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Abstract 
 
This report provides a description and performance evaluation of the optimization 
techniques for high performance computing (HPC) implementation of the open source 
Computational Materials mini-application Aladyn (https://github.com/nasa/aladyn). 
Aladyn is a basic molecular dynamics code written in FORTRAN 2003, which is designed 
to demonstrate the use of adaptive neural networks (ANNs) in atomistic simulations. The 
role of ANNs is to efficiently reproduce the very complex energy landscape resulting from 
the atomic interactions in materials with the accuracy of the more expensive quantum 
mechanics-based calculations. The ANN is trained on a large set of atomic structures 
calculated using the density functional theory (DFT) method. While achieving orders of 
magnitude faster computational performance than DFT, the ANN-based approach was still 
very computationally demanding compared to the conventional approach of using 
empirically fitted energy functions. After its initial development, Aladyn was evaluated 
and optimized by experts at the NASA Advanced Supercomputing (NAS) division to 
exploit modern supercomputer architectures. The code has been optimized for execution 
on multicore central processing units (CPUs), including Intel® Skylake microarchitecture, 
and on graphic accelerators, such as Nvidia® V100 graphic processing units (GPUs), using 
Open Multi-Processing (OpenMP) and Open Accelerators (OpenACC) programming 
interfaces. The optimization achieved a speedup of 4.7 times the baseline version on CPU 
performance and an additional 2.4 times on CPU+GPU performance.  
 
 
1.  Introduction 
 
Atomistic computer simulations are a fundamental tool in materials research to model 
material properties form physics-based first principles. Atomic interaction, governed by 
Quantum Mechanics (QM) require sophisticated and highly computationally demanding 
mathematical models to calculate [1]. Classical methods use approximate functional forms, 
empirically fitted through a set of variable parameters to emulate atomic energies as direct 
functions of atomic coordinates [2]. While empirical potentials are computationally much 
simpler, allowing simulations of large-scale systems of up to a trillion (1012) atoms [3], 
they are substantially less accurate compared to quantum calculations and applicable only 
to very specific atomic configurations or predefined crystallographic phases. A recently 
suggested approach is to use heuristic machine learning methods [4], such as those based 
on Adaptive Neural Networks (ANNs) to predict atomic energies, after being trained on a 
sufficiently large database of QM-calculated structures [5,6]. This approach reduces 
significantly the computational complexity, allowing for simulations of orders of 
magnitude larger systems compared to QM-based methods without compromising 
accuracy. Still, compared to classical methods using empirical energy functions, ANN 
methods remain two- to three orders of magnitude more computationally demanding. 
Hence, the computational cost of simulations, together with the need for extensive training 
of ANNs, still makes the practical implementation of ANN-based methods quite 
challenging. 

The purpose of the Aladyn mini-application software [7], available as open source 
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at https://github.com/nasa/aladyn, is to be a testbed for exploring possible optimization 
strategies to develop highly scalable parallel algorithms for ANN-based atomistic 
simulations. Aladyn is aimed at utilizing the architecture of the high-end modern high-
performance computing (HPC) hardware based on multicore central processing units 
(CPUs) equipped with graphic processing unit (GPU) accelerators. Specifically, the goal 
is to optimize the performance on a single HPC compute node, before implementing 
scaling to multi-node parallelization using message passing interface (MPI). At the same 
time, the open source code of Aladyn can serve as a training model for students and 
professors in academia. 

 
2.  Code Description and Algorithm 
 
Aladyn is a basic molecular dynamics simulation [8] code to demonstrate the use of ANNs 
in calculating atomic energy and forces in a given atomic structure and performing a step 
integration of the equations of motion of all atoms to simulate structure evolution. In this 
approach, the ANN predicts the energy of an atom based on its local environment. 
Interatomic forces are calculated based on the spatial gradient of the energy and used to 
solve the Newtonian equations of motion to evolve the system in a classical molecular 
dynamics algorithm. The level of conservation of the total energy (kinetic and potential) of 
the system is used as a criterion for the correct execution of the simulation. To simplify the 
algorithm complexity of this mini-application, only single element systems, representing 
monocrystalline aluminum are considered. 

The compilation and execution of the code, with the required input files are 
described in detail in ref. [8], as well as in a text file attached to its release at 
https://github.com/nasa/aladyn. This report gives higher focus on the mathematical 
algorithm and its computational implementation. 

The neural network implementation algorithm in Aladyn follows the work by 
Behler and Parrinello [5]. The local environment is described through a set of Local 
Structure Parameters (LSPs) [5,6] defined for each atom as functions of the relative 
positions of its neighbors contained in a sphere of radius, rc - the cut-off radius, which 
defines the interaction range. A fast search for neighbors in the vicinity of rc is performed 
by applying the link-cell method [8] where the system box is divided into approximately 
cubic shape cells of size slightly larger than rc (Figure 1). A list of atoms is maintained for 
each cell. Hence, the search for a neighbor in the interaction range of an atom does not 
have to exceed the nearest neighbor link-cells (marked in gray in Figure 1), limiting it to 
only 27 link-cells in 3D, rather than the whole system.  
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After identifying all of the cut-off neighbors (j) for each atom (i) in the system, the 

code calculates individual LSP coefficients, 𝐺", for this atom as functions of the interatomic 
distances, 𝑟"$, between atom (i) and its neighbors (j) as [9] 

