

IMPACT OF FACILITY PRESSURE ON THE WEAR OF THE NASA HERMES HALL THRUSTER

2019 International Electric Propulsion Conference September 16, 2019

Jason D. Frieman, Hani Kamhawi, Peter Y. Peterson, and Daniel A. Herman

NASA Glenn Research Center

James Gilland

Ohio Aerospace Institute

and

Richard R. Hofer

Jet Propulsion Laboratory

Introduction: HERMeS Development

- High-power (40-kW) SEP capability has been identified as enabling for near term and future NASA exploration architectures
 - Example: Power and Propulsion Element of NASA's Gateway
- Since 2012, NASA has been developing the Hall Effect Rocket with Magnetic Shielding (HERMeS) to serve as a SEP capability building block
- Technology development transitioned to Aerojet Rocketdyne via Advanced Electric Propulsion System (AEPS) contract
 - NASA continues to support AEPS development via mission risk reduction activities including wear testing of technology demonstration unit (TDU) thrusters

- 2016 TDU-1 Wear Test: AIAA Paper 2016-5025
 - Goal: provide first quantitative insight into wear and performance trends over an extended period of thruster operation
 - 1700 h of operation at 600 V/12.5 kW in Vacuum Facility 5 (VF-5) at NASA GRC (~4 µTorr operating pressure)
- 2017 TDU-3 Short Duration Wear Test (SDWT): IEPC Paper 2017-207
 - Goal: quantify the impact of operating condition on thruster life
 - 200 h segments (7x) each performed at a different operating condition in VF-5 (~4 μ Torr operating pressure) and 6 (~11 μ Torr operating pressure)
- > 2017-2018 TDU-3 Long-Duration Wear Test (LDWT)
 - Pathfinder test for the planned 23 kh AEPS life and qualification campaign intended to quantify the performance, stability, plume, and wear trends of TDU-3 over at least 3,000 hours of operation using methods planned for AEPS testing
 - All segments performed in VF-5 (~4 µTorr nominal operating pressure)

- 2016 TDU-1 Wear Test: AIAA Paper 2016-5025
 - Goal: provide first quantitative insight into wear and performance trends over an extended period of thruster operation
 - 1700 h of operation at 600 V/12.5 kW in Vacuum Facility 5 (VF-5) at NASA GRC (~4 µTorr operating pressure)
- 2017 TDU-3 Short Duration Wear Test (SDWT): IEPC Paper 2017-207
 - Goal: quantify the impact of operating condition on thruster life
 - 200 h segments (7x) each performed at a different operating condition in VF-5 (~4 μ Torr operating pressure) and 6 (~11 μ Torr operating pressure)
- > 2017-2018 TDU-3 Long-Duration Wear Test (LDWT)
 - Pathfinder test for the planned 23 kh AEPS life and qualification campaign intended to quantify the performance, stability, plume, and wear trends of TDU-3 over at least 3,000 hours of operation using methods planned for AEPS testing
 - All segments performed in VF-5 (~4 µTorr nominal operating pressure)

What is the impact of facility pressure on measured erosion rates?

- The TDU-3 LDWT was conducted between 10/23/2017 and 10/4/2018 and accumulated approximately 3,570 h of total operating time in six segments:
 - I: Repeat of the TDU-1 wear test
 - II-IV: Assess impact of discharge voltage and magnetic field strength on component wear
 - V: Assess performance and wear using an alternate pole cover material (carboncarbon composite) with increased strength and crack resistance
 - VI: Assess the impact of facility pressure on performance and wear

*All segments completed at a discharge current of approximately 20.8 A

Segment	I	II	III	IV	V	VI
Operating Condition	600 V/ 1 B	300 V/ 1 B	300 V/ 0.75 B	300 V /1.5 B	600 V/ 1 B	600 V/ 1 B
Facility Pressure (µTorr)	5.7	4.2	4.1	4.2	4.3	11.7
Duration (h)	1015	252	214	240	1579	270
	γ					λγ

This Work

Experimental Apparatus

HERMeS TDU-3

- Same thruster used for SDWT with minor modifications:
 - Thickness and position of cathode keeper
 - New magnet coils (field shape unaltered)

Experimental Apparatus

HERMeS TDU-3

- Same thruster used for SDWT with minor modifications:
 - Thickness and position of cathode keeper
 - New magnet coils (field shape unaltered)

Diagnostics

- Thrust measured with an inverted pendulum thrust stand (± 0.8% uncertainty) (AIAA Paper 2018-4516)
- Faraday probe, retarding potential analyzer, Langmuir probe, ExB probe mounted to a two-axis positioning system (AIAA Paper 2016-4828)

Experimental Apparatus

HERMeS TDU-3

- Same thruster used for SDWT with minor modifications:
 - Thickness and position of cathode keeper
 - New magnet coils (field shape unaltered)

Diagnostics

- Thrust measured with an inverted pendulum thrust stand (± 0.8% uncertainty) (AIAA Paper 2018-4516)
- Faraday probe, retarding potential analyzer, Langmuir probe, ExB probe mounted to a two-axis positioning system (AIAA Paper 2016-4828)

GRC VF-5

- Nominal operating pressure: 4.5 µTorr at 600 V/12.5 kW
- Pressure measured using 3 EP-configured ion gauges distributed around thruster test station
 - 2 gauges faced radially outward
 - 1 gauge faced axially downstream
 - Pressure controlled using auxiliary flow of xenon injected upstream and downstream of TDU-3
 - Auxiliary flow rates varied until the ion gauges facing radially and downstream both measured ~11 µTorr
 - Auxiliary flow injection technique intended to match the near-field backpressure environment observed in VF-6

Experimental Apparatus: Wear Measurements

- Inner front pole cover (IFPC), keeper, and outer front pole cover (OFPC) modified to enable wear measurements
 - Graphite components polished pre-test to maximize surface uniformity
 - Graphite masks installed to provide unexposed reference surfaces:
 - IFPC: two graphite strips covering approximately 95% of radius
 - Keeper: graphite ring with a tab protruding radially inward
 - OFPC: series of graphite strips covering approximately 95% of radius
- Erosion measurements made with a chromatic, white-light, non-contact profilometer
 - Data analyzed per ISO 5436-1 guidance for a type A1 step
 - Typical uncertainties ±2 μm accounting for:
 - Instrument error
 - Surface roughness
 - Non-flat surface geometry

- Increasing the operating pressure during the LDWT changed the thrust by less than the measurement uncertainty
 - Consistent with results from Facility Effects
 Characterization Test (FECT)

Key Observations:

- 1) Increasing the operating pressure during the LDWT changed the thrust by less than the measurement uncertainty
 - Consistent with results from Facility Effects
 Characterization Test (FECT)

2) Thrust measured at elevated pressure during the LDWT matched results measured in VF-6 for both TDU-1 and TDU-3

Key Observations:

- 1) Increasing the operating pressure during the LDWT changed the thrust by less than the measurement uncertainty
 - Consistent with results from Facility Effects
 Characterization Test (FECT)

2) Thrust measured at elevated pressure during the LDWT matched results measured in VF-6 for both TDU-1 and TDU-3

3) Bleed flow orientation (upstream bleed only, downstream bleed only, or both) had no impact on TDU-3 performance

Key Observations:

- 1) Increasing the operating pressure during the LDWT changed the thrust by less than the measurement uncertainty
 - Consistent with results from Facility Effects
 Characterization Test (FECT)
- 2) Thrust measured at elevated pressure during the LDWT matched results measured in VF-6 for both TDU-1 and TDU-3
- 3) Bleed flow orientation (upstream bleed only, downstream bleed only, or both) had no impact on TDU-3 performance

Bleed flow did not significantly impact thruster performance or plume properties

Key Observations:

1) The IFPC erosion rates in VF-5 at 11 μ Torr largely match those at ~4 μ Torr to within the measurement uncertainty

- The IFPC erosion rates in VF-5 at 11 μTorr largely match those at ~4 μTorr to within the measurement uncertainty
- 2) IFPC erosion rates measured in VF-6 at an equivalent background pressure and operating condition are 54% larger (on average) than those measured in VF-5

- 1) The IFPC erosion rates in VF-5 at 11 μ Torr largely match those at ~4 μ Torr to within the measurement uncertainty
- 2) IFPC erosion rates measured in VF-6 at an equivalent background pressure and operating condition are 54% larger (on average) than those measured in VF-5
- 3) Similar results obtained for the OFPC

Key Observations:

- 1) The IFPC erosion rates in VF-5 at 11 μ Torr largely match those at ~4 μ Torr to within the measurement uncertainty
- 2) IFPC erosion rates measured in VF-6 at an equivalent background pressure and operating condition are 54% larger (on average) than those measured in VF-5
- 3) Similar results obtained for the OFPC

Pressure alone cannot explain difference in wear rates between VF-5 and VF-6

Results: Keeper Wear

Key Observations:

1) The keeper erosion rates in VF-5 at 11 μ Torr are 152% greater (on average) than those at ~4 μ Torr (\circ , \circ , \circ)

Results: Keeper Wear

- 1) The keeper erosion rates in VF-5 at 11 μ Torr are 152% greater (on average) than those at ~4 μ Torr (\circ , \circ , \circ)
- 2) No corresponding change observed in cathode performance and stability parameters:
 - Cathode-to-ground voltage
 - Keeper floating voltage
 - Keeper voltage oscillation characteristics (peakto-peak, RMS, σ, power spectra)

- The performance and wear of the NASA HERMeS TDU-3 Hall thruster at elevated pressure was assessed in order to determine the sensitivity of these parameters to facility effects
- Performance and plume properties were shown to vary by less than the empirical uncertainty between operation at nominal (4 μTorr) and elevated (11 μTorr) facility pressure
- Erosion rates of the IFPC at 11 μTorr matched those obtained in the same facility at 4 μTorr, but were 54% smaller than those measured in another facility at matched operating pressures and throttle conditions
- Keeper erosion rates were shown to increase by 152% for operation at 11 $\mu Torr$ relative to 4 $\mu Torr$ in the same facility
- Overall, this suggests that facility parameters other than pressure play a role in determining component erosion and that additional work is required to fully characterize facility-to-facility variations in wear rates