
September 2019

NASA/TM–2019-220409

High-Performance Computing Optimization for
Aladyn – Adaptive Neural Network Molecular
Dynamics Mini-Application

Vesselin I. Yamakov
National Institute of Aerospace, Hampton, Virginia

Gabriele Jost
NASA Ames Research Center, Moffett Field, California

Daniel Kokron
Redline Performance Solutions, Moffett Field, California

Yuri Mishin
George mason University, Fairfax, Virginia

Edward H. Glaessgen
Langley Research Center, Hampton, Virginia

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain minimal
annotation. Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI program,
see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

September 2019

NASA/TM–2019-220409

High-Performance Computing Optimization for
Aladyn – Adaptive Neural Network Molecular
Dynamics Mini-Application

Vesselin I. Yamakov
National Institute of Aerospace, Hampton, Virginia

Gabriele Jost
NASA Ames Research Center, Moffett Field, California

Daniel Kokron
Redline Performance Solutions, Moffett Field, California

Yuri Mishin
George mason University, Fairfax, Virginia

Edward H. Glaessgen
Langley Research Center, Hampton, Virginia

4

Acknowledgements

The development of the Aladyn mini-application software was initiated through funding
from the NASA High-Performance Computing Incubator project. V. Yamakov is
sponsored through cooperative agreement NNL09AA00A with the National Institute of
Aerospace.

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center

Hampton, VA 23681-2199
Fax: 757-864-6500

5

Abstract

This report provides a description and performance evaluation of the optimization
techniques for high performance computing (HPC) implementation of the open source
Computational Materials mini-application Aladyn (https://github.com/nasa/aladyn).
Aladyn is a basic molecular dynamics code written in FORTRAN 2003, which is designed
to demonstrate the use of adaptive neural networks (ANNs) in atomistic simulations. The
role of ANNs is to efficiently reproduce the very complex energy landscape resulting from
the atomic interactions in materials with the accuracy of the more expensive quantum
mechanics-based calculations. The ANN is trained on a large set of atomic structures
calculated using the density functional theory (DFT) method. While achieving orders of
magnitude faster computational performance than DFT, the ANN-based approach was still
very computationally demanding compared to the conventional approach of using
empirically fitted energy functions. After its initial development, Aladyn was evaluated
and optimized by experts at the NASA Advanced Supercomputing (NAS) division to
exploit modern supercomputer architectures. The code has been optimized for execution
on multicore central processing units (CPUs), including Intel® Skylake microarchitecture,
and on graphic accelerators, such as Nvidia® V100 graphic processing units (GPUs), using
Open Multi-Processing (OpenMP) and Open Accelerators (OpenACC) programming
interfaces. The optimization achieved a speedup of 4.7 times the baseline version on CPU
performance and an additional 2.4 times on CPU+GPU performance.

1. Introduction

Atomistic computer simulations are a fundamental tool in materials research to model
material properties form physics-based first principles. Atomic interaction, governed by
Quantum Mechanics (QM) require sophisticated and highly computationally demanding
mathematical models to calculate [1]. Classical methods use approximate functional forms,
empirically fitted through a set of variable parameters to emulate atomic energies as direct
functions of atomic coordinates [2]. While empirical potentials are computationally much
simpler, allowing simulations of large-scale systems of up to a trillion (1012) atoms [3],
they are substantially less accurate compared to quantum calculations and applicable only
to very specific atomic configurations or predefined crystallographic phases. A recently
suggested approach is to use heuristic machine learning methods [4], such as those based
on Adaptive Neural Networks (ANNs) to predict atomic energies, after being trained on a
sufficiently large database of QM-calculated structures [5,6]. This approach reduces
significantly the computational complexity, allowing for simulations of orders of
magnitude larger systems compared to QM-based methods without compromising
accuracy. Still, compared to classical methods using empirical energy functions, ANN
methods remain two- to three orders of magnitude more computationally demanding.
Hence, the computational cost of simulations, together with the need for extensive training
of ANNs, still makes the practical implementation of ANN-based methods quite
challenging.

The purpose of the Aladyn mini-application software [7], available as open source

6

at https://github.com/nasa/aladyn, is to be a testbed for exploring possible optimization
strategies to develop highly scalable parallel algorithms for ANN-based atomistic
simulations. Aladyn is aimed at utilizing the architecture of the high-end modern high-
performance computing (HPC) hardware based on multicore central processing units
(CPUs) equipped with graphic processing unit (GPU) accelerators. Specifically, the goal
is to optimize the performance on a single HPC compute node, before implementing
scaling to multi-node parallelization using message passing interface (MPI). At the same
time, the open source code of Aladyn can serve as a training model for students and
professors in academia.

2. Code Description and Algorithm

Aladyn is a basic molecular dynamics simulation [8] code to demonstrate the use of ANNs
in calculating atomic energy and forces in a given atomic structure and performing a step
integration of the equations of motion of all atoms to simulate structure evolution. In this
approach, the ANN predicts the energy of an atom based on its local environment.
Interatomic forces are calculated based on the spatial gradient of the energy and used to
solve the Newtonian equations of motion to evolve the system in a classical molecular
dynamics algorithm. The level of conservation of the total energy (kinetic and potential) of
the system is used as a criterion for the correct execution of the simulation. To simplify the
algorithm complexity of this mini-application, only single element systems, representing
monocrystalline aluminum are considered.

The compilation and execution of the code, with the required input files are
described in detail in ref. [8], as well as in a text file attached to its release at
https://github.com/nasa/aladyn. This report gives higher focus on the mathematical
algorithm and its computational implementation.

