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Technical Assessment Report 

1.0 Notification and Authorization 
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Mr. Daniel G. Murri, NASA Technical Fellow for Flight Mechanics, was selected to lead the 
assessment team. The primary stakeholders for this assessment were the analysts, chief 
engineers, and project managers of current and future vehicles that use parachutes. 
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4.0 Executive Summary 

Parachute models are used in numerous flight simulation tools to predict a wide range of 
parachute flight performance characteristics (e.g., parachute inflation loads, parachute stability 
and dynamics, vehicle touchdown conditions, and, ultimately, the safety and survivability of the 
system using the parachute). The current state of the art in developing parachute models is to 
initially estimate the parachute characteristics based on the parachute geometry and historical 
data and then add increased model fidelity based on data from wind tunnel and/or flight tests. 
This approach, however, can be deficient in identifying which parachute states (e.g., angle of 
attack, sideslip, angular rates, flyout angles, descent rate, dynamic pressure, proximity to other 
parachutes) are responsible for the parachute motion, and the relationship between those states 
and the forces on the parachute. 

In aircraft flight testing, system identification techniques have been used for many years to 
extract highly accurate flight simulation models from flight data. These methods use statistical 
metrics and optimization to identify the states and controls responsible for aircraft behavior and 
to characterize the relationship of the forces and moments to those states and controls. The 
application of these techniques relies on having accurate flight-test instrumentation to measure 
aircraft states, control deflections, and aircraft response during dynamic maneuvers.  

Some parachute development programs are now obtaining more comprehensive high-quality data 
during wind tunnel and flight testing. These data provide the potential to extract highly accurate 
models using system identification techniques. The goal of this assessment was to evaluate the 
feasibility of using system identification techniques to develop high-fidelity parachute models 
from parachute drop-test flight data. If successful, the application of system identification could 
reduce the time and cost in developing parachute models, increase fidelity and accuracy of 
parachute simulations, provide better understanding of parachute aerodynamics and vehicle 
touchdown conditions, and reduce risk or improve understanding of the risk to vehicles and 
systems using the parachutes. 

This assessment used full-scale Orion Capsule Parachute Assembly System (CPAS) drop-test 
flight data as a test case. The CPAS flight tests employed high-fidelity photogrammetry 
techniques and an inertial measurement unit (IMU) on the payload to measure the parachute 
states, which allowed the application of system identification techniques. Furthermore, the CPAS 
flight tests studied were conducted with one main parachute missing (i.e., two of the three 
parachutes remaining), where an undesirable dynamic pendulum motion was observed. This 
pendulum motion has proven difficult to model accurately in simulations. For example, the 
Multi-Purpose Crew Vehicle (MPCV) Program developed a CPAS pendulum-mode 
aerodynamic model by starting with historical data and then refining the model using a manual 
process of iteratively running the flight simulation and manually changing model parameters 
based on engineering judgment and comparison of the simulation results with flight data. The 
resulting model predicts parts of the flight time histories fairly well (e.g., the limit cycle 
amplitude, frequency, and descent rate of the pendulum mode) but misses some of the coupled 
motions and other details of the flight behavior. Ideally, a model developed using system 
identification techniques would remove much of the time-consuming manual tuning and provide 
a numerically optimized model that accurately predicts more flight behavior and coupling. 
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As part of this assessment, three-body (i.e., two parachutes and one capsule) nonlinear equations 
of motion were independently developed and implemented in a flight simulation written in 
MATLAB. In addition, analytical check cases for parachute modes of motion were developed 
and used to validate independent simulation and the Flight Analysis and Simulation Tool (FAST) 
used for the CPAS simulation at Johnson Space Center (JSC). 

Motions of a dynamic system made up of two parachutes and a capsule connected by elastic lines 
can be extremely complicated and can include not only the pendulum mode but also other modes 
of motion (e.g., flyout, maypole, and breathing modes). Some of these modes can occur at the 
same time, which complicates the analysis. For example, changes to parachute inflated shapes 
(including the breathing mode) can occur simultaneously with other modes and affect parachute 
motion and aerodynamic characteristics. Because of these complicated mode combinations, two 
approaches were used to model and understand the behavior of the two-parachute CPAS system. 

