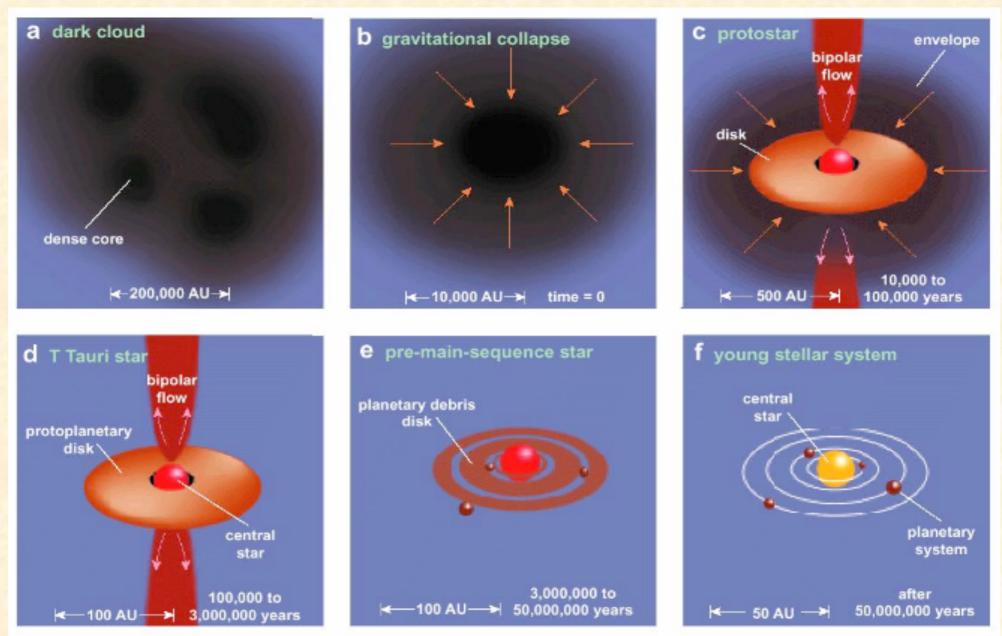
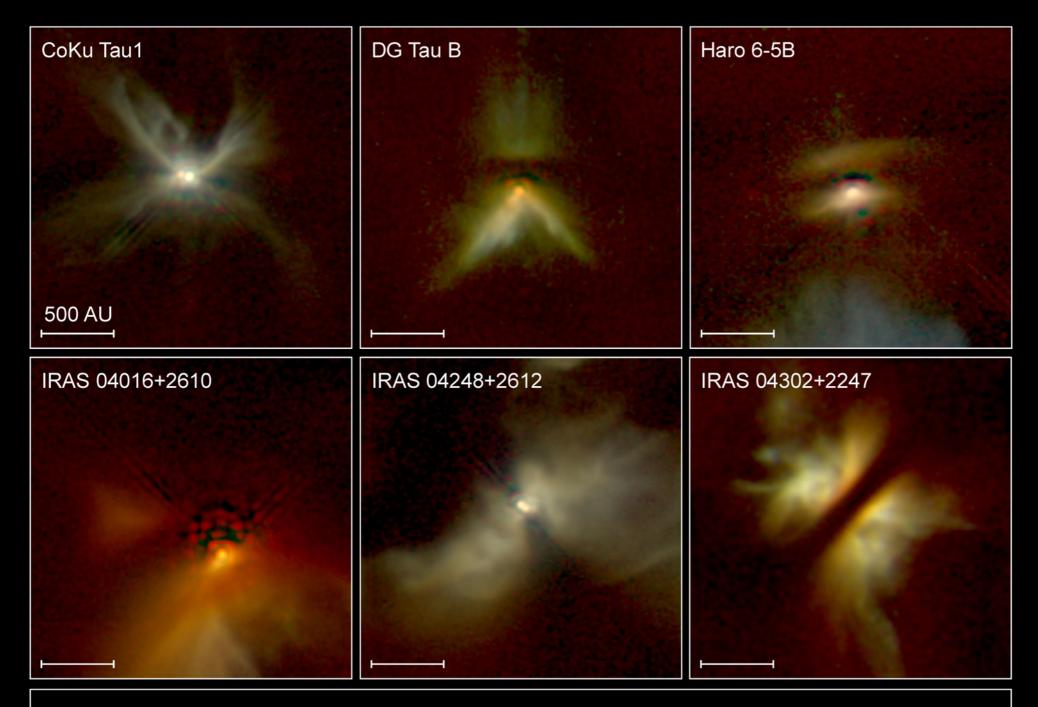