The neural network implementation algorithm in Aladyn follows the work by
Behler and Parrinello [5]. The local environment is described through a set of Local
Structure Parameters (LSPs) [5,6] defined for each atom as functions of the relative
positions of its neighbors contained in a sphere of radius, rc - the cut-off radius, which
defines the interaction range. A fast search for neighbors in the vicinity of rc is performed
by applying the link-cell method [8] where the system box is divided into approximately
cubic shape cells of size slightly larger than rc (Figure 1). A list of atoms is maintained for
each cell. Hence, the search for a neighbor in the interaction range of an atom does not
have to exceed the nearest neighbor link-cells (marked in gray in Figure 1), limiting it to
only 27 link-cells in 3D, rather than the whole system.

7

After identifying all of the cut-off neighbors (j) for each atom (i) in the system, the

code calculates individual LSP coefficients, 𝐺", for this atom as functions of the interatomic
distances, 𝑟"$, between atom (i) and its neighbors (j) as [9]

𝐺"
(&,()*𝑟"$+ = ∑ 𝑃&*cos𝜃"$3+𝑓(*𝑟"$+𝑓((𝑟"3)

567859
$,3:" 		(𝑙 = 0,1,2,4,6; 		𝑠 = 1,2, . .		12), (1)

where

𝑓(*𝑟"$+ = 𝑒F*567F5G+

H IHJ 𝑓K*𝑟"$+, (2)

and

𝑓K*𝑟"$+ = L
*567F59+

M

N9MO*567F59+
M 			 ∶ 						 𝑟"$ ≤ 𝑟K

									0													 ∶ 							 𝑟"$ > 𝑟K
. (3)

In the above equations, 𝜎, 𝑟(TU,V,..UV, 𝑟K, and 𝑑K, are model specific parameters, defined in
the provided neural network potential file, ANN.dat. The functions, 𝑃&(𝑥), are Legendre
polynomials of order (𝑙) defined through the iteration:

𝑃&OU(𝑥) = [(2𝑙 + 1)𝑥𝑃& − 𝑙𝑃&FU] (𝑙 + 1)⁄ ;				𝑃 (𝑥) = 1;			𝑃U(𝑥) = 𝑥, (4)

and 𝜃"$3 is the bond angle between the (i-j) and (i-k) bonds of atom (i), which expressed
through the relative cartesian interatomic coordinates *𝑥"$ = 𝑥$ − 𝑥", 	𝑦"$ = 𝑦$ − 𝑦",
𝑧"$ = 𝑧$ − 𝑧"+, and (𝑥"3 = 𝑥3 − 𝑥", 	𝑦"3 = 𝑦3 − 𝑦", 𝑧"3 = 𝑧3 − 𝑧"), is:

Figure 1. Schematic representation of the
link-cell volume decomposition. Bold lines
indicate the simulated system box
boundaries. Dotted lines indicate the link-
cell mesh of cells, 𝑐U, 𝑐V, …. The cells in grey
indicating the nearest cells, among which a
search for neighbors of the central atom (in
yellow, in cell, 𝑐c) is performed.

8

cos𝜃"$3 = *𝑥"$𝑥"$ + 𝑦"$𝑦"$ + 𝑧"$𝑧"$+ *𝑟"$𝑟"3+J . (5)

The specific choice of (𝑙, 𝑠)-set of values in Eq.(1) is determined on a case-by-case basis
during training of the ANN for a given system. The resulted set of LSPs coefficients,
𝐺"
(deTU,..f^), where 𝑀^ counts all (𝑙, 𝑠)-combinations - 60 in total, as given in Eq. (1) - are

supplied as an input vector to the first input layer of the ANN.
The implemented ANN is a forward propagating neural network [6], consisting of

an input first layer, one or more hidden layers, and an output layer. Each 𝑛-th layer of atom
(𝑖) can be represented as a vector 𝒖kk⃗ (c)(𝑖) = m𝑢U

(c)(𝑖), 𝑢V
(c)(𝑖),…	𝑢do

(c)(𝑖)p of length 𝑀c ,

with 𝑀^ = 60 set as the length of the 𝑮kk⃗ " vector. The mathematical form of the ANN is
expressed in matrix form through the iterations

𝒖kk⃗ (U)(𝑖) = 𝑮kk⃗ " ∗ 𝒘t(^,U) + 𝒃kk⃗ (U) (6a)
𝒖kk⃗ (c)(𝑖) = 𝒇k⃗ m𝒖kk⃗ (cFU)(𝑖)p ∗ 𝒘t(cFU,c) + 𝒃kk⃗ (c); 				𝑛 > 1. (6b)

The first layer, 𝒖(U)(𝑖) in Eq. (6a), takes as an input the LSPs, 𝑮kk⃗ ", of atom (𝑖),
weighted by the dot product (∗) with the weight matrix 𝒘t(^,U) of size (𝑀^ × 𝑀U). Next
layers, 𝒖kk⃗ (c)(𝑖), are calculated using Eq. (6b), where the input from the previous layer,
𝒖kk⃗ (cFU)(𝑖), is modified through a transfer function

𝑓(𝒖) = U

UOxy𝒖
 . (7)

The last layer consists of only one coefficient, giving the predicted potential energy of atom
(i),

 𝐸" = 𝑢(&{(|)(𝑖). (8)

The total system potential energy, 𝐸, is obtained as a sum of the potential energies of all
atoms

𝐸	 = ∑ 𝐸"" . (9)

The forces, acting on atom (i), are calculated as the spatial derivatives of 𝐸. A

detailed description of the analytical differentiation of 𝐸, with the force and stress [10]
calculation is given in Appendix A. The computational implementation of the analytical
calculations is given in Appendix B and discussed in detail in Section 3.

Once the forces are known, a high precision 5-th order predictor-corrector scheme
[11] is used to integrate the Newtonian equations of motion for each particle. The use of a
high-order predictor-corrector integrator allows for accurate monitoring of the energy of
the system [12] to identify any erroneous deviations from the energy conservation law as
the system evolves.

9

The block scheme of the algorithm is given in Figure 2. At the beginning of the
simulation, Aladyn reads the input structure as a list of atomic coordinates and velocities,
together with the parameters of a trained ANN. The atomic velocities, 𝑣", define the initial
temperature of the system, 𝑇, through the atomic kinetic energy, 𝑄", as

𝑄" =
��k⃗ 6

H

V
, (10)

so that

𝑇 = V

�3�
∑ 𝑄"� , (11)

where the summation is over all N-number of atoms, 𝑚 is the atomic mass, and 𝑘� is the
Boltzmann constant.

Figure 2. Flowchart summarizing the algorithm implemented in Aladyn for performing ANN based
molecular dynamics simulation.

10

Based on the input system geometry, the algorithm creates a link-cell mesh over
the entire system box. An MD step (or a time-step) starts with identifying all neighbors in
a cut-off radius, rc, around each atom of the system, using the link-cell list. Using the
prepared list of neighbors, the LSPs are calculated for each atom, and supplied as an input
to the ANN for energy and force calculation. The calculated forces are used to integrate
the equations of motion for each atom and evolve the system by one MD step.

The updated atomic velocities, 𝑣" , resulting from the integration, are used to
calculate the new kinetic energy of each atom, and update the overall temperature of the
system, using Eq. (10) and Eq. (11), respectively.

The total system energy, calculated as

𝐸|�| = ∑ (𝐸" + 𝑄")�
"TU = 𝑐𝑜𝑛𝑠𝑡. (12)

is reported and used as a verification test of the simulation since it must remain constant
during the simulation. The updated atomic positions are used to calculate new LSPs, and
the next steps repeat until the end of the simulation.

3. Code Optimization

3.1. Hardware and test case description

The code has been tested on two systems: A dual socket 20-core Xeon Gold 6148 model
with a base clock speed of 2.4 GHz and a dual socket 18-core Intel Xeon Gold 6154 model
with 4 Nvidia V100 GPU cards.

The code was compiled using the ifort v19 compiler with OpenMP programming
interface [13,14], and the PGI v19 compiler. The OpenACC 2.6 programming interface
[15] was used to enable GPU acceleration. The test case was an MD simulation of an
aluminum crystal of 192,000 atoms simulated for 300 time-steps (MD steps). MPI was not
used in the parallelization scheme, because the purpose of Aladyn is to optimize the
performance on a single modern HPC compute node. This does, however, limit the code to
the use of only 1 GPU card, thereby not fully utilizing its resources in terms of GPU
accelerators. In a production code, MPI can be used to scale the performance and system
size over multiple compute nodes or multiple GPUs on a single compute node by treating
it as multiple MPI nodes (MPI processes).

3.2. Algorithm optimization

It was found that the optimal algorithmic realization of the calculations as outlined in
Appendices A and B differs for the OpenMP and OpenACC programing models.

The first part, involving the nearest neighbor search (Loop 0: in Appendix B), was
realized through two nested loops. The first loop is over the link-cells, 𝑐U, 𝑐V, …	𝑐c,… (Fig.
1). The second loop, inside the first one, is over the atoms of one cell, to find their nearest
neighbors among atoms of that cell and its nearest neighbor cells. Because of the involved

11

intensive search in a large non-structured, and dynamically changing array of atoms
(containing atomic coordinates and chemical type) those two loops were found inefficient
when implemented with OpenACC, but benefited substantially from an OpenMP
programing model and were accelerated using this model only.

The following parts (Loops 1 to 6 in Appendix B), which perform energy and force
calculations, were realized within both OpenMP and OpenACC programing models, but
some substantial algorithmic differences had to be introduced for both models.

Figure 3. Intrinsic loop arrangement in the energy and force calculation algorithm implemented in
Aladyn for (a) Loops 1 through 5, and (b) for Loop 6.

3.2. OpenMP multicore parallelization

The OpenMP implementation, using the ifort (2019.3.199) compiler, for energy and force
calculation was done on two versions of the algorithm starting from Loop 1 to Loop 6, as
defined in Appendix B. Both versions were tested and compared.

In the first, called the intrinsic version (see Fig. 3), Loops 1 through 5 were
performed for each atom individually, rather than for all atoms. To perform the calculations
for all atoms, those loops were combined under one overhead loop over all atoms. The
benefits of this arrangement are twofold. First, because the calculations in Loops 1 to 5
involve individual atoms only, the iterations in the global overhead loop are independent
of each other and the loop is parallelizable. Since this loop is the largest one over all atoms
in the system, its parallelization gives good scaling with the system size or number of
CPUs. Second, Loops 1 to 5 can use local temporary arrays to store the intermediate results
for each atom separately. The size of these arrays is proportional to the number of neighbors

12

per atom, 𝑛� , and remains relatively small (𝑛� < 100),
which significantly improves memory management and
caching. Since these arrays are used for each atom, they
can be allocated at the beginning of the overhead loop and
used as “private” arrays during loop parallelization. The
form of Eq. (A12), does not allow Loop 6 also to be
included under the overhead loop together with Loops 1
through 5. Loop 6 remains as a separate double nested
loop over all atoms (Fig 3b). Since atomic stresses are not
always needed in an MD simulation, Loop 6 can have two
versions, one which calculates forces only (Eqs. A1(a-c)),
and one which calculates forces with the stress
components (Eqs. A1(a-d)). In Aladyn only the force
calculations are used.

In the second, called the extrinsic version of the
energy and force calculation, there is no overhead loop,
and all loops from Loop 1 to 6 are iterated as nested loops
over all atoms and all of the atom neighbors (Fig 4). The
advantage of this arrangement is that the calculations are
performed in a series of nested loops that can be collapsed*
to form numerous but simple elementary loops, where each
loop performs one, or a few, elementary calculations on all

atoms at a time in a conveyor-like fashion. After a collapse of the nested loop in one master
loop, the number of iterations in the master loop scales as 𝑁 × 𝑛� , which can be on the
order of 107 iterations or more. The simplicity of the resulted loops makes the extrinsic
version most suitable for massive parallelization and vectorization. Under the OpenMP
model, it was found that these loops were best parallelized using static, rather than dynamic
scheduling [13,14].

A challenge with the extrinsic version is the need for large temporary arrays, that
scale with the number of iterations (e.g., ~107 for 105 atoms). Another challenge is the
dynamic number of neighbors of each atom. This number varies from atom to atom and
from time-step to time-step. Having a different number of neighbors prevents the collapse
of the inner loops over neighbors, with the outer loop over atoms. One solution is to find
the maximum number of neighbors, 𝑛�,�{� , at each time-step, and introduce “ghost”
neighbors for atoms with less than the maximum number of neighbors. If the system
density is relatively uniform, then this scheme does not lead to a large overload in terms of

* Loop collapsing is a loop transformation which combines loops that are perfectly nested into one single
loop.
	

Figure 4. Extrinsic loop
arrangement in the energy and
force calculation algorithm
implemented in Aladyn.

13

ghost atom calculations. It must be noted that 𝑛�,�{� can vary from time-step to time-step,
and the affected arrays have to be reallocated at each time-step. Alternatively, a
conservative overestimate can be made for 𝑛�,�{� , and used throughout the entire
simulation. In this case, array allocation can be done once at the beginning of the
simulation. The drawback is that the conservative estimate (based on some maximum
possible density of the simulated material) can be very large and can lead to unnecessarily
large arrays, and a loss of efficiency. For systems of uniform and almost constant density
(< 1% variations), such as solid body simulations, tests show that eliminating array
reallocation at each time-step saves up to 20% of the CPU time. This result may differ
substantially for systems with large density fluctuations, such as multiphase systems with
solid-liquid or liquid-gas interfaces.

Additional optimization strategies that were tested include as follows: (i) Ensure
that 𝑛�,�{� is a multiple of 8 (even if this leads to a slight overestimate of 𝑛�,�{�), and
instruct the compiler that it does not need to generate a remainder loop (use !DIR$
ASSUME (mod(max_nbrs,8).eq.0); (ii) Eliminate loop peeling on short loops (use !DIR$
VECTOR UNALIGNED); (iii) Force the compiler to use 256-bit Advanced Vector
Extensions (AVX2) instructions, or 512-bit (AVX512) instructions [16]; (iv) Split vector
arrays into scalar and reduce array dimensions when possible (e.g., instead of assigning a
vector, 𝑟(3), for atomic coordinates, use (𝑥, 𝑦, 𝑧) scalars).

Figure 5 gives the results for the execution time of a 192,000 aluminum atom
system for 300 time-steps using different optimization options.

Figure 5. Results for execution time of a 192,000 atom system for 300 time-steps using different
optimization options, as indicated with the explanations given in Table 1.

14

Optimization Option Name Meaning
O3 Use of -O3 compiler option

Baseline (dynamic; 16 schedule)

OpenMP loops using directive
SCHEDULE (DYNAMIC, 16)

Base Static Schedule

OpenMP loops using directive
SCHEDULE (STATIC)

AVX2 Use of AVX2 instructions
AVX512 Use of AVX512 instructions

Split array_name Reduce dimensions of listed arrays
SIMD8 Directive Use of SIMD8 compiler directive where possible [16]

Hoist Alloc/Dealloc

Use global allocation/deallocation of frequently used
arrays

Ensure MaxNbrs mult8

Ensure that MaxNbrs variable is a multiple of 8 to
avoid generation of a remainder loop

Assume Directive MaxNbrs
mult8

Instructs the compiler that it does not need to generate
a remainder loop for MaxNbrs:

!DIR$ ASSUME(mod(max_nbrs,8).eq.0)
LoopCount Directive on n_set

loop (12)
Instruct compiler of a fixed number of loop cycles:

!DIR$ LOOP COUNT (12)

Parallel NBRLIST

Parallelizing neighbor count in get_neighbors
subroutine

Table 1: Definitions of the applied optimization options as listed in Fig. 5.

Some major finding with several profilers (op_scope (4.13), vtune (2019.3), and

Advisor (2019.3)) after all optimizations were applied are as follows:
1. Compilation flags and directives force 512-bit instructions in critical loops

(using op_scope (4.13))
2. Memory access (using vtune (2019.3))

- Decreased NUMA access ratio: from 51% down to 15.4%
- Very low average latency (9 cycles) indicating efficient cache utilization
- Resource usage closer to capabilities of the hardware (DRAM peak

202GB/s of 230GB/s)
3. Microarchitecture (µarch) exploration

- Increased Clock per Instruction (CPI) rate: from 0.416 to 0.465 (ideal is
~.25)

- Increased Vector Capacity Usage (FPU): from 24.8% to 89.0%
- Decrease of the Average CPU Frequency: from 3.045 GHz to 2.339 GHz

15

(Nominal: 2.200 GHz for AVX512)
4. Threading

- Increased effective CPU utilization factor from 33.3 out of 80 logical CPUs
to 38.4, or 47.9% of CPU usage.