The first approach was to analyze the dynamics of each individual mode observed during flight 
using first principles and linear modal analysis, making necessary simplifications along the way. 
This approach is analogous to the traditional modal analysis technique used to study airplane 
flight dynamics, in which the full nonlinear behavior of the airplane is decomposed into the 
phugoid and short period modes for the longitudinal dynamics, and into the spiral, roll-
subsidence, and Dutch-roll modes for the lateral dynamics. The modal analysis technique in this 
assessment provided accurate modeling of individual modes and important insight into the 
geometric and aerodynamic factors affecting these modes. However, it is important to note that 
the modal analysis does not address the mechanisms that cause the system to enter a mode of 
motion or transition from one mode to another, nor does it describe motions where two or more 
modes occur simultaneously. 

The second approach used in this assessment was to attempt to model the global nonlinear 
behavior of the two parachutes and the capsule system using system identification techniques 
that have been successfully applied to aircraft flight testing. As opposed to the linear modal 
analysis, it was hoped that a global model developed from system identification would be able to 
accurately characterize all parachute motions, including illuminating the mechanisms that cause 
the system to enter a specific mode or transition from one mode to another and predicting 
motions where two or more modes occur simultaneously. 

After an extensive development process, the first step in global modeling using system 
identification was successfully applied to identify a high-fidelity model for the aerodynamic 
coefficients from the CPAS drop test flight data using equation-error techniques. This 
aerodynamic model provides important insight into the quantities affecting the modes of motion 
and determines which terms to include in the aerodynamic model. 

The second step in the system identification process used the output-error technique in an 
attempt to numerically optimize the aerodynamic model to accurately predict the overall time 
history of the two parachutes and capsule using flight simulation, including the onset, 
characteristics, and coupling of the various modes of motion. Unfortunately, because of practical 
and computational difficulties, the output-error optimization did not converge to a parachute 
model that, when used in flight simulation, compared well with flight data. Findings and 
observations related to the factors that complicated the output-error analysis are provided in this 
report. The primary factors were the limited flight envelope of this passive system, which did not 
allow identification of the strong aerodynamic restoring force at high total angle of attack; the 
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non-physical rapid changes in aerodynamic states near zero total angle of attack, related to how 
the parachute axes were defined; and the sometimes unstable behavior of the parachutes that 
resulted in poorly conditioned and brittle output-error optimization. Recommendations are 
provided for the future application of system identification to parachute modeling, including 
techniques that could overcome the limitations found in this assessment. 
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5.0 Assessment Plan 

The planned products for this assessment included a simulation model of the two-parachute 
CPAS, including conditions where pendulum motion has been observed; comparisons of the 
predicted motions from simulation to the observed motions during the flight tests; and 
recommendations regarding the applicability of system identification to current and future 
parachute development programs and on the process for developing parachute models using 
system identification, if appropriate. 

Technical activities for this assessment included: 

1. Acquire CPAS flight test data and parachute geometry characteristics. 

2. Develop independent three-body equations of motion and implement in a MATLAB 

simulation.  

3. Develop analytical check cases and conduct analytical validation of the MATLAB simulation 
and FAST used for the CPAS simulation at JSC. 

4. Conduct system identification equation-error analysis of flight data to identify key modeling 
parameters and develop simulation model structure. 

5. Conduct system identification output-error analysis of flight data to develop system 
identification CPAS pendulum-mode simulation model. 

6. Compare predicted motions from the system identification simulation model with observed 
motions from flight tests. Update the simulation model as needed. 

7. Develop findings, observations, and NESC recommendations, and prepare an NESC final 
report. 

6.0 Problem Description 

Parachute models are used in numerous flight simulation tools to predict a wide range of 
parachute flight performance characteristics (e.g., parachute inflation loads, parachute stability 
and dynamics, vehicle touchdown conditions, and, ultimately, the safety and survivability of the 
system using the parachute). The current state of the art in developing parachute models is to 
initially estimate the parachute characteristics based on the parachute geometry and historical 
data and then add increased model fidelity based on data from wind tunnel and/or flight tests.  

It is relatively straightforward to enter data from parachute static wind tunnel tests into a 
parachute simulation model to represent the static stability and lift and drag at static conditions. 
Sometimes, however, these data have unknown scaling effects and may not accurately represent 
the characteristics of the full-scale parachute system. In addition, the information required to 
model parachute dynamic stability characteristics must be developed from parachutes freely 
flying in wind tunnel or flight tests. Extracting dynamic stability data from wind tunnel or flight 
tests is more difficult and typically relies on expert judgment to identify the important model 
terms and manually tune associated model parameters in a flight simulation model, until the 
predicted motions match the flight behavior as closely as possible. This approach can be 
deficient in identifying the explanatory variables (e.g., total angle of attack, angular rates, flyout 
angles, descent rate, dynamic pressure, proximity to other parachutes), or combinations thereof, 
which are needed to predict the parachute motion and to quantitatively characterize the 
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relationship between the explanatory variables and the aerodynamic forces acting on the 
parachute. 