 
𝐺"
(&,()*𝑟"$+ = ∑ 𝑃&*cos𝜃"$3+𝑓(*𝑟"$+𝑓((𝑟"3)

567859
$,3:" 		(𝑙 = 0,1,2,4,6; 		𝑠 = 1,2, . .		12), (1) 

 
where 
 
𝑓(*𝑟"$+ = 𝑒F*567F5G+

H IHJ 𝑓K*𝑟"$+,       (2) 
 
and 
 

𝑓K*𝑟"$+ = L
*567F59+

M

N9MO*567F59+
M 			 ∶ 						 𝑟"$ ≤ 𝑟K

									0													 ∶ 							 𝑟"$ > 𝑟K
.      (3) 

 
In the above equations, 𝜎, 𝑟(TU,V,..UV, 𝑟K, and 𝑑K, are model specific parameters, defined in 
the provided neural network potential file, ANN.dat. The functions, 𝑃&(𝑥), are Legendre 
polynomials of order (𝑙) defined through the iteration: 
 
𝑃&OU(𝑥) = [(2𝑙 + 1)𝑥𝑃& − 𝑙𝑃&FU] (𝑙 + 1)⁄ ;				𝑃 (𝑥) = 1;			𝑃U(𝑥) = 𝑥,  (4) 
 
and 𝜃"$3  is the bond angle between the (i-j) and (i-k) bonds of atom (i), which expressed 
through the relative cartesian interatomic coordinates *𝑥"$ = 𝑥$ − 𝑥", 	𝑦"$ = 𝑦$ − 𝑦",
𝑧"$ = 𝑧$ − 𝑧"+, and (𝑥"3 = 𝑥3 − 𝑥", 	𝑦"3 = 𝑦3 − 𝑦", 𝑧"3 = 𝑧3 − 𝑧"), is: 

Figure 1. Schematic representation of the 
link-cell volume decomposition. Bold lines 
indicate the simulated system box 
boundaries. Dotted lines indicate the link-
cell mesh of cells, 𝑐U, 𝑐V, …. The cells in grey 
indicating the nearest cells, among which a 
search for neighbors of the central atom (in 
yellow, in cell, 𝑐c) is performed.  
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cos𝜃"$3 = *𝑥"$𝑥"$ + 𝑦"$𝑦"$ + 𝑧"$𝑧"$+ *𝑟"$𝑟"3+J .      (5) 
 
The specific choice of (𝑙, 𝑠)-set of values in Eq.(1) is determined on a case-by-case basis 
during training of the ANN for a given system. The resulted set of LSPs coefficients, 
𝐺"
(deTU,..f^), where 𝑀^ counts all (𝑙, 𝑠)-combinations - 60 in total, as given in Eq. (1) - are 

supplied as an input vector to the first input layer of the ANN. 
The implemented ANN is a forward propagating neural network [6], consisting of 

an input first layer, one or more hidden layers, and an output layer. Each 𝑛-th layer of atom 
(𝑖) can be represented as a vector 𝒖kk⃗ (c)(𝑖) = m𝑢U

(c)(𝑖), 𝑢V
(c)(𝑖),…	𝑢do

(c)(𝑖)p of length 𝑀c , 

with 𝑀^ = 60 set as the length of the 𝑮kk⃗ " vector.  The mathematical form of the ANN is 
expressed in matrix form through the iterations 
 
𝒖kk⃗ (U)(𝑖) = 𝑮kk⃗ " ∗ 𝒘t(^,U) + 𝒃kk⃗ (U)          (6a) 
𝒖kk⃗ (c)(𝑖) = 𝒇k⃗ m𝒖kk⃗ (cFU)(𝑖)p ∗ 𝒘t(cFU,c) + 𝒃kk⃗ (c); 				𝑛 > 1.    (6b) 
 

The first layer, 𝒖(U)(𝑖) in Eq. (6a), takes as an input the LSPs, 𝑮kk⃗ ", of atom (𝑖), 
weighted by the dot product (∗) with the weight matrix 𝒘t(^,U) of size (𝑀^ × 𝑀U). Next 
layers, 𝒖kk⃗ (c)(𝑖), are calculated using Eq. (6b), where the input from the previous layer, 
𝒖kk⃗ (cFU)(𝑖), is modified through a transfer function  

 
𝑓(𝒖) = U

UOxy𝒖
 .         (7) 

 
The last layer consists of only one coefficient, giving the predicted potential energy of atom 
(i), 
 
 𝐸" = 𝑢(&{(|)(𝑖).         (8)   
 
The total system potential energy, 𝐸, is obtained as a sum of the potential energies of all 
atoms 
 
𝐸	 = ∑ 𝐸"" .           (9) 

 
The forces, acting on atom (i), are calculated as the spatial derivatives of 𝐸. A 

detailed description of the analytical differentiation of 𝐸, with the force and stress [10] 
calculation is given in Appendix A. The computational implementation of the analytical 
calculations is given in Appendix B and discussed in detail in Section 3.  

Once the forces are known, a high precision 5-th order predictor-corrector scheme 
[11] is used to integrate the Newtonian equations of motion for each particle. The use of a 
high-order predictor-corrector integrator allows for accurate monitoring of the energy of 
the system [12] to identify any erroneous deviations from the energy conservation law as 
the system evolves. 
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The block scheme of the algorithm is given in Figure 2. At the beginning of the 
simulation, Aladyn reads the input structure as a list of atomic coordinates and velocities, 
together with the parameters of a trained ANN. The atomic velocities, 𝑣", define the initial 
temperature of the system, 𝑇, through the atomic kinetic energy, 𝑄", as 

 

𝑄" =
��k⃗ 6

H

V
,          (10) 

 
so that 
 
𝑇 = V

�3�
∑ 𝑄"� ,         (11) 

 
where the summation is over all N-number of atoms, 𝑚 is the atomic mass, and 𝑘� is the 
Boltzmann constant. 
 

 
 
Figure 2. Flowchart summarizing the algorithm implemented in Aladyn for performing ANN based 
molecular dynamics simulation.  
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Based on the input system geometry, the algorithm creates a link-cell mesh over 
the entire system box. An MD step (or a time-step) starts with identifying all neighbors in 
a cut-off radius, rc, around each atom of the system, using the link-cell list. Using the 
prepared list of neighbors, the LSPs are calculated for each atom, and supplied as an input 
to the ANN for energy and force calculation. The calculated forces are used to integrate 
the equations of motion for each atom and evolve the system by one MD step.  

The updated atomic velocities, 𝑣" , resulting from the integration, are used to 
calculate the new kinetic energy of each atom, and update the overall temperature of the 
system, using Eq. (10) and Eq. (11), respectively. 

The total system energy, calculated as 
 

𝐸|�| = ∑ (𝐸" + 𝑄")�
"TU = 𝑐𝑜𝑛𝑠𝑡.       (12) 

 
is reported and used as a verification test of the simulation since it must remain constant 
during the simulation. The updated atomic positions are used to calculate new LSPs, and 
the next steps repeat until the end of the simulation. 
 
3. Code Optimization 
 
3.1. Hardware and test case description 
 
The code has been tested on two systems: A dual socket 20-core Xeon Gold 6148 model 
with a base clock speed of 2.4 GHz and a dual socket 18-core Intel Xeon Gold 6154 model 
with 4 Nvidia V100 GPU cards. 

The code was compiled using the ifort v19 compiler with OpenMP programming 
interface [13,14], and the PGI v19 compiler. The OpenACC 2.6 programming interface 
[15] was used to enable GPU acceleration. The test case was an MD simulation of an 
aluminum crystal of 192,000 atoms simulated for 300 time-steps (MD steps). MPI was not 
used in the parallelization scheme, because the purpose of Aladyn is to optimize the 
performance on a single modern HPC compute node. This does, however, limit the code to 
the use of only 1 GPU card, thereby not fully utilizing its resources in terms of GPU 
accelerators. In a production code, MPI can be used to scale the performance and system 
size over multiple compute nodes or multiple GPUs on a single compute node by treating 
it as multiple MPI nodes (MPI processes). 
 
3.2. Algorithm optimization 
 
It was found that the optimal algorithmic realization of the calculations as outlined in 
Appendices A and B differs for the OpenMP and OpenACC programing models. 

The first part, involving the nearest neighbor search (Loop 0: in Appendix B), was 
realized through two nested loops. The first loop is over the link-cells, 𝑐U, 𝑐V, …	𝑐c,… (Fig. 
1). The second loop, inside the first one, is over the atoms of one cell, to find their nearest 
neighbors among atoms of that cell and its nearest neighbor cells. Because of the involved 
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intensive search in a large non-structured, and dynamically changing array of atoms 
(containing atomic coordinates and chemical type) those two loops were found inefficient 
when implemented with OpenACC, but benefited substantially from an OpenMP 
programing model and were accelerated using this model only. 

The following parts (Loops 1 to 6 in Appendix B), which perform energy and force 
calculations, were realized within both OpenMP and OpenACC programing models, but 
some substantial algorithmic differences had to be introduced for both models. 

 
 
Figure 3. Intrinsic loop arrangement in the energy and force calculation algorithm implemented in 
Aladyn for (a) Loops 1 through 5, and (b) for Loop 6. 
 
3.2. OpenMP multicore parallelization  
 
The OpenMP implementation, using the ifort (2019.3.199) compiler, for energy and force 
calculation was done on two versions of the algorithm starting from Loop 1 to Loop 6, as 
defined in Appendix B. Both versions were tested and compared. 