- Decreased serial time (outside parallel regions) from 16.5% to 1.3% of CPU
Time

- Decreased spin and overhead time from 5.8% to 2.7% of CPU Time
5. Compute efficiency: 1159 GFLOP/s (~40% of DP peak) (using Advisor

(2019.3))

A comparison between the Intrinsic and Extrinsic versions of the algorithm showed
that there was no noticeable difference in the performance speedup between the two
versions. The major difference was in the substantially large DRAM usage of the Extrinsic
version of ~23 GB for 192,000 atoms compared to ~750 MB for the Intrinsic version.
Similarly, the DRAM bandwidth was much higher for the Extrinsic version compared to
the Intrinsic version (~73 GB/s vs 2.3 GB/s, respectively). Thus, because the Intrinsic
version allows for a much bigger system size to be simulated on one compute node with
less bandwidth overload, it is the preferable version for multicore execution, compared to
the Extrinsic version.

3.3. OpenACC for GPU acceleration

The OpenACC implementation of Aladyn used only the extrinsic version (Fig. 4) of the
energy and force calculation, because it allowed for much more efficient massive
parallelization on a GPU device. Some notable differences in the algorithm implementation
have been found when optimizing for GPU-accelerator using OpenACC model, compared
to the multicore OpenMP model optimization. For example, the intrinsic version was very
inefficient on a GPU device, while on the multicore architecture, the intrinsic and extrinsic
versions were found to be equally efficient in terms of speed. The inefficiency for the GPU
device was found to be due to the extensive use of too many registers. The dynamic array
allocation, where temporary arrays were created on the GPU device at each time-step was
found to have no performance impact compared to the global allocation at the beginning
of the simulation. This is in contrast to the multicore OpenMP results, where the initial
global array allocation was found to be substantially more efficient.

The OpenACC code does not spend much time in memory transfer between GPU
and CPU. We therefore focused our effort on optimizing the parallel execution of the
individual kernels. Of a particular importance was the finding that in the calculation of the
LSPs coefficients, 𝐺"

(&,(), of atom (i) in Loop 2 (Eq. 1), a collapse directive of a double
(j,k)-loop over the same set of neighbors caused strided memory access for the k-dimension

16

due to the collapse of the (j,k)-indices into one. Eliminating the collapse directive resulted
in a speed up between 20% and 30% of the overall application. The loop itself sped up by
a factor of 7.

Metric Name Original Loop 2 Optimized Loop 2

achieved_occupancy 0.624169 0.374456
stall_exec_dependency 43.33% 29.16%

flop_dp_efficiency 7.14% 41.77%
gld_transactions 8224805084 483291812
gst_transactions 3840000 3840000

l2_read_transactions 51709034 50929534
l2_write_transactions 3981272 4007482

dram_read_transactions 14353149 14337805
dram_write_transactions 1186837 1212392

flop_count_dp 79724544000 67928064000
l2_write_throughput 856.234670 MB/s 5.782475 GB/s
l2_read_throughput 10.859982 GB/s 73.495880 GB/s

dram_read_throughput 3.012424 GB/s 20.687079 GB/s
dram_write_throughput 255.235570 MB/s 1.749335 GB/s

Table 2: Performance statistics for Loop 2 before and after removing the inner loop collapse.
Description of the listed metrics is given in Table 2, following Ref. [17].

To understand the performance difference, we looked into some important
performance statistics of the original and modified code. The statistics are shown in Table
2. A contention on the floating point (FP) units was noticed, which contributed to low
performance of the original code. This was indicated by a high percentage of stalls due to
execution dependencies, most likely the FP units. Also, the modified code contains far
fewer double precision (DP) add operations and much greater FP efficiency. The overall
instruction count is much lower and there is much better L2 cache utilization. In general,
removing the inner loop collapse allowed the compiler to generate more efficient code and
exploit the GPU more effectively.

Metric Name Description

achieved_occupancy
Ratio of the average active warps per active cycle to the

maximum number of warps supported on a multiprocessor

stall_exec_dependency
Percentage of stalls occurring because an input required by the

instruction is not yet available

17

flop_dp_efficiency
Ratio of achieved to peak double-precision floating-point

operations
gld_transactions Number of global memory load transactions
gst_transactions Number of store memory load transactions

l2_read_transactions
Memory read transactions seen at L2 cache for all read requests

from L1 cache.

L2_write_transactions
Memory read transactions seen at L2 cache for all write

requests from L1 cache.
Dram_read_transactions Device memory read transactions.
Dram_write_transactions Device memory write transactions.

Flop_count_dp

Number of double-precision floating-point operations executed
by non-predicated threads (add, multiply and multiply-

accumulate). Each multiply-accumulate operation contributes 2
to the count.

L2_write_throughput
Memory write throughput seen at L2 cache for all write

requests
l2_read_throughput Memory write throughput seen at L2 cache for all read requests

dram_read_throughput Device memory read throughput
dram_write_throughput Device memory write throughput

Table 3: Description of the metrics used in Table 2, following Ref. [17].

A complete description of all available metrics is given in Ref. [16]. For
convenience we provide a subset in Table 3. Further performance improvements were
obtained via array transpositions and added vectorization in Loop 3, reducing array
dimensions, and adding vectorization with some other minor modifications. Hoisting
allocation/deallocation of memory to an outer level, as in the multi-core version was also
implemented here. This however did not yield any noticeable speed-up. Trying to reduce
register pressure in Loop 3, by splitting up the loop into several smaller loops by splitting
the calculation of the sum in Eq. A10 in parts for the two terms containing

𝑃&*cos𝜃"$3+𝑓(̇*𝑟"$+, and
�G*567+
567

𝑃̇&*cos𝜃"$3+, respectively, actually decreased the

performance.

4. Summary

As part of its educational effort with NASA Langley Research Center, the High-End
Computing Capability’s (HECC) Applications Performance and Productivity (APP) team
at NASA Advanced Supercomputing (NAS) Division improved the performance of the
Aladyn miniapp by a factor of 4.7 for multi-core CPU, and a factor of 2.4 for GPU

18

execution. The APP team achieved the CPU speedup on a Skylake 6154 CPU with 40
threads by: (i) moving allocate/deallocate statements to an outer level, (ii) using Intel
compiler directives to increase the use of avx512 instructions, and (iii) changing array
layouts to speed memory accesses. The GPU speedup was achieved by increasing
vectorization and applying array layout changes.

Appendix A

Analytic Force Calculation for ANN Potential

Equations (1) through (9) define the total potential energy of an atomistic system,
𝐸 = ∑ 𝐸"" , as expressed through the relative interatomic coordinates �𝑥"$, 𝑦"$, 𝑧"$, … �
between pairs of atoms within the cut-off distance, 𝑟"$ ≤ 𝑟K. The components of the force,
𝑭" = *𝐹�", 𝐹�", 𝐹�"+, acting on atom (𝑖) are given as spatial derivatives of 𝐸, which for the
x-component is:

𝐹�" = − ��*�67,�67,	… +
��6

= −∑ ��*�67,�67,	… +
��67

��67
��6$:" = ∑ ��*�67,�67,	… +

��67$:" = ∑ 𝐹�,"$$:" . (A1a)

Note that due to the definition, 𝑥"$ = 𝑥$ − 𝑥",

��67
��6

= −1.

Similarly, the other force components are given as

𝐹�" = − ��*�67,�67,	… +
��6

= ∑ ��*�67,�67,	… +
��67$:" = ∑ 𝐹�,"$$:" , (A1b)

𝐹�" = −��*�67,�67,	… +
��6

= ∑ ��*�67,�67,	… +
��67$:" = ∑ 𝐹�,"$$:" . (A1c)

Using Virial stress formulation [10], the atomic stress can be calculated as:

𝜎�� =
U
�
∑ 𝜎��

(")
"∈� = U

V��
∑ �𝑚"𝑣�

(")𝑣�
(") − ∑ ��

��67
𝛽"$$:" ¡"∈� (A1d)

where 𝛼, 𝛽 stand for 𝑥, 𝑦, or 𝑧 Cartesian coordinates, and 𝛺 is the system volume.

Since 𝐸*𝑥"$, 𝑦"$, 	 … + is a complex function build of all the functions given by Eqs.
(1) through (8) as

𝐸*𝑥"$, 𝑦"$, 	 … + = ∑ 𝐸"" = ∑ 𝒖(c)(𝑖)" = ∑ 𝒖(c) ¤𝒖(cFU) ¥… �𝒖(U) m𝐺"
(&,()*𝑟"$, 𝑟"3, … +p¡¦§" ,

 (A2)
its partial derivatives are obtained through the chain rule

19

��*�67,�67,	… +

��67
= ∑ ��¨

��673 = ∑ �𝒖(©ªG«)(3)
��673 = ∑ �𝒖(©ªG«)

�𝒖(©ªG«y¬)
… �𝒖(¬)

�­¨

�­¨
��673 	, (A3)

where the summation is over all atoms (𝑘), including 𝑘 = 𝑖, and 𝑘 = 𝑗.

Solving (A3) would be easier if Eqs. (6a) and (6b) are presented by components:

𝑢¯
(U)(𝑖) = 𝐺"

(°)𝑤°,¯
(^,U) + 𝑏¯

(U) (A4a)
𝑢¯
(c)(𝑖) = 𝑓 m𝑢°

(cFU)(𝑖)p𝑤°,¯
(cFU,c) + 𝑏¯

(c); 				𝑛 > 1, (A4b)

where the Einstein summation convention over repeated indices is assumed.

Differentiating Eq. (A4b) gives the iteration equation for the derivatives of a neural
network’s layer (𝑛)

�³´

(o)(3)

��67
= 𝑓̇ m𝑢°

(cFU)(𝑘)p¥
�³µ

(oy¬)(3)

��67
¦𝑤°,¯

(cFU,c). (A5)

When enrolled from the n-th layer down to the first layer, one gets:

�³¶o

(o) (3)

��67
= 𝑓̇ m𝑢�oy¬

(cFU)(𝑘)p𝑓̇ m𝑢�oyH
(cFV)(𝑘)p¥

�³¶oyH
(oyH) (3)

��67
¦𝑤�oyH,�oy¬

(cFV,cFU) 𝑤�oy¬,�o
(cFU,c)

…
�³¶o

(o) (3)

��67
=

𝑓̇ m𝑢�oy¬
(cFU)(𝑘)p𝑓̇ m𝑢�oyH

(cFV)(𝑘)p…𝑓̇ m𝑢�¬
(U)(𝑘)p ¥�­¨

(¶e)

��67
¦𝑤�e,�¬

(^,U) …𝑤�oyH,�oy¬
(cFV,cFU) 𝑤�oy¬,�o

(cFU,c) .

 (A6)

Consequently, Eq. (A3) becomes (noting that the last layer has only one element, �³¬
(o)(3)
��67

=
��¨
��67

):

��¨
��67

=

𝑓̇ m𝑢�oy¬
(cFU)(𝑘)p𝑓̇ m𝑢�oyH

(cFV)(𝑘)p…𝑓̇ m𝑢�¬
(U)(𝑘)p ¥�­¨

(¶e)

��67
¦𝑤�e,�¬

(^,U) …𝑤�oyH,�oy¬
(cFV,cFU) 𝑤�oy¬,U

(cFU,U),

 (A7)
where

20

𝑓̇(𝑢) = 𝑓(𝑢)*1 − 𝑓(𝑢)+ = xy·

(UOxy·)H
 . (A8)

Differentiating Eqs. (1-5), one gets for a particular 𝑚^ = (𝑙, 𝑠) combination:

�­¨

(¶e)

��67
= �­¨

(©,G)

��67
= 𝑔�,	3$

(&,() 𝛿3" − 𝑔�,	3"
(&,()𝛿3$, (A9)

where 𝛿"$ is the Kronecker delta symbol, 𝛿"$ = 1 if 𝑖 = 𝑗, and 0 otherwise, and

𝑔�,	"$
(&,() =

2∑ 𝑓((𝑟"3) º𝑃&*cos𝜃"$3+𝑓(̇*𝑟"$+
�67
567
+ �G*567+

567
𝑃̇&*cos𝜃"$3+ �

�6¨
56¨
− �67

567
cos 𝜃"$3¡»

"cK&.		3T$
3:" ,

 (A10)
with

𝑃̇&(𝑥) = ¼(2𝑙 + 1)*𝑃& + 𝑥𝑃̇&+ − 𝑙𝑃̇&FU½ (𝑙 + 1)⁄ ;				𝑃̇^(𝑥) = 0;			 𝑃̇U(𝑥) = 1. (A11)

After inserting Eq. (A9) into (A7), the final form for the gradient of the total energy can be
expressed as a sum of two terms,

��*�67,�67,	… +

��67
= ∑ *𝑑𝐸"$,� − 𝑑𝐸$",�+$:" , (A12)

where

𝑑𝐸"$,� =

𝑓̇ m𝑢�oy¬
(cFU)(𝑖)p 𝑓̇ m𝑢�oyH

(cFV)(𝑖)p…𝑓̇ m𝑢�¬
(U)(𝑖)p𝑤�e,�¬

(^,U) …𝑤�oyH,�oy¬
(cFV,cFU) 𝑤�oy¬,U

(cFU,U)𝑔�,	"$
(&,(). (A13)

The form of Eq. (A12) guarantees that the force, predicted by the neural network will
satisfy Newton’s third law: ��

��67
= − ��

��76
.

Equation (A13) represents another ANN, defined as

𝑈�¬
(U)(𝑖𝑗, 𝑥) = 𝑔�,	"$

(�e)𝑤�e,�¬
(^,U) (A14a)

𝑈�o
(c)(𝑖𝑗, 𝑥) = 𝑓̇ m𝑢�oy¬

(cFU)(𝑖)p𝑈�oy¬
(cFU)(𝑖𝑗, 𝑥)𝑤�oy¬,�o

(cFU,c) ; 				𝑛 > 1, (A14b)

in which the weights, 𝑤�oy¬,�o

(cFU,c) , are the same as in the non-differentiated ANN, but there

21

is no bias term, 𝑏�o
(c), and the transfer function is a multiplication with a constant, equal to

the derivative of the transfer function from the respective layer of the non-differentiated
ANN for atom (𝑖). In addition, the input for this ANN are the derivatives of the LSPs, with
respect to the pair distances, *𝑥"$, 𝑦"$, 𝑧"$+, which makes a total of 3𝑁(𝑁 − 1) 2⁄ different
ANNs to be computed to get the forces in a system of 𝑁atoms, rather than only 𝑁 different
ANNs for the energy calculation.

Appendix B

Computational Implementation of Force Calculation

Efficient calculation of forces for a fast MD simulation depends significantly on the way
calculations for the spatial derivatives, given in Appendix A are organized and performed
in an HPC code. The following describes how these calculations are implemented in
Aladyn.

There are two parts in the force calculation. The first part is to search and identify
all neighbors of an atom inside the interaction range, 𝑟K. This is performed in subroutine
get_neighbors in aladyn.f source file. The second part is the actual force calculation using
the equations in Appendix A. These calculations are performed in subroutine
Frc_ANN_OMP and in Frc_ANN_ACC in the aladyn_ANN.f file. All of the calculations
are organized in a series of loops, which will be described here.

Nearest neighbor search.

Loop 0: For all atoms (i) identify and store their neighbors, (j), at a distance 𝑟"$ ≤
𝑟K. The search for neighbors is performed using the link-cell technique, as described
in Sec. 2.

Calculation of LSPs.

Loop 1: For all (i,j)-pairs, calculate and store 𝑓(*𝑟"$+; 𝑠 = 1,2, . . 12, from Eq. (2).

Loop 2: For all atoms (i) use double loops over their neighbors, (j) and (k), to

calculate and store the LSPs, 𝐺"
(&,(); (𝑙 = 0,1,2,4,6; 		𝑠 = 1,2, . .		12), from Eq. (1), using

the pre-calculated 𝑓(*𝑟"$+ from Loop 1.

Loop 3: For all (i,j)-pairs, calculate and store 𝑔�,	"$

(&,() , 𝑔�,	"$
(&,() , and 𝑔�,	"$

(&,() , from Eq.

22

(A10).

Energy calculation.

Loop 4: For all atoms (i) use ANN from Eqs.(A4a) and (A4b) (or Eqs. 6a, 6b) to

calculate the potential energy of atom (i), 𝐸", from Eq. (8). In addition, calculate and store
the derivative of the transfer function, 𝑓̇ m𝑢�o

(c)(𝑖)p (Eq. A8), at each node, 𝑚 of layer 𝑛 >

1 of the ANN. Get the total potential energy of the system, 𝐸	 = ∑ 𝐸"" , as a sum of all
𝐸"TU,..� (Eq. 9).

Force calculation.

Loop 5: For all (i,j)-pairs, start the pair ANNs, defined by Eqs. (A14a) and (A14b)

to calculate and store 𝑑𝐸"$,�, 𝑑𝐸"$,�, and 𝑑𝐸"$,�, from Eq. (A13), using the pre-calculated

𝑔�,	"$
(&,(), 𝑔�,	"$

(&,(), and 𝑔�,	"$
(&,() from Loop 3, and 𝑓̇ m𝑢�o

(c)(𝑖)p from ANN 1.

Loop 6: For each atom (i), use a loop over all its neighbors (j) to calculate the pair

forces, ��
��67

, ��
��67

, ��
��67

, from Eq. (A12), and get the total force vector *𝐹�", 𝐹�", 𝐹�"+, acting

on atom (i) from Eqs (A1a-c). If needed, use ��
��67

, ��
��67

, and ��
��67

, calculated in this loop to

get the atomic stress components, 𝜎��
("); 	(𝛼, 𝛽 = 𝑥, 𝑦, 𝑧), for each atom (𝑖), and the total

stress of the system, 𝜎�� . (Eq. (A1d)

23

References

[1] Lejaeghere, K., et al., “Reproducibility in Density Functional Theory Calculations of
Solids”, Science 351 (2016) aad3000-1-7.
[2] Brenner, D. W., “The Art and Science of an Analytical Potential”, Phys. Stat. Sol. (b)
217, (2000) 23-40.
[3] Niethammer, C., Glass, C. W., Bernreuther, M., Becker, S., Windmann, T., Horsch, M.
T., Vrabec, J., Eckhardt, W., “Innovative HPC Methods and Application to Highly Scalable
Molecular Simulation (IMEMO)”, In Inside - Innovatives Supercomputing in Deutschland,
Volume 10(1), April 2012.
[4] Mueller, T., Kusne. A. G., Ramprasad, R., “Machine Learning in Materials Science:
Recent Progress and Emerging Applications”, in: Parrill, A. L., Lipkowitz, K.B. (Eds.),
Reviews in Computational Chemistry, 29, Wiley (2016) 186-273.
[5] Behler, J., Parrinello, M., “Generalized Neural-Network Representation of High-
Dimensional Potential-Energy Surfaces”, Phys. Rev. Lett. 98 (2007) 146401-1-4.
[6] Behler, J., “Perspective: Machine Learning Potentials for Atomistic Simulations”, J.
Chem. Phys. 145 (2016) 170901-1-9.
[7] Yamakov, V., Glaessgen E. H., “Aladyn – Adaptive Neural Network Molecular
Dynamics Simulation Code: Coputational Materials Mini-Application”, NASA/TM-2018-
220104. (https://github.com/nasa/aladyn)
[8] Frenkel, B., Smit, B., “Understanding Molecular Simulation”, Academic Press,
London, (2001).
[9] Pun, G. P. P., Batra, R., Ramprasad, R., Mishin, Y., “Physically Informed Artificial
Neural Networks for Atomistic Modeling of Materials”, NATURE COMMUNICATIONS
https://doi.org/10.1038/s41467-019-10343-5.
[10] Cormier, J., Rickman, J. M., Delph, T. J., “Stress Calculation in Atomistic Simulations
of Perfect and Imperfect Solids”, J. Appl. Phys. 89 (2001) 99-104.
[11] Gear, C. W., “The Numerical Integration of Ordinary Differential Eq.s of Various
Orders”, Technical Report ANL 7126 (1966) Argonne National Laboratory, Argonne, IL.
[12] Schlick, T., Skeel, R. D., Brunger, A. T., Kale, L. V., Hermans, J., Schulten, K.,
“Algorithmic Challenges in Computational Molecular Biophysics”, J. Comp. Phys. 151
(1999) 9-48.
[13] OpenMP Home Page, https://www.openmp.org/
[14] Gerber, R., “Getting Started with OpenMP”, Intel Software Developer Zone,
https://software.intel.com/en-us/articles/getting-started-with-openmp.
[15] OpenACC Home Page, https://www.openacc.org/
[16] Intel Developer Zone, IntelâAVX, https://software.intel.com/en-us/isa-
extensions/intel-avx

24

[17] Nvidia Profiler Users Guide, https://docs.nvidia.com/cuda/profiler-users-
guide/index.html#metrics-reference.

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

2. REPORT TYPE 3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)
(757) 864-9658

NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and Space Administration
Washington, DC 20546-0001

NASA-TM-2019-220409

8. PERFORMING ORGANIZATION
REPORT NUMBER

L-21058

1. REPORT DATE (DD-MM-YYYY)
1-10-2019 Technical Memorandum

STI Help Desk (email: help@sti.nasa.gov)

U U U UU

4. TITLE AND SUBTITLE

High-Performance Computing Optimization for Aladyn-Adaptive
Neural Network Molecular Dynamics Mini-Application

6. AUTHOR(S)

PAGES

NASA

698259.02.07.07.03.01

Unclassified-
Subject Category 24
Availability: NASA STI Program (757) 864-9658

Yamakov, Vesselin I.; Jost, Gabriele; Kokron, Daniel S.; Mishin, Yuri;
Glaessgen, Edward, H.

14. ABSTRACT
This report provides a description and performance evaluation of the optimization techniques for high performance computing (HPC) implementation of
the open source Computational Materials mini-application Aladyn (https://github.com/nasa/aladyn). Aladyn is a basic molecular dynamics code written
in FORTRAN 2003, which is designed to demonstrate the use of adaptive neural networks (ANNs) in atomistic simulations. The role of ANNs is to
efficiently reproduce the very complex energy landscape resulting from the atomic interactions in materials with the accuracy of the more expensive
quantum mechanics-based calculations.

25

15. SUBJECT TERMS

High performance computing; atomistic simulation; metal alloy; moleuclar dynamics

