time of closest
approach projects entirely into a plane normal to the relative velocity vector, known as the conjunc-
tion plane. Various computations of Pc integrate this planar uncertainty over a disk in the plane
corresponding to the combined hard-body radii (HBR) of the two conjuncting objects. When the
state uncertainties follow a Gaussian distribution, Pc calculations using quadratures of relatively
simply integrals are possible. When the short encounter assumptions cannot be satisfied, but the
assumption of Gaussian errors remains valid, Coppola’s expression for collision probability13 may
be employed.

Short Encounter Case

The cumulative probability that the relative position vector, ~Ri, predicted from time ti, is within
a region defined by a set Dr, which defines a circular disk in the conjunction plane and centered on
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the origin, where the miss distance is less than or equal to some specified value r, is given by

FRi(r | ~µ~R, P~R~Ri) = Pr (Ri ≤ r) (31)

=
1√

|2πP~R~Ri|

∫
~X∈Dr

e
− 1

2
( ~X−~µ~R)

TP−1
~R~Ri

( ~X−~µ~R) d2 ~X (32)

=
1√

8πσib

∫ r

−r
exp

(
−(µb +Xb)

2

2σ2ib

)

×

erf

µa +
√
r2 −X2

b√
2σia

− erf

µa −
√
r2 −X2

b√
2σia

dXb

(33)

=

∫ r

−r
φ2(Xb, r | ~µ~R, P~R~Ri) dXb (34)

whereRi = ‖~Ri‖, and Eq. (33) follows from Afriend16 and Alfano.17 In Eq. (33), a and b denote the
major and minor axes of the ellipse associated with the relative position covariance P~R~Ri projected
into the conjunction plane, σ2ia and σ2ib are the associated eigenvalues of P~R~Ri, µa and µb are the
coordinates of ~µ~R along the corresponding conjunction plane axes, and the variable of integration,
Xb, is the coordinate of the vector of integration ~X , in Eq. (32), along the minor axis.

Noting that φ2(r, r | ~µ~R, P~R~Ri) = φ2(−r, r | ~µ~R, P~R~Ri) = 0, the associated probability density is
given by

fRi(r | ~µ~R, P~R~Ri) = Pr (r ≤ Ri ≤ r + dr) (35)

=
∂

∂r

∫ r

−r
φ2(Xb, r | ~µ~R, P~R~Ri) dXb (36)

= φ2(r, r | ~µ~R, P~R~Ri) + φ2(−r, r | ~µ~R, P~R~Ri) +

∫ r

−r
φ′2(Xb, r | ~µ~R, P~R~Ri) dXb

(37)

=

∫ r

−r
φ′2(Xb, r | ~µ~R, P~R~Ri) dXb (38)

=
1√

8πσib

∫ r

−r

2r

σia

√
2π(r2 −X2

b )
exp

(
−(Xb + µb)

2

2σ2ib

)

×

exp

−
[
µa +

√
r2 −X2

b

]2
2σ2ia

+ exp

−
[
µa −

√
r2 −X2

b

]2
2σ2ia


dXb

(39)

Case Including Velocity Uncertainty

Coppola13 breaks the computation including velocity uncertainty into two integrals: an integral
over the combined hard-body volume at an initial time, and an integral over the time of the en-
counter, and over the surface of the hard-body volume. By choosing the initial time sufficiently in
advance of the time of closest approach, it is often possible to consider only the latter integral. In
such cases, the cumulative probability that the relative position vector, ~Ri, predicted from time ti, is
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within a region defined by a set Sr, which defines a spherical volume centered on the origin, where
the miss distance is less than or equal to some specified value r, is given by

FRi(r | ~µ, Pi) = Pr (Ri ≤ r) (40)

=
1√

|2πP~R~Ri|

to+T∫
to

2π∫
0

π
2∫

−π
2

e
− 1

2
(~Ri−~µ~R)