In the first, called the intrinsic version (see Fig. 3), Loops 1 through 5 were 
performed for each atom individually, rather than for all atoms. To perform the calculations 
for all atoms, those loops were combined under one overhead loop over all atoms. The 
benefits of this arrangement are twofold. First, because the calculations in Loops 1 to 5 
involve individual atoms only, the iterations in the global overhead loop are independent 
of each other and the loop is parallelizable. Since this loop is the largest one over all atoms 
in the system, its parallelization gives good scaling with the system size or number of 
CPUs. Second, Loops 1 to 5 can use local temporary arrays to store the intermediate results 
for each atom separately. The size of these arrays is proportional to the number of neighbors 
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per atom, 𝑛� , and remains relatively small (𝑛� < 100), 
which significantly improves memory management and 
caching. Since these arrays are used for each atom, they 
can be allocated at the beginning of the overhead loop and 
used as “private” arrays during loop parallelization. The 
form of Eq. (A12), does not allow Loop 6 also to be 
included under the overhead loop together with Loops 1 
through 5. Loop 6 remains as a separate double nested 
loop over all atoms (Fig 3b). Since atomic stresses are not 
always needed in an MD simulation, Loop 6 can have two 
versions, one which calculates forces only (Eqs. A1(a-c)), 
and one which calculates forces with the stress 
components (Eqs. A1(a-d)).  In Aladyn only the force 
calculations are used.   

In the second, called the extrinsic version of the 
energy and force calculation, there is no overhead loop, 
and all loops from Loop 1 to 6 are iterated as nested loops 
over all atoms and all of the atom neighbors (Fig 4). The 
advantage of this arrangement is that the calculations are 
performed in a series of nested loops that can be collapsed* 
to form numerous but simple elementary loops, where each 
loop performs one, or a few, elementary calculations on all 

atoms at a time in a conveyor-like fashion. After a collapse of the nested loop in one master 
loop, the number of iterations in the master loop scales as 𝑁 × 𝑛� , which can be on the 
order of 107 iterations or more. The simplicity of the resulted loops makes the extrinsic 
version most suitable for massive parallelization and vectorization. Under the OpenMP 
model, it was found that these loops were best parallelized using static, rather than dynamic 
scheduling [13,14].  

A challenge with the extrinsic version is the need for large temporary arrays, that 
scale with the number of iterations (e.g., ~107 for 105 atoms). Another challenge is the 
dynamic number of neighbors of each atom. This number varies from atom to atom and 
from time-step to time-step. Having a different number of neighbors prevents the collapse 
of the inner loops over neighbors, with the outer loop over atoms. One solution is to find 
the maximum number of neighbors, 𝑛�,�{� , at each time-step, and introduce “ghost” 
neighbors for atoms with less than the maximum number of neighbors. If the system 
density is relatively uniform, then this scheme does not lead to a large overload in terms of 

                                                
* Loop collapsing is a loop transformation which combines loops that are perfectly nested into one single 
loop. 
	

Figure 4. Extrinsic loop 
arrangement in the energy and 
force calculation algorithm 
implemented in Aladyn. 



 

 
13 
 

 

ghost atom calculations. It must be noted that 𝑛�,�{� can vary from time-step to time-step, 
and the affected arrays have to be reallocated at each time-step. Alternatively, a 
conservative overestimate can be made for 𝑛�,�{� , and used throughout the entire 
simulation. In this case, array allocation can be done once at the beginning of the 
simulation. The drawback is that the conservative estimate (based on some maximum 
possible density of the simulated material) can be very large and can lead to unnecessarily 
large arrays, and a loss of efficiency. For systems of uniform and almost constant density 
(< 1% variations), such as solid body simulations, tests show that eliminating array 
reallocation at each time-step saves up to 20% of the CPU time. This result may differ 
substantially for systems with large density fluctuations, such as multiphase systems with 
solid-liquid or liquid-gas interfaces. 

Additional optimization strategies that were tested include as follows: (i) Ensure 
that 𝑛�,�{� is a multiple of 8 (even if this leads to a slight overestimate of 𝑛�,�{�), and 
instruct the compiler that it does not need to generate a remainder loop (use !DIR$ 
ASSUME (mod(max_nbrs,8).eq.0); (ii) Eliminate loop peeling on short loops (use !DIR$ 
VECTOR UNALIGNED); (iii) Force the compiler to use 256-bit Advanced Vector 
Extensions (AVX2) instructions, or 512-bit (AVX512) instructions [16]; (iv) Split vector 
arrays into scalar and reduce array dimensions when possible (e.g., instead of assigning a 
vector, 𝑟(3), for atomic coordinates, use (𝑥, 𝑦, 𝑧) scalars).  

Figure 5 gives the results for the execution time of a 192,000 aluminum atom 
system for 300 time-steps using different optimization options. 
 

 
Figure 5. Results for execution time of a 192,000 atom system for 300 time-steps using different 
optimization options, as indicated with the explanations given in Table 1. 
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Optimization Option Name Meaning 
O3 Use of -O3 compiler option 

Baseline (dynamic; 16 schedule) 
  

OpenMP loops using directive  
SCHEDULE (DYNAMIC, 16) 

Base Static Schedule  

OpenMP loops using directive  
SCHEDULE (STATIC) 

AVX2 Use of AVX2 instructions 
AVX512 Use of AVX512 instructions 

Split array_name Reduce dimensions of listed arrays 
SIMD8 Directive Use of SIMD8 compiler directive where possible [16] 

Hoist Alloc/Dealloc  

Use global allocation/deallocation of frequently used 
arrays 

Ensure MaxNbrs mult8  

Ensure that MaxNbrs variable is a multiple of 8 to 
avoid generation of a remainder loop 

Assume Directive MaxNbrs 
mult8  

Instructs the compiler that it does not need to generate 
a remainder loop for MaxNbrs: 

!DIR$ ASSUME(mod(max_nbrs,8).eq.0) 
LoopCount Directive on n_set 

loop (12) 
Instruct compiler of a fixed number of loop cycles: 

!DIR$ LOOP COUNT (12) 

Parallel NBRLIST  

Parallelizing neighbor count in get_neighbors 
subroutine 

 
Table 1: Definitions of the applied optimization options as listed in Fig. 5. 

 
Some major finding with several profilers (op_scope (4.13),  vtune (2019.3), and 

Advisor (2019.3)) after all optimizations were applied are as follows:  
1. Compilation flags and directives force 512-bit instructions in critical loops 

(using op_scope (4.13)) 
2. Memory access (using vtune (2019.3)) 

- Decreased NUMA access ratio: from 51% down to 15.4% 
- Very low average latency (9 cycles) indicating efficient cache utilization 
- Resource usage closer to capabilities of the hardware (DRAM peak 

202GB/s of 230GB/s) 
3. Microarchitecture (µarch) exploration 

- Increased Clock per Instruction (CPI) rate: from 0.416 to 0.465 (ideal is 
~.25) 

- Increased Vector Capacity Usage (FPU): from 24.8% to 89.0% 
- Decrease of the Average CPU Frequency: from 3.045 GHz to 2.339 GHz 
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(Nominal: 2.200 GHz for AVX512) 
4. Threading 

- Increased effective CPU utilization factor from 33.3 out of 80 logical CPUs 
to 38.4, or 47.9% of CPU usage. 

- Decreased serial time (outside parallel regions) from 16.5% to 1.3% of CPU 
Time 

- Decreased spin and overhead time from 5.8% to 2.7% of CPU Time 
5. Compute efficiency: 1159 GFLOP/s (~40% of DP peak) (using Advisor 

(2019.3))  
 

A comparison between the Intrinsic and Extrinsic versions of the algorithm showed 
that there was no noticeable difference in the performance speedup between the two 
versions. The major difference was in the substantially large DRAM usage of the Extrinsic 
version of ~23 GB for 192,000 atoms compared to ~750 MB for the Intrinsic version. 
Similarly, the DRAM bandwidth was much higher for the Extrinsic version compared to 
the Intrinsic version (~73 GB/s vs 2.3 GB/s, respectively). Thus, because the Intrinsic 
version allows for a much bigger system size to be simulated on one compute node with 
less bandwidth overload, it is the preferable version for multicore execution, compared to 
the Extrinsic version.   
 
3.3. OpenACC for GPU acceleration 
 
The OpenACC implementation of Aladyn used only the extrinsic version (Fig. 4) of the 
energy and force calculation, because it allowed for much more efficient massive 
parallelization on a GPU device. Some notable differences in the algorithm implementation 
have been found when optimizing for GPU-accelerator using OpenACC model, compared 
to the multicore OpenMP model optimization. For example, the intrinsic version was very 
inefficient on a GPU device, while on the multicore architecture, the intrinsic and extrinsic 
versions were found to be equally efficient in terms of speed. The inefficiency for the GPU 
device was found to be due to the extensive use of too many registers. The dynamic array 
allocation, where temporary arrays were created on the GPU device at each time-step was 
found to have no performance impact compared to the global allocation at the beginning 
of the simulation. This is in contrast to the multicore OpenMP results, where the initial 
global array allocation was found to be substantially more efficient. 

The OpenACC code does not spend much time in memory transfer between GPU 
and CPU. We therefore focused our effort on optimizing the parallel execution of the 
individual kernels. Of a particular importance was the finding that in the calculation of the 
LSPs coefficients, 𝐺"

(&,(), of atom (i) in Loop 2 (Eq. 1), a collapse directive of a double 
(j,k)-loop over the same set of neighbors caused strided memory access for the k-dimension 
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due to the collapse of the (j,k)-indices into one. Eliminating the collapse directive resulted 
in a speed up between 20% and 30% of the overall application. The loop itself sped up by 
a factor of 7. 

 
Metric Name Original Loop 2 Optimized Loop 2 

achieved_occupancy 0.624169 0.374456 
stall_exec_dependency 43.33% 29.16% 

flop_dp_efficiency 7.14% 41.77% 
gld_transactions 8224805084 483291812 
gst_transactions 3840000 3840000 

l2_read_transactions 51709034 50929534 
l2_write_transactions 3981272 4007482 

dram_read_transactions 14353149 14337805 
dram_write_transactions 1186837 1212392 

flop_count_dp 79724544000 67928064000 
l2_write_throughput 856.234670 MB/s 5.782475 GB/s 
l2_read_throughput 10.859982 GB/s 73.495880 GB/s 

dram_read_throughput 3.012424 GB/s 20.687079 GB/s 
dram_write_throughput 255.235570 MB/s 1.749335 GB/s 

 
Table 2: Performance statistics for Loop 2 before and after removing the inner loop collapse. 
Description of the listed metrics is given in Table 2, following Ref. [17].  

To understand the performance difference, we looked into some important 
performance statistics of the original and modified code. The statistics are shown in Table 
2. A contention on the floating point (FP) units was noticed, which contributed to low 
performance of the original code. This was indicated by a high percentage of stalls due to 
execution dependencies, most likely the FP units. Also, the modified code contains far 
fewer double precision (DP) add operations and much greater FP efficiency. The overall 
instruction count is much lower and there is much better L2 cache utilization. In general, 
removing the inner loop collapse allowed the compiler to generate more efficient code and 
exploit the GPU more effectively. 

 
Metric Name Description 

achieved_occupancy 
Ratio of the average active warps per active cycle to the 

maximum number of warps supported on a multiprocessor 

stall_exec_dependency 
Percentage of stalls occurring because an input required by the 

instruction is not yet available 
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flop_dp_efficiency 
Ratio of achieved to peak double-precision floating-point 

operations 
gld_transactions Number of global memory load transactions 
gst_transactions Number of store memory load transactions  

l2_read_transactions 
Memory read transactions seen at L2 cache for all read requests 

from L1 cache. 

L2_write_transactions 
Memory read transactions seen at L2 cache for all write 

requests from L1 cache. 
Dram_read_transactions Device memory read transactions. 
Dram_write_transactions Device memory write transactions. 

Flop_count_dp 

Number of double-precision floating-point operations executed 
by non-predicated threads (add, multiply and multiply-

accumulate). Each multiply-accumulate operation contributes 2 
to the count. 

L2_write_throughput 
Memory write throughput seen at L2 cache for all write 

requests 
l2_read_throughput Memory write throughput seen at L2 cache for all read requests 

dram_read_throughput Device memory read throughput 
dram_write_throughput Device memory write throughput 

 
Table 3: Description of the metrics used in Table 2, following Ref. [17]. 
 

A complete description of all available metrics is given in Ref. [16]. For 
convenience we provide a subset in Table 3. Further performance improvements were 
obtained via array transpositions and added vectorization in Loop 3, reducing array 
dimensions, and adding vectorization with some other minor modifications. Hoisting 
allocation/deallocation of memory to an outer level, as in the multi-core version was also 
implemented here. This however did not yield any noticeable speed-up. Trying to reduce 
register pressure in Loop 3, by splitting up the loop into several smaller loops by splitting 
the calculation of the sum in Eq. A10 in parts for the two terms containing 

𝑃&*cos𝜃"$3+𝑓(̇*𝑟"$+,  and 
�G*567+
567

𝑃̇&*cos𝜃"$3+,  respectively, actually decreased the 

performance. 
 
4.  Summary 
 
As part of its educational effort with NASA Langley Research Center, the High-End 
Computing Capability’s (HECC) Applications Performance and Productivity (APP) team 
at NASA Advanced Supercomputing (NAS) Division improved the performance of the 
Aladyn miniapp by a factor of 4.7 for multi-core CPU, and a factor of 2.4 for GPU 
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execution. The APP team achieved the CPU speedup on a Skylake 6154 CPU with 40 
threads by: (i) moving allocate/deallocate statements to an outer level, (ii) using Intel 
compiler directives to increase the use of avx512 instructions, and (iii) changing array 
layouts to speed memory accesses. The GPU speedup was achieved by increasing 
vectorization and applying array layout changes. 
 
 
Appendix A 
 
Analytic Force Calculation for ANN Potential 
 
Equations (1) through (9) define the total potential energy of an atomistic system, 
𝐸 = ∑ 𝐸"" , as expressed through the relative interatomic coordinates �𝑥"$, 𝑦"$ , 𝑧"$, … � 
between pairs of atoms within the cut-off distance, 𝑟"$ ≤ 𝑟K. The components of the force, 
𝑭" = *𝐹�", 𝐹�", 𝐹�"+, acting on atom (𝑖) are given as spatial derivatives of 𝐸, which for the 
x-component is: 
 

𝐹�" = − ��*�67,�67,	… +
��6

= −∑ ��*�67,�67,	… +
��67

��67
��6$:" = ∑ ��*�67,�67,	… +

��67$:" = ∑ 𝐹�,"$$:" . (A1a) 

 
Note that due to the definition, 𝑥"$ = 𝑥$ − 𝑥",   

��67
��6

= −1.  
 

Similarly, the other force components are given as 
 

𝐹�" = − ��*�67,�67,	… +
��6

= ∑ ��*�67,�67,	… +
��67$:" = ∑ 𝐹�,"$$:" ,     (A1b) 

𝐹�" = −��*�67,�67,	… +
��6

= ∑ ��*�67,�67,	… +
��67$:" = ∑ 𝐹�,"$$:" .     (A1c) 

 
Using Virial stress formulation [10], the atomic stress can be calculated as: 
 

𝜎�� =
U
�
∑ 𝜎��

(")
"∈� = U

V��
∑ �𝑚"𝑣�

(")𝑣�
(") − ∑ ��

��67
𝛽"$$:" ¡"∈�      (A1d) 

 
where 𝛼, 𝛽 stand for 𝑥, 𝑦, or 𝑧 Cartesian coordinates, and 𝛺 is the system volume. 
 