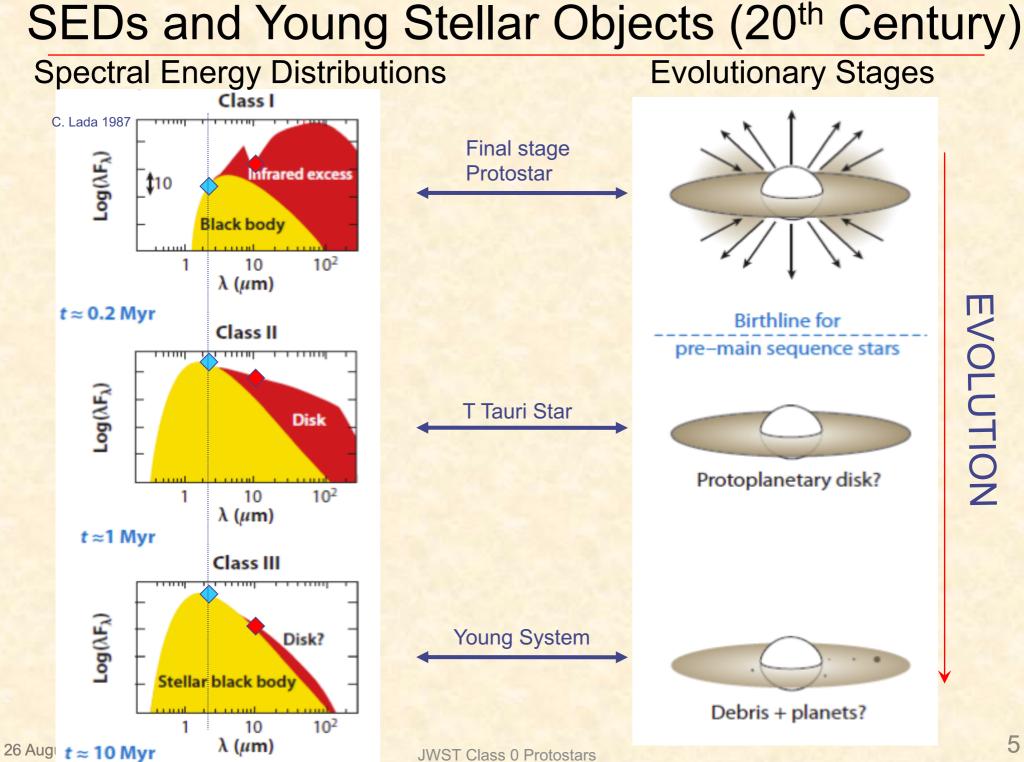
Probing the assembly of the youngest protostars with NIRSpec


Tom Greene (NASA Ames), E. van Dishoeck, M. Ressler, M Barsony, Gully SF@ JWST Workshop August 27, 2019

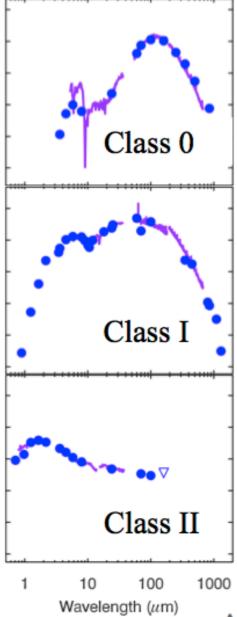
Spitzer Serpens A image courtesy of NASA/JPL-Caltech/L. Cieza (UT)


Topics

- Low-mass star formation paradigm
- Questions about central protostars
- Progress on understanding Class I protostars
- Going younger: Class 0 protostars & observational considerations
- JWST Class 0 program
- Keck reconnaissance: Serpens S68N: First Class 0 photosphere
- Related JWST programs


Where do stars and planets come form?

Greene 2001 Am. Sci.; adapted from Hogerheijde 1998 and Shu et al. 1993 3 JWST Class 0 Protostars



Young Stellar Disks in Infrared Hubble Space Telescope • NICMOS

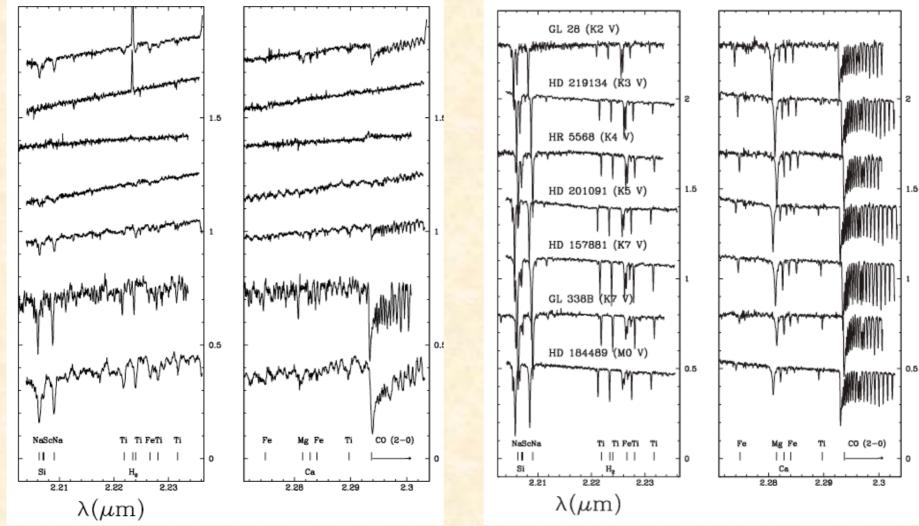
Observational classes / evolutionary stages

 $dloa(\lambda S)$

	$\alpha = \frac{dlog(\lambda S)}{dlog\lambda}$	
Class 0		
$L_{SMM}/L_{BOL} > 0.5$	5%	* S
T _{BOL} ≤ 70 K		orig
		(La
Class I		★ L
$\alpha \geq 0.3$		ide
70 K < T _{BOL} ≤	670 K	199
Flat		\star
$-0.3 \le \alpha < 0.3$	1	(My
		ten
Class II		wit
$-1.6 \le \alpha < -0.3$	3	me
670 K < T _{BOL} :	≤ 2800K	SEC
		199
Class III		
$\alpha < -1.6$		

SED slope (α method): ginal criteria for Classes da 1987; Greene et al., 1994) LSMM/LBOI: added later to ntify Class 0 (Andre et al., 93, also Maury et al., 2011) **Bolometric temperature** yers & Ladd, 1993): the nperature of a black body th the same flux weighted an frequency as the observed D (see also Greene et al., 94).

Slide from N. Evans


All SEDs from Dunham et al. (2013), PPVI review chapter

 $T_{BOL} > 2800 K$

Questions about central protostars (Class 0/I)

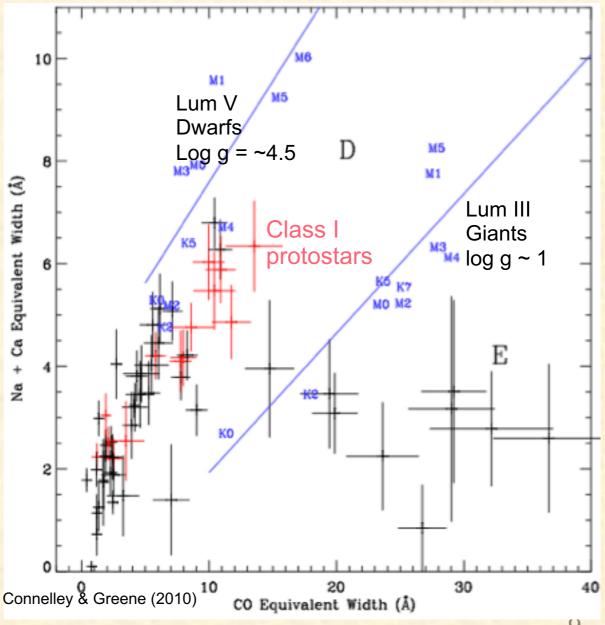
- What are the T_{eff} , L_{*}, and log g of these objects?
 - Do their absorption features form in disks or stars?
- What fractions of protostar luminosities powered by mass accretion and by contraction of stellar photospheres?
 - At what rate do protostars accumulate mass? Continuous or episodic accretion?
- How can observations of their spectra inform models of masses, ages, lifetimes, internal structure, and circumstellar environments?
- What are the properties (masses, spatial extents) of their circumstellar disks?
- What are the angular momenta of these objects?
 - Evidence of regulation by a circumstellar disk?
 - How much AM evolution between freefall, Class 0, I, and T Tauri stages?

Class I Protostar near-IR Spectra

Class I protostars (p Oph)

 \bullet Generally have T-Tauri $T_{\rm eff}$ & log g but rotate rapidly and have high near-IR continuum veiling

Dwarf standards

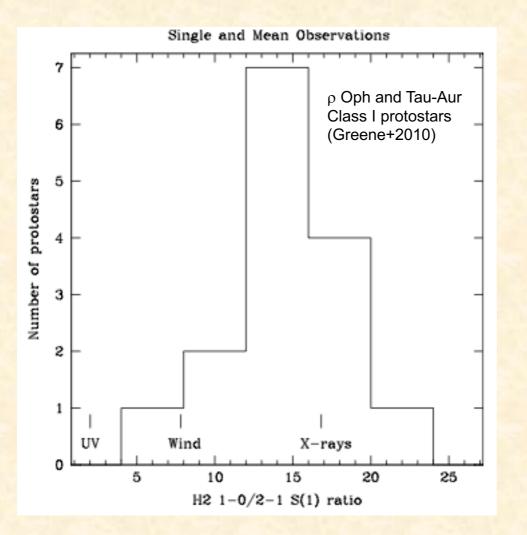

Keck NIRSPEC spectra from G. Doppmann+ (2005)

Protostar Surface Gravities

•Strengths and ratios of Kband atomic lines & CO tell:

- Temperature
 - Relates to mass
- Gravity:
 - Relates to age
 - dwarf, giant, or disk?

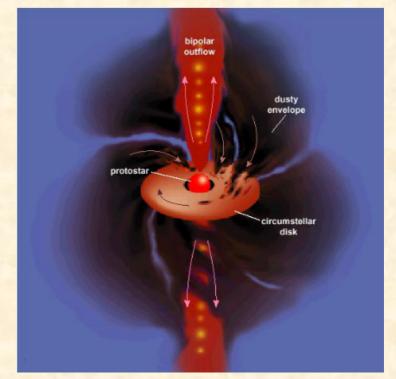
IR light from Class I protostars originates in stars (red)

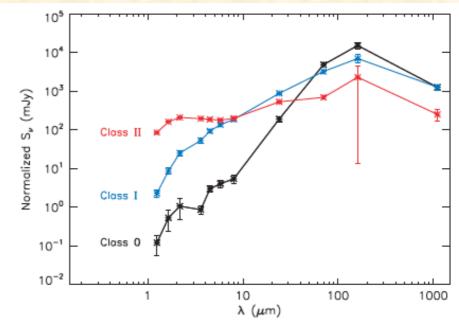


What is nature of H₂ emission in protostars?

Near-IR H₂ line ratios very sensitive to excitation source:

- S(1) 1-0 / S(1) 2-1 = 1.9 UV; 7.7 shock; 17 X-ray
- S(1) 1-0 / S(1) 3-2 = 3.5 UV; 130 X-ray
- S(1) 1-0 is 2.1218 μ m, S(1) 2-1 is 2.2477 μ m, S(1) 3-2 is 2.3864 μ m
- Weintraub et al. (2000) found H₂ emission from TW Hya to be excited by X-rays
- Protostars are strong X-ray emitters and drive jets that shock gas
- Protostars are also predicted to have considerable UV emission from accretion shocks (but can't escape due to extinction)
- H₂ emission may be the best way to diagnose the innermost radiation environments of protostars!


Class I 2 μ m H2 emission and winds



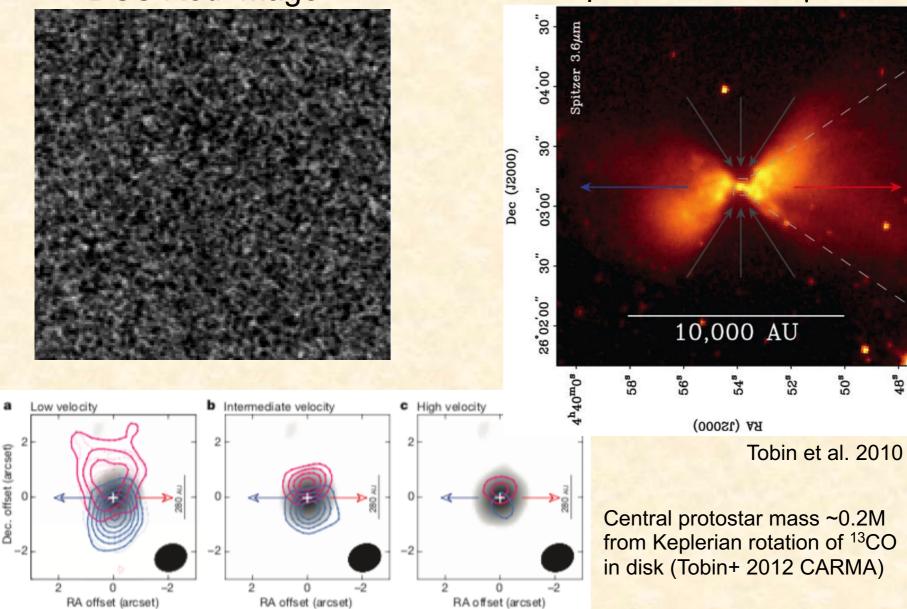
- Near-IR H2 emission in Class I protostars is consistent with shock excitation in protostellar winds or x-ray interactions
- Ambiguous determination may be due to multiple excitation mechanisms

Class 0 protostars: Yet to accrete majority of mass

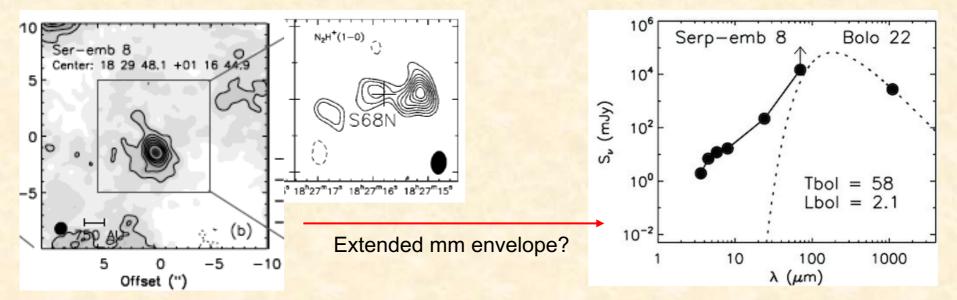
- Age ~ 10,000 100,000 yr
- Strong outflow
- Massive or tiny disks?
- Massive Envelopes
- T ~ 30 K
- No visible / little IR light
- Unknown central stars:
 - How are they assembled?

Enoch+ (2009) mean Per *

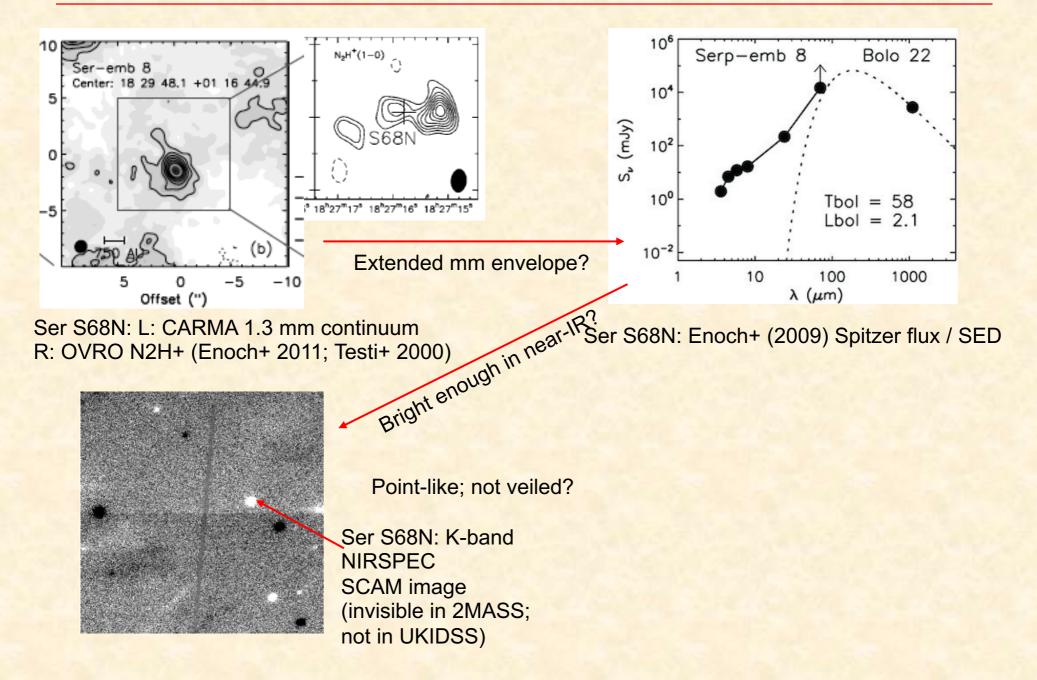
JWST Class 0 Protostars

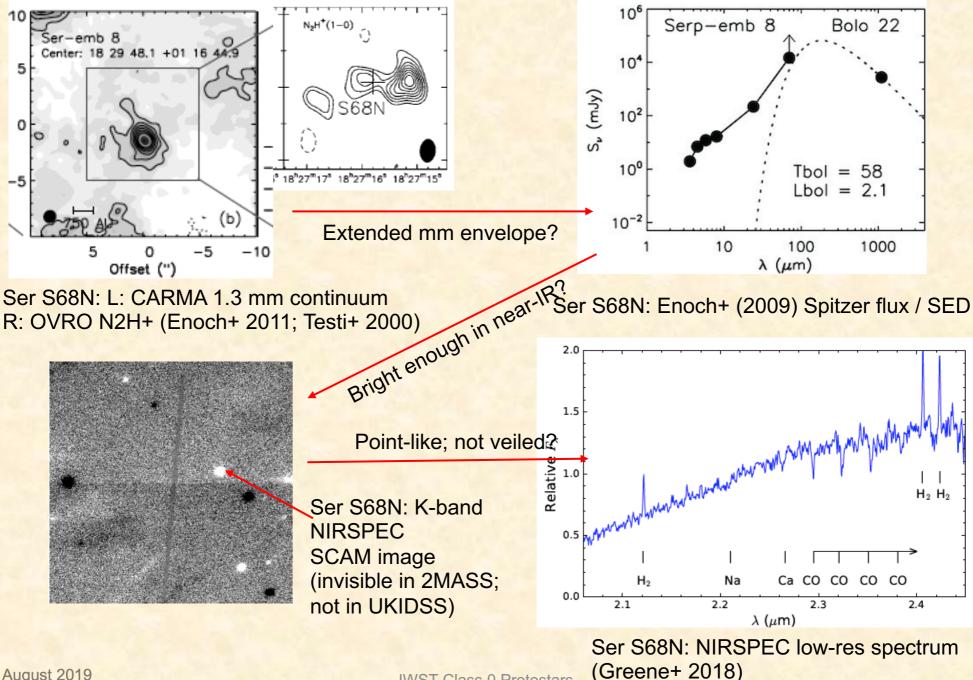

Observe Class 0 protostellar photospheres?

- Spitzer data show Class 0 are brighter than expected at $\lambda < 5 \ \mu m$
- K-band spectra are best compromise for diagnosing photospheres
 - Not severely impacted by extinction $(A_k \sim 0.1 A_v)$
 - Adequately strong lines diagnostic of Teff and log g (Doppmann+ 2005)
- Object selection is very tricky:
 - Spitzer + Herschel SEDs have Class 0 shape / T_{bol} < 70 K
 - mm emission confirms extended envelope (resolved interferometric images best)
 - Need K < ~17 mag nearly point sources for ~10-m telescopes
 - Near-IR source needs to be same as far-IR one
 - Lose >1/2 of Class 0s to above criteria. Remaining ones can still have veiled, featureless spectra


L1527 Class 0: Visible and Infrared Images

DSS Red Image


Class 0 selection for near-IR observations


Ser S68N: L: CARMA 1.3 mm continuum R: OVRO N2H+ (Enoch+ 2011; Testi+ 2000)

Ser S68N: Enoch+ (2009) Spitzer flux / SED

Class 0 selection for near-IR observations

Class 0 selection for near-IR observations

JWST Class 0 Protostars

JWST Guaranteed Time Program

- Scheduled to observe 5 Class 0 protostars (2 Serpens, 3 Perseus) with in a ~17 hr guaranteed time program (program 1186):
 - NIRSpec IFU with G235M 1.7 3 μm + G395M 2.9 5 μm, R ~ 1000 (may switch to R ~ 2700 for some)
 - Combine with longer wavelengths to probe ices
 - SNR ~150
 - ~0.2" spatial resolution over 3" x 3" IFU:
 - Measure near-IR object size, resolve H2 emission

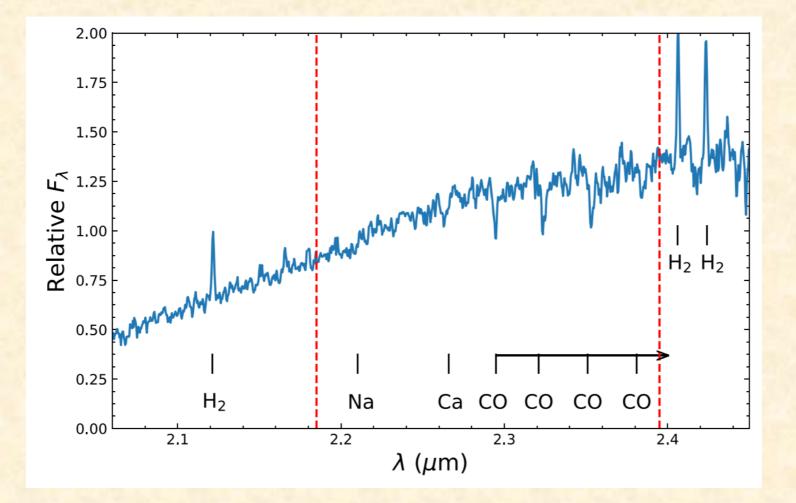
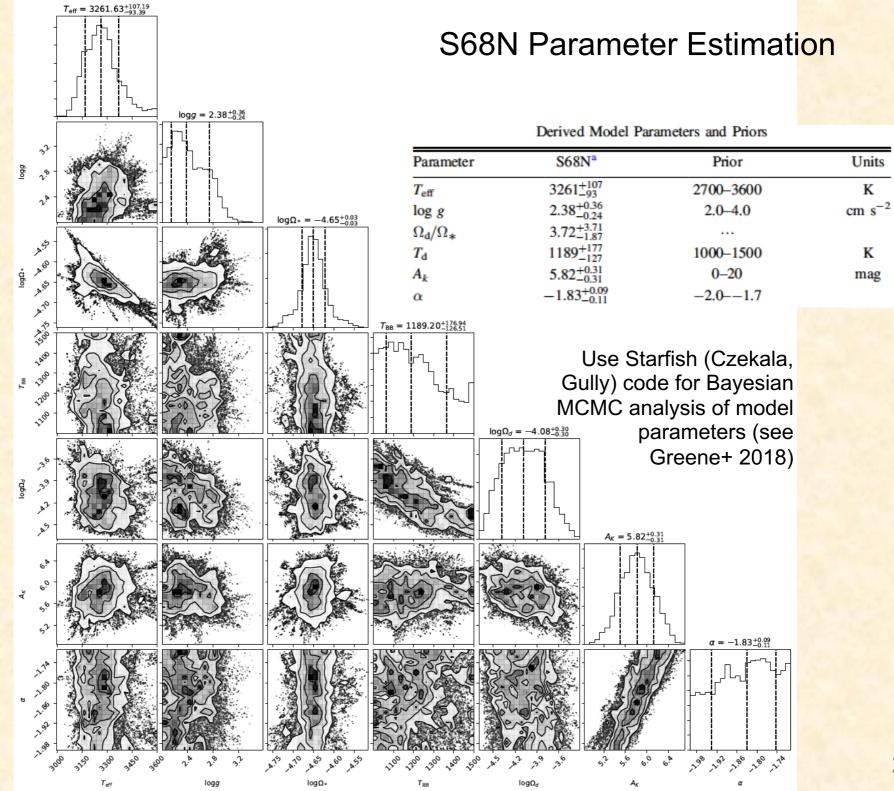