TP−1
~R~Ri

(~Ri−~µ~R) ν(~Ri, t)r
2 cos θ dθ dφ dt (41)

=

to+T∫
to

2π∫
0

π
2∫

−π
2

N3(~Ri, ~µ~R, P~R~Ri)ν(~Ri, t)r
2 cos θ dθ dφ dt (42)

=

to+T∫
to

2π∫
0

π
2∫

−π
2

φ4(r, t, θ, φ | ~µ, Pi) cos θ dθ dφ dt (43)

where

ν(~Ri, t) =
σ(~Ri, t)√

2π
exp

(
−ν

2
o (~Ri, t)

σ2(~Ri, t)

)
− νo(~Ri, t)

2

[
1− erf

(
νo(~Ri, t)

σ(~Ri, t)
√

2

)]
(44)

νo(~Ri, t) = ~uT~Ri

[
~µ~V + P~R~V iP

−1
~R~Ri

(
Ri~u~Ri − ~µ~R

)]
(45)

and
σ(~Ri, t) = ~uT~Ri

(
P~V ~V i − P~R~V iP

−1
~R~Ri

PT
~R~V i

)
~u~Ri (46)

Coppola points out that Eq. (41) may be efficiently evaluated using a Lebedev quadrature over the
surface Sr and a one-dimensional quadrature over the encounter time.

Since the limits of integration of Eq. (41) do not involve r, the associated PDF is

fRi(r | ~µ~R, P~R~Ri) = Pr (r ≤ Ri ≤ r + dr) (47)

=

to+T∫
to

2π∫
0

π
2∫

−π
2

φ′4(r, t, θ, φ | ~µ, Pi) cos θ dθ dφ dt (48)

=

to+T∫
to

2π∫
0

π
2∫

−π
2

N3(~Ri, ~µ~R, P~R~Ri)

[
2ν(~Ri, t)

r
− (~Ri − ~µ~R)TP−1~R~Ri

~u~Riν(~Ri, t)

+
∂ν(~Ri, t)

∂r

]
r2 cos θ dθ dφ dt

(49)

where

∂ν(~Ri, t)

∂r
=

{
νo(~Ri, t)

σ(~Ri, t)
√

2π
exp

(
−ν

2
o (~Ri, t)

σ2(~Ri, t)

)
− 1

2

[
1− erf

(
νo(~Ri, t)

σ(~Ri, t)
√

2

)]}
~uT~RiP~R~V iP

−1
~R~Ri

~u~Ri

(50)
which may similarly be evaluated using Lebedev quadrature over the surface and a one-dimensional
quadrature over the encounter time.
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MISS DISTANCE INTERVAL ESTIMATES

A common practice in conjunction assessment is to evaluate integrals such as Eq. (33) or Eq. (41)
with r = rHBR, where rHBR denotes the combined hard-body radius of the participants in the
conjunction. The resulting quantity, typically denoted Pc, is associated with the probability that
the objects will collide. In mission operations, the parameters (mean and covariance) of the distri-
butions are unknown, and hence operators must use estimates derived from tracking data. In the
absence of prior distributions for the parameters (or the unwillingness to assume them), and assum-
ing the parameters are not modeled as stochastic quantities, the only uncertainty associated with
the parameter estimates arises from errors in the tracking data. As of this writing, it is the author’s
perception that such assumptions are broadly typical of current operational practices.

It is notable that under such assumptions, at the the time an operator predicts the latest state es-
timate and covariance to the time of closest approach, any errors in the tracking data have already
been realized. These realizations have been mapped into the objects’ states and covariances by
the orbit determination and prediction process. There is no source of future variation or random-
ness associated with this prediction; the predictions are statistics describing the outcome of the past
tracking procedure.∗ Evidently, under the set of assumptions and models that operators currently
employ, and within the context of their operational usage, integrals like Eq. (33) or Eq. (41) cannot
be interpreted as relative frequencies associated with possible outcomes of future events, i.e. prob-
abilities.† Instead, they can only be interpreted as statistics, of the same sort as the estimate of the
mean and associated covariance.

In many cases, operators can take action to mitigate the risk of a close approach. Since the cost
of such action is typically non-trivial, operators have a strong incentive to avoid false alarms. A
common practice is to compare Pc to a threshold, and only consider risk mitigation if the threshold
is exceeded. This procedure can be rationalized in terms of a Wald test,18 if one is willing to impose
assumptions concerning the prior distributions.

As an alternative, prior to the collection of any tracking data, an analyst may study probabilities
of the form19

γ = Pr
(
~µ~R ∈ ω(~R1, ~R2, . . . , ~Rn)

)
(51)

where {~R1, ~R2, . . . , ~Rn} is a random sequence of the relative position vectors, which are to be
drawn from a distribution with known covariances‡ P1, P2, . . . , Pn and unknown mean ~µ~R, cor-
responding to the true miss vector at the time of closest approach. Realizations of these random
vectors will arise from from predictions of the states of the two objects from the times t1, t2, . . . , tn
prior to the time of closest approach.

One choice for ω(~R1, ~R2, . . . , ~Rn) might be an error ellipsoid derived from Pn, centered on a

random variable ~̂Rn, corresponding to the as-yet-unrealized estimate of the state at tn. The error
∗If the tracking procedure could be repeated, a different set of realizations of the tracking errors would ensue, and a

different estimate would derive. In the proverbial long run, over many such repetitions, the estimates could be expected
to show a variation about the true state that is consistent with the statistics. This is known as a Frequestist viewpoint.
†Under a different set of assumptions, such as including the assumption of prior distributions for the states, and/or the

inclusion of stochastic variability (process noise) in the orbit determination and prediction process, it would be meaningful
to associate uncertainty with estimates of the object’s future states, and the attribution of probability to Pc would remain
valid, although probability in this sense is no longer interpretable as a relative frequency. This is known as a Bayesian
viewpoint.
‡The known covariances can be viewed as being derived without regard for the realized tracking data from a covari-

ance analysis.
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ellipsoid could be scaled by finding the limits of its corresponding CDF (Eqs. (32) or (41)) that
to correspond to a probability of 1 − α that ~µ~R is contained within it, e.g. using tables of the χ2

distribution. Then, once an operator has computed a corresponding estimate ~̂rn from realizations
of the tracking data, she could center the ellipsoid on ~̂rn to define a non-point, or interval estimate
(IE), in this case an ellipsoidal interval estimate. Unlike simply reporting a point estimate for the
miss vector, or Pc, which convey some sense of risk without any sense of the quality of the process
used to compute the point estimate, the operator has now conveyed information about both the risk,
conveyed by the magnitude of the miss vector, and the precision of her estimate. Notably, NASA’s
Conjunction Assessment and Risk Analysis group provides such data as a supplement to Pc in the
reports they provide to their users, some commercial off-the-shelf software packages provide such
data, and Reference 20 advocates the superiority of such an approach.

A similar option would be to define a linear region associated with the miss distance, without
regard for direction, such as

γ = 1− α = Pr
(
R̂n − rα ≤ ρ

)
(52)

where R̂n = ‖ ~̂Rn‖, ρ = ‖~µ~R‖, and rα is chosen as the limit of Eq. (33), or Eq. (41) along with
estimates of velocity and the full position/velocity covariance, that yields 1 − α probability. Once
the operator computes an estimate, r̂n, the inequality

r̂n − rα ≤ ρ (53)

defines the one-sided 1 − α linear interval estimate [r̂n − rα,∞)∗ However, the one-sided interval
loses the information about precision in much the same manner as Pc does. Instead, from the
intersection of intervals corresponding to, for example, r̂n − rα/2 < ρ and r̂n + rα/2 > ρ, the
operator could compute and report the two-sided 1−α linear interval estimate [r̂n−rα/2, r̂n+rα/2],
regaining information concerning precision of the estimate.