Since 𝐸*𝑥"$, 𝑦"$ , 	 … + is a complex function build of all the functions given by Eqs. 
(1) through (8) as  

 

𝐸*𝑥"$, 𝑦"$, 	 … + = ∑ 𝐸"" = ∑ 𝒖(c)(𝑖)" = ∑ 𝒖(c) ¤𝒖(cFU) ¥… �𝒖(U) m𝐺"
(&,()*𝑟"$, 𝑟"3, … +p¡¦§" , 

           (A2) 
its partial derivatives are obtained through the chain rule 
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��*�67,�67,	… +

��67
= ∑ ��¨

��673 = ∑ �𝒖(©ªG«)(3)
��673 = ∑ �𝒖(©ªG«)

�𝒖(©ªG«y¬)
… �𝒖(¬)

�­¨

�­¨
��673 	,   (A3) 

 
where the summation is over all atoms (𝑘), including 𝑘 = 𝑖, and 𝑘 = 𝑗.  
 
Solving (A3) would be easier if Eqs. (6a) and (6b) are presented by components: 
 
𝑢¯
(U)(𝑖) = 𝐺"

(°)𝑤°,¯
(^,U) + 𝑏¯

(U)         (A4a) 
𝑢¯
(c)(𝑖) = 𝑓 m𝑢°

(cFU)(𝑖)p𝑤°,¯
(cFU,c) + 𝑏¯

(c); 				𝑛 > 1,     (A4b) 
  
where the Einstein summation convention over repeated indices is assumed. 
  

Differentiating Eq. (A4b) gives the iteration equation for the derivatives of a neural 
network’s layer (𝑛) 
 
�³´

(o)(3)

��67
= 𝑓̇ m𝑢°

(cFU)(𝑘)p¥
�³µ

(oy¬)(3)

��67
¦𝑤°,¯

(cFU,c).     (A5) 

 
When enrolled from the n-th layer down to the first layer, one gets:  
 
�³¶o

(o) (3)

��67
= 𝑓̇ m𝑢�oy¬

(cFU)(𝑘)p𝑓̇ m𝑢�oyH
(cFV)(𝑘)p¥

�³¶oyH
(oyH) (3)

��67
¦𝑤�oyH,�oy¬

(cFV,cFU) 𝑤�oy¬,�o
(cFU,c)   

… 
�³¶o

(o) (3)

��67
=

𝑓̇ m𝑢�oy¬
(cFU)(𝑘)p𝑓̇ m𝑢�oyH

(cFV)(𝑘)p…𝑓̇ m𝑢�¬
(U)(𝑘)p ¥�­¨

(¶e)

��67
¦𝑤�e,�¬

(^,U) …𝑤�oyH,�oy¬
(cFV,cFU) 𝑤�oy¬,�o

(cFU,c) .  

           (A6) 
 

Consequently, Eq. (A3) becomes (noting that the last layer has only one element, �³¬
(o)(3)
��67

=
��¨
��67

): 

 
��¨
��67

=

𝑓̇ m𝑢�oy¬
(cFU)(𝑘)p𝑓̇ m𝑢�oyH

(cFV)(𝑘)p…𝑓̇ m𝑢�¬
(U)(𝑘)p ¥�­¨

(¶e)

��67
¦𝑤�e,�¬

(^,U) …𝑤�oyH,�oy¬
(cFV,cFU) 𝑤�oy¬,U

(cFU,U),  

           (A7) 
where 
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𝑓̇(𝑢) = 𝑓(𝑢)*1 − 𝑓(𝑢)+ = xy·

(UOxy·)H
 .       (A8)  

 
Differentiating Eqs. (1-5), one gets for a particular 𝑚^ = (𝑙, 𝑠) combination: 
 
�­¨

(¶e)

��67
= �­¨

(©,G)

��67
= 𝑔�,	3$

(&,() 𝛿3" − 𝑔�,	3"
(&,()𝛿3$,      (A9) 

 
where 𝛿"$ is the Kronecker delta symbol, 𝛿"$ = 1 if 𝑖 = 𝑗, and 0 otherwise, and 
 
𝑔�,	"$
(&,() = 

2∑ 𝑓((𝑟"3) º𝑃&*cos𝜃"$3+𝑓(̇*𝑟"$+
�67
567
+ �G*567+

567
𝑃̇&*cos𝜃"$3+ �

�6¨
56¨
− �67

567
cos 𝜃"$3¡»

"cK&.		3T$
3:" ,  

           (A10)  
with 
 
𝑃̇&(𝑥) = ¼(2𝑙 + 1)*𝑃& + 𝑥𝑃̇&+ − 𝑙𝑃̇&FU½ (𝑙 + 1)⁄ ;				𝑃̇^(𝑥) = 0;			 𝑃̇U(𝑥) = 1.   (A11) 
 
After inserting Eq. (A9) into (A7), the final form for the gradient of the total energy can be 
expressed as a sum of two terms, 
 
��*�67,�67,	… +

��67
= ∑ *𝑑𝐸"$,� − 𝑑𝐸$",�+$:" ,       (A12) 

 
where 
 
𝑑𝐸"$,� = 

𝑓̇ m𝑢�oy¬
(cFU)(𝑖)p 𝑓̇ m𝑢�oyH

(cFV)(𝑖)p…𝑓̇ m𝑢�¬
(U)(𝑖)p𝑤�e,�¬

(^,U) …𝑤�oyH,�oy¬
(cFV,cFU) 𝑤�oy¬,U

(cFU,U)𝑔�,	"$
(&,(). (A13) 

 
The form of Eq. (A12) guarantees that the force, predicted by the neural network will 
satisfy Newton’s third law: ��

��67
= − ��

��76
. 

 
Equation (A13) represents another ANN, defined as 

 
𝑈�¬
(U)(𝑖𝑗, 𝑥) = 𝑔�,	"$

(�e)𝑤�e,�¬
(^,U)           (A14a) 

𝑈�o
(c)(𝑖𝑗, 𝑥) = 𝑓̇ m𝑢�oy¬

(cFU)(𝑖)p𝑈�oy¬
(cFU)(𝑖𝑗, 𝑥)𝑤�oy¬,�o

(cFU,c) ; 				𝑛 > 1,   (A14b) 
 
in which the weights, 𝑤�oy¬,�o

(cFU,c) , are the same as in the non-differentiated ANN, but there 
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is no bias term, 𝑏�o
(c), and the transfer function is a multiplication with a constant, equal to 

the derivative of the transfer function from the respective layer of the non-differentiated 
ANN for atom (𝑖). In addition, the input for this ANN are the derivatives of the LSPs, with 
respect to the pair distances, *𝑥"$, 𝑦"$ , 𝑧"$+, which makes a total of 3𝑁(𝑁 − 1) 2⁄  different 
ANNs to be computed to get the forces in a system of 𝑁atoms, rather than only 𝑁 different 
ANNs for the energy calculation. 
 
 
Appendix B 
 
Computational Implementation of Force Calculation 

 
Efficient calculation of forces for a fast MD simulation depends significantly on the way 
calculations for the spatial derivatives, given in Appendix A are organized and performed 
in an HPC code. The following describes how these calculations are implemented in 
Aladyn. 

There are two parts in the force calculation. The first part is to search and identify 
all neighbors of an atom inside the interaction range, 𝑟K. This is performed in subroutine 
get_neighbors in aladyn.f source file. The second part is the actual force calculation using 
the equations in Appendix A. These calculations are performed in subroutine 
Frc_ANN_OMP and in Frc_ANN_ACC in the aladyn_ANN.f file. All of the calculations 
are organized in a series of loops, which will be described here.  

 
Nearest neighbor search. 
 
Loop 0: For all atoms (i) identify and store their neighbors, (j), at a distance 𝑟"$ ≤
𝑟K. The search for neighbors is performed using the link-cell technique, as described 
in Sec. 2. 
 
Calculation of LSPs. 
 
Loop 1: For all (i,j)-pairs, calculate and store 𝑓(*𝑟"$+; 𝑠 = 1,2, . . 12, from Eq. (2). 
 
Loop 2: For all atoms (i) use double loops over their neighbors, (j) and (k), to 

calculate and store the LSPs, 𝐺"
(&,(); (𝑙 = 0,1,2,4,6; 		𝑠 = 1,2, . .		12), from Eq. (1), using 

the pre-calculated 𝑓(*𝑟"$+ from Loop 1. 
 
Loop 3: For all (i,j)-pairs, calculate and store 𝑔�,	"$

(&,() , 𝑔�,	"$
(&,() , and 𝑔�,	"$

(&,() , from Eq. 
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(A10). 
 
Energy calculation. 
 
Loop 4: For all atoms (i) use ANN from Eqs.(A4a) and (A4b) (or Eqs. 6a, 6b) to 

calculate the potential energy of atom (i), 𝐸", from Eq. (8). In addition, calculate and store 
the derivative of the transfer function, 𝑓̇ m𝑢�o

(c)(𝑖)p (Eq. A8), at each node, 𝑚 of layer 𝑛 >

1 of the ANN. Get the total potential energy of the system, 𝐸	 = ∑ 𝐸"" , as a sum of all 
𝐸"TU,..� (Eq. 9).   

 
Force calculation. 
 
Loop 5: For all (i,j)-pairs, start the pair ANNs, defined by Eqs. (A14a) and (A14b) 

to calculate and store 𝑑𝐸"$,�, 𝑑𝐸"$,�, and 𝑑𝐸"$,�, from Eq. (A13), using the pre-calculated 

𝑔�,	"$
(&,(), 𝑔�,	"$

(&,(), and 𝑔�,	"$
(&,() from Loop 3, and 𝑓̇ m𝑢�o

(c)(𝑖)p from ANN 1. 

 
Loop 6: For each atom (i), use a loop over all its neighbors (j) to calculate the pair 

forces, ��
��67

, ��
��67

, ��
��67

, from Eq. (A12), and get the total force vector *𝐹�", 𝐹�", 𝐹�"+, acting 

on atom (i) from Eqs (A1a-c). If needed, use ��
��67

, ��
��67

, and  ��
��67

, calculated in this loop to 

get the atomic stress components, 𝜎��
("); 	(𝛼, 𝛽 = 𝑥, 𝑦, 𝑧), for each atom (𝑖), and the total 

stress of the system, 𝜎�� . (Eq. (A1d)  
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