Source Name	nIR RA and Decl. (J2000)	$dist(pc)^{a}$	T_{bol}	$M_{env}{}^{\rm b}$	$K(mag)^{c}$	$F_{3.6\mu m}^{d}$	$\operatorname{Comment}^{\mathbf{e}}$
L1448-C	$03\ 25\ 38.84\ +30\ 44\ 07.0$	230	49-69	1-2	~ 16	3.0	1.6", faint
Per-emb 25	$03\ 26\ 37.46\ +30\ 15\ 28.1$	230	61	0.5	15.0	3.6	1.5", OK
Per-emb 21	$03 \ 29 \ 10.80 \ +31 \ 18 \ 22.2$	230	45	2.5	17.0	1.8	1.0", faint
Per-emb 28	$03\ 43\ 51.02\ +32\ 03\ 07.9$	230	45 - 70	0.6	~ 15	6.8	1.4", OK
Per-emb 8	$03 \ 44 \ 43.95 \ +32 \ 01 \ 36.7$	230	43	0.6	15.1	2.7	2.0", OK
IRAS 04166	$04 \ 19 \ 42.62 \ +27 \ 13 \ 38.9$	140	~ 60	0.2	~ 16.5	~ 5	2.5", faint
L1527 IRS	$04 \ 39 \ 54.75 \ +26 \ 03 \ 07.8$	140	36 - 67	2.0	18+	6.9	$\sim 10''$, faint
Ser S68N	$18 \ 29 \ 48.12 \ +01 \ 16 \ 44.6$	436	57	9.4	~ 16.5	2.0	0.8" OK A+E
Ser SMM 1	$18\ 29\ 49.60\ +01\ 15\ 21.9$	436	~ 58	20	< 17	0.9	too faint
Ser SMM 3	$18 \ 29 \ 59.31 \ +01 \ 14 \ 01.9$	436	59	5.7	15.4	2.7	1.4",OK, α =1

Table 1: Preliminary Class 0 Protostar List

Initial reconnaissance with Keck NIRSpec

S68N: A little bit of near-IR light does get out...

 Keck NIRSPEC low-res spectrum of Serpens S68N Class 0 protostar, S/N ~ 30 – 40 (Greene+ 2018)


More Keck vetting of other Class 0 protostars is underway

S68N Spectral model

Model observed spectrum as sum of Phoenix model photosphere + circumstellar continuum veiling + extinction / reddening:

$$F_{p*,\lambda} = [F_{*,\lambda}(T_{\text{eff}}, \log g, [Fe/[H])\Omega_* + B_{\lambda}(T_{\text{d}})\Omega_{\text{d}}] \ 10^{-0.4A_K} \left(\frac{\lambda}{\lambda_K}\right)^{\alpha},$$

$$r_k \simeq \frac{B_\lambda(T_{\rm d})\Omega_{\rm d}}{B_\lambda(T_{\rm eff})\Omega_{*}}.$$

26 August 2019

22

S68N photosphere parameters

	Derived Model Parameters and Priors			
Parameter	S68N ^a	Prior	Units	
star	3261 ⁺¹⁰⁷ _93	2700-3600	K	
disk log g	$2.38^{+0.36}_{-0.24}$	2.0-4.0	$\mathrm{cm} \mathrm{s}^{-2}$	
$\Omega_{\rm d}/\Omega_{*}$	$3.72^{+3.71}_{-1.87}$			
T _d	1189_{-127}^{+177}	1000-1500	K	
	$5.82^{+0.31}_{-0.31}$	0-20	mag	
α	$-1.83^{+0.09}_{-0.11}$	-2.01.7		

- Teff is similar to Class I and PMS stars, but log g is ~ 1 dex lower
 - Implies M3 3.5 Spectral Type, but radius ~3x larger than Class I or PMS star
 - Consistent with 0.2 M $_{\odot}$ star with R = 4.7 R $_{\odot}$: Inflated radius could be due to strong recent accretion (Baraffe+ 2017)
 - Note that we do not know the mass would need velocity info from gas in a disk

Continuum veiling and extinction

- Continuum MCMC model fit gives Av ~ 10 Ak = 58 mag to photosphere
 - Consistent with the object's K-band flux
- 2.4237µm 1–0 Q(3) and 2.1218µm 1–0 S(1) H₂ emission lines have same upper level; their ratio implies Av~10 Ak = 48 mag
 - Consistent with H₂ emission arising close to star
 - Results uncertain/underestimated due to a 2.42412 μm telluric line (Connelley & Greene 2010)
- H₂ line ratios consistent with excitation by shocks or x-rays but not UV
- Modest continuum veiling r_k ~ 0.1 implies no more circumstellar disk emission that Class I protostars with r_k ~ 1
 - Could have same disk emission but r_k = F_{disk}/F_{*} may be lower due to 3x larger radius
 - No indication of more warm circumstellar material than Class I

Related JWST GTO Programs

P n	Progra n	PI	Title	Objects	Observations	Time
1	290	E Van Dishoeck (Leiden)	MIRI EC Protostars Survey	Class 0 & 1 protostars	MIRI MRS IFU spectra of circumstellar gas & ices	39 h
1	236	M. Ressler (JPL)	Protostellar Binaries in Perseus	Binary protostars in Perseus	MIRI MRS IFU spectra of circumstellar gas & ices	16 h