Coverage

Any particular interval estimate either will or will not contain ~µ~R, so it is not meaningful to think
of it probabilistically. Rather, if a 1−α fraction of a large collection of such regions would contain
~µ~R, for any value of ~µ~R, then it is known as a (Frequentist) confidence region19†, with coverage
probability of 1− α.

So long as the Gaussian assumption of Eqs. (32) or (41) holds, a 1−α ellipsoidal interval estimate
clearly possesses the desired coverage property, because the shape of its PDF does not depend on
its location. For any value of ~µ~R, a 1 − α fraction of the resulting estimates r̂n must lie within the
1−α ellipsoid centered on ~µ~R, and hence the 1−α ellipsoids centered on each such estimate must
contain ~µ~R. In such cases, if for example the operator chooses α = 0.05, she might safely report
that she has 95% confidence that the true miss vector lies within the scaled error ellipsoid, so long
as her audience appreciates that confidence is not probability.

By contrast, the linear interval estimates [r̂n − rα,∞) and [r̂n − rα/2, r̂n + rα/2] do not posses
the desired coverage property, because the shape of Eq. (39) or (49) does depend on its proximity
∗The sequel discusses intervals such as [0, r̂n − r1−α].
†If the estimate were derived using Bayesian methods, a credible region would result, not necessarily corresponding

to the confidence region.
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to the origin, and hence there will always be some neighborhood surrounding the origin that such
intervals exclude. This fact is evident from Eqs. (33) or (41) by setting r = ε. One can always find
some ε sufficiently close to zero that FRn(ε | ~µ, Pn) = Pr (Rn ≤ ε) < α. Thus, any true distance
ρ < ε will never be included in such an interval.

A linear interval estimate that one constrains to include the origin, such as [0, r̂n − r1−α], will
of necessity exclude points at infinity, and in practice will exclude a large neighborhood of safely
large true miss distances. Such intervals may be both uninformatively large, and also fail to satisfy
the coverage constraint.

Linear interval estimates of the miss distance therefore cannot be viewed as confidence regions.
This fact is related to the defect that occurs when computing Pc from a covariance that is sufficiently
large in comparison to the HBR; even if that large covariance is centered on the origin, Pc may fail
to rise above any given threshold. Thus, for true miss distances that are small in comparison to the
HBR, a decision procedure based on either Pc, or linear interval estimates such as have been so far
described herein, will have arbitrarily poor missed detection rates, if their associated covariances
are large in comparison to the HBR.

The simplest approach to avoiding this issue is to use ellipsoidal IEs, which are free of the cov-
erage defect, and check for overlap with the combined hard-body volume. However, for the large
covariances typical of many debris objects, such a procedure may produce false alarm rates sig-
nificantly higher than a procedure based on Pc, since overlap between the hard-body volume and
any given kσ ellipsoid can have arbitrarily small Pc value, well below operationally sustainable Pc
thresholds in current usage.

If one wishes to retain a linear interval, then keeping in mind that the coverage property applies to
a large collection of estimates with a given covariance, e.g. Pi, and not the sequence of covariances
Pi, i = 1, 2, . . ., one can adapt the two-sided interval estimate according the covariance as follows.
Define the two-sided linear interval estimate [r̂n − rαlo , r̂n + rαhi ] according to

αhi = 1− α+ αlo (54)

αlo = min(α/2, α0i) (55)

with

α0i = FRi(rHBR |~r0max, Pi) (56)

where ~r0max is the miss vector furthest from the origin that would be observed with 1−α confidence
if the true miss vector were exactly zero. Such an observation will be on the 1−α iso-probability el-
lipsoid, along the direction of the eigenvector of Pi corresponding to its maximum eigenvalue. Note
that defining the interval in this way depends only the covariance, and not the particular realization
of the estimate. Thus, a large collection of such estimates will share consistently-defined limits of
their intervals.

Although defining the interval in this manner does not rectify the coverage defect of the linear
interval estimates, it ensures that the neighborhood they exclude around the the origin is smaller
than rHBR. Thus, for any true miss vector inside the HBR, a 1− α fraction of a large collection of
estimates will result in linear interval estimates whose left endpoint penetrates the HBR. A corre-
sponding decision to maneuver in such cases will ensure that the decision procedure has the desired
missed detection properties.
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Miss Distance Interval Estimate Example

Figure 2 shows an example of the results of a IE calculation for a hypothetical conjunction sat-
isfying the short encounter assumptions. The choice of α = .05 and rHBR = 0.07 are chosen for
clarity of presentation, and not necessarily recommended or typical of conjunction assessment op-
erations. The units are unimportant for this hypothetical case, but one may take them as kilometers
for the sake of specificity and/or context.
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Figure 2: Miss Distance Interval Estimates for a Hypothetical Conjunction.

The upper subplot shows the conjunction plane, and indicates the value of Pc. The colored
elliptical contours are centered at the estimated miss vector, and indicate elliptical interval estimates
in terms of standard deviation, σ, specified by the legend. The contour labeled 2.4σ corresponds to
the 1− α = 95% elliptical interval estimate. In this view, the 95% linear IE on the miss distance is
the (mostly empty) region between the thresholds indicated by the dashed/solid circular boundaries.
This conjunction plane plane view illustrates how the linear IE is less precise than the elliptical IE,
since it does not account for the direction of the estimated miss vector. Nonetheless, the linear IE is
clearly more robust than the elliptical IE to small variations in the orientation of the ellipses.

The lower subplot shows the CDF for the miss distance, computed from Eq. (33), as a blue line
using the left-hand ordinate. The miss distances associated with the HBR, the lower linear IE (IElo),
the upper linear IE (IEhi), and the estimated miss distance (Est.) are all noted by the legend. For this
example, the coverage adjustment procedure described above shifted the linear IE toward the origin
somewhat, yielding αlo = 1.05%, and hence αhi = 96.05%. The lower subplot also depicts the
PDF for the miss distance, computed from Eq. (33), as a red line, using the right-hand ordinate. The
PDF clearly shows that r̂n is not necessarily a maximum likelihood estimate of the miss distance.
It is also notable how the miss distance probability mass piles up on the left due to the truncation
of the PDF at the origin. Figure 3 illustrates the sensitivity of the PDF to distance of the mean
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Figure 3: Sensitivity of PDF to Mean for Example shown in Figure 2.

ρ = ‖~µ~R‖ from the origin, which exhibits a notable bimodal aspect during the transition from near-
normal appearance at large mean miss distances, to a more and more truncated left-hand tail as the
mean nears the origin. Clearly, point estimates such as the estimated mean or maximum likelihood
estimate do not tell the full story, except when the miss distance is uninterestingly large.

Figure 4 illustrates an application of the methods advocated herein to a hypothetical close ap-
proach. The upper two subplots show the time evolution of 99.98% linear interval estimates of the
miss distance, and the associated point miss distance estimate using the left-hand ordinate, with Pc
indicated by the right-hand ordinate. Here, α for the interval has been chosen such that α/2 would
correspond with the an alarm based on a Pc threshold of 1×10−4. The difference between the upper
and middle subplots is that the middle subplot illustrates the linear intervals that would result if αlo
were held fixed at α/2. The lower subplot shows the time evolution of elliptical interval estimates
(confidence regions) in the HBR-centered conjunction plane corresponding to the same α, which
equate to 4.13σ ellipses.

It is notable that early in the encounter, when Pc indicates only moderate risk, both the linear and
elliptical interval estimates span many kilometers. This is a direct indication of the lack of precision
in these early estimates that Pc alone fails to convey. Also evident is the phenomenon known as
“roll-off” of Pc that ensues as the uncertainty shrinks and moves, indicating a “dilution” of Pc early
in the encounter.21 The use of either linear or elliptical interval estimates objectively conveys this
information without the need for such concepts.

Also notable is the manner in which the elliptical CR fully enclose the HBR (which is a barely
discernible black speck at the origin, at the scale of the plot) throughout much of the encounter. The
linear interval in the upper subplot, which varies αlo depending on the covariance, correspondingly
includes a region inside the HBR whenever the CR overlaps the HBR.

By contrast, the linear interval based on fixed limits (middle subplot) always leaves some space
near the origin, only crossing the HBR when Pc passes a corresponding threshold. Thus, linear
intervals with αlo held fixed, e.g. at α/2, provide an equivalent, but more informative metric to
methods based solely on Pc. And the failure of such an interval to cover a neighborhood near the
origin is no worse a defect than use of Pc alone entails. Balch, et al.20 provides a related argument
against use of Pc in this manner.
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Figure 4: Miss Distance Interval Estimates Time Series.

SUMMARY AND CONCLUSIONS

This paper has described how CDMs could be reformed to avoid the dissemination of NPD co-
variances, and how cross-covariances between the primary and secondary objects could be relatively
easily computed when common a priori assumptions in the OD process are present, such as when
common ballistic states are included in solving for both vehicles’ orbits.

This paper has also described how estimate fusion may be profitably employed to enhance the
specificity of conjunction assessments, when multiple sources for state estimates for one or both
objects are available. The computations required for fusion also yield information on the consis-
tency of the state estimates, which may be used to quantitatively inflate their covariances to regain
consistency. Fusion of relative state information allows for simple synchronization of mildly asyn-
chronous conjunction data, and the consequent need for a cross-covariance is trivially achieved from
data already available.

This paper has also described miss distance interval estimates and indicated how two-sided inter-
val estimates may be used in conjunction assessment operations as a more informative metric than
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Pc. Linear interval estimates are also evidently more robust to small variations in the conjunction
geometry than elliptical interval estimates.

By comparing the lower limit of a linear IE to the HBR, identical decisions to those based on
comparing Pc to a threshold would be reached, with judicious choice of a fixed lower limit for
the interval. Unlike elliptical intervals, linear interval estimates with fixed lower limits cannot be
guaranteed to cover the region inside the HBR for any given covariance, which could result in missed
detections if the true miss distance is smaller than the HBR. Comparing a fixed lower limit of a linear
IE to the HBR is nonetheless no worse in terms of missed detection rates than comparing Pc to a
fixed threshold. With either approach, if there are good reasons to believe that the probability of the
true miss vector occurring within the HBR is suitably low, then a “high” missed detection rate does
not necessarily lead to the expectation of any actual missed detections over timeframes of interest
to CA operations.

By choosing a lower threshold that varies with the covariance, the linear interval estimate cov-
erage defect around the origin can be substantially, although not completely mitigated. Doing so
results in coverage properties approaching those of elliptical CR, and for practical purposes they are
effectively equivalent. Comparing the lower limit of a linear IE that varies with the covariance to
the HBR is comparable to comparing Pc to a threshold that similarly varies according to the covari-
ance. Either approach should produce false alarm rates approaching that of checking elliptical CR
for overlap with the HBR. Such false alarm rates would be expected to be higher than comparing
Pc to a fixed threshold for covariances typical of current operational scenarios.

In conclusion, the CA community faces a dilemma. Current operational procedures do not always
produce realistic covariances, and in any case, they are often so “large” that a truly unsafe conjunc-
tion could not be reliably detected, as Reference 20 discusses. Changes in procedure to address
missed detection concerns, and/or enhancements to covariance realism that that do not increase the
precision of the estimates, appear likely to drive false alarm rates ever higher. While this paper has
offered a few suggestions that could be effectively employed to produce covariances that are both
realistic and “smaller,” it remains clear that a substantial improvement in tracking performance is
required.
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