In aircraft flight testing, system identification techniques have been used for many years to 
extract highly accurate simulation models from flight data. These methods use statistical metrics 
and optimization to identify the states and controls that are responsible for aircraft behavior and 
characterize the relationship of the forces and moments to those states and controls. The 
application of these techniques relies on accurate flight-test instrumentation to measure the 
aircraft states, control deflections, and aircraft response during dynamic maneuvers.  

Some parachute development programs are now obtaining more comprehensive high-quality data 
during wind tunnel and flight testing. These data provide the potential to extract highly accurate 
models using system identification techniques. The goal of this assessment was to evaluate the 
feasibility of using system identification techniques to develop high-fidelity parachute models 
from parachute drop-test flight data, using full-scale CPAS drop-test pendulum-mode flight data 
as a test case. The CPAS flight tests employed high-fidelity photogrammetry techniques and an 
IMU on the payload to measure the parachute states, allowing the application of system 
identification techniques. 

Successful application of system identification techniques for the development of high-fidelity 
parachute models could reduce time and cost in developing parachute models, increase fidelity 
and accuracy of parachute simulations, provide better understanding of parachute aerodynamics 
and vehicle touchdown conditions, and reduce risk or improve understanding of the risk to the 
vehicles and systems using the parachutes. 

Note that the terms “capsule” and “payload” are used somewhat interchangeably throughout the 
report. The CPAS drop tests for this study utilized either a modified capsule Parachute Test 
Vehicle (PTV) or a dart-shaped Parachute Compartment Drop Test Vehicle (PCDTV) as a 
payload.  

6.1 CPAS 

A diagram of the CPAS flight test article is shown in Figure 6.1-1. The flight data analyzed for 
this assessment were drop tests with two parachutes fully inflated. The normal CPAS system 
uses three main parachutes. Figure 6.1-2 shows the Earth-axis and body-axis coordinate systems 
used for each parachute. Airflow angles used for the aerodynamic modeling are defined in 
Figure 6.1-3. Reference 1 describes the flight test article, instrumentation, and data reduction 
required to produce the test vehicle best estimated trajectory (BET), as well as the best estimated 
winds and atmosphere data used for the main parachute modeling and prediction testing. The 
main parachute BET is the best estimate of the parachute motion and was created from the CPAS 
test vehicle data and photogrammetry of the parachute positions relative to the test vehicle.  
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Figure 6.1-1.  CPAS with Two of Three Main Parachutes Deployed 

 

    
Figure 6.1-2.  Reference Frames 
(Credit: Phil Robinson, NASA JSC) 
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Figure 6.1-3.  Flight Airflow Angle Definitions 

(Credit: Phil Robinson, NASA JSC) 

Airflow angles can be expressed in terms of body-axis air-relative velocity components as 

 ( )1sin /v Vβ −=  (6.1-1) 

 ( )1tan /w uα −= − −  (6.1-2) 

 ( )1cos /T u Vα −= −  (6.1-3) 

 ( )1tana v wφ −= −  (6.1-4) 

 2 2 2V u v w= + +  (6.1-5) 

Time derivatives of the airflow angles can be expressed in terms of body-axis air-relative 
velocity components and their time derivatives as 

 
( )

22 2
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v v
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      (6.1-8) 
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( )2 2a
vw wv

v w
φ

−
=

+

   (6.1-9) 

Proximity of the parachutes was characterized as shown in Figure 6.1-4. Proximity effects on the 
parachute aerodynamics were assumed to depend on the normalized distance and speed along the 
line between the parachute centers: 

 
1 1 1 2 2 2p p p p p p

T T

E E E E E Ex y z x y z   = −   D  (6.1-10) 

 prox oD D= D  (6.1-11) 

 ( )prox prox
d

V D
dt

=  (6.1-12) 

 

 
Figure 6.1-4.  Parachute Proximity Quantities 

The proximity angle 	߶௣௥௢௫ is defined as the angle between the air-relative velocity vector and 
the line connecting the parachute centers in the y-z plane in parachute body axes, which can be 
computed as 

 ( )1tan
y zprox w wD Dφ −= −  (6.1-13) 

where 
x y z

T

w w w wD D D =  D  is the D vector expressed in parachute wind axes, which are 

parachute body axes rotated through the aerodynamic azimuth angle aφ , so that the air-relative 

velocity vector is directed along the negative z parachute wind axis.  

Parachute cluster angles, called swing angle sθ  and flyout angle fθ  are shown in Figure 6.1-5.  
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Figure 6.1-5.  Parachute Cluster Angles 

(Credit: Tuan Truong, NASA JSC) 

These angles can be computed from the parachute positions in Earth axes as 

 
1 1 11/ p p p a a a

T T
p a E E E E E Ex y z x y z   = −   r  (6.1-14) 

 
2 2 22/ p p p a a a

T T
p a E E E E E Ex y z x y z   = −   r  (6.1-15) 

 ( )1/ 2/ 2p a p a= +r r r  (6.1-16) 

 
T

x y zn n n = =  n r r  (6.1-17) 

 ( )1 2 2tans x y zn n nθ −= +  (6.1-18) 

 1/ 1/ 1/p a p a p a=n r r         2/ 2/ 2/p a p a p a=n r r  (6.1-19) 

 ( )1
1/ 2/

1
cos

2f p a p aθ −= n n⋅  (6.1-20) 

Table 6.1-1 contains the CPAS mass, geometry, and tension line properties. 
  



 

 
 

NESC Document #: NESC-RP-15-01037, Vol. I Page #:  18 of 101 

Table 6.1.1.  CPAS Properties used for System Identification 

Quantity Value Units 

l = reference length = nominal parachute canopy diameter 116 ft 

S = parachute reference area = ݈ߨଶ/4 10,568.3 ft2 

Vo = reference airspeed 32 ft/s 

Vea = parachute canopy enclosed air volume = (0.7݈)ߨଷ/12 140,164 ft3 

md, parachute dry mass 10.22 slug 

g = gravitational acceleration 32.174 ft/s2 

L = nominal line length 234 ft 

k = line spring constant 15,000 lbf/ft 

ζ = line damping constant 10,000 lbf-s/ft 

Sc = capsule reference area 213.8 ft2 

mc, capsule mass 648.44 slug 

Flight data came mainly from onboard instrumentation and videogrammetry. Airspeed, total 
angle of attack, aerodynamic azimuth angle, and dynamic pressure came from the BET data, 
which were based on flight instrumentation data and estimated atmospheric conditions and winds 
aloft at the time of the flight test. Velocities, accelerations, and related quantities for the 
parachutes were computed by smooth numerical differentiation of the position data obtained 
from an IMU on the payload, as well as videogrammetry. Flight data from onboard 
instrumentation were corrected for data dropouts and, in some cases, were interpolated to a 
uniform sampling rate. The sample rate for the flight data used in the analysis and modeling was 
10 Hz, corresponding to a sampling interval of 0.10 s.  

Enclosed mass within each parachute canopy was calculated using the volume of an undeformed 
hemisphere for each parachute canopy and the local air density from the BET data. As shown in 
Table 6.1.1, the nominal parachute canopy diameter was reduced using a factor of 0.7 in the 
calculation of parachute enclosed air volume to account for the shape of the parachute canopy in 
flight, compared with the measured 116-ft diameter circle formed by the canopy laid flat on the 
ground. The enclosed air volume was multiplied by air density at the current altitude, 
interpolated from BET data, to compute enclosed air mass. Dynamic air mass effects  
(e.g., spillage of the enclosed air mass around the canopy and apparent mass effects) were not 
modeled specifically but instead were subsumed into the identified aerodynamic model.  

Tension forces in the lines connecting the payload to the parachutes were measured with load 
cells. However, the data exhibited non-physical variations because of practical problems with the 
measurements and was inconsistent across different parachutes and flights based on model 
prediction tests. Therefore, measured line tension forces were replaced with the mean values of 
estimated line tension forces computed by force balance using accelerometer data from the IMU 
on the payload, the mass of the payload, the estimated aerodynamic drag coefficient of the 
payload, airspeed, dynamic pressure, and the known position of the parachute canopies relative 
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to the payload from videogrammetry. Figure 6.1-6 shows a free-body diagram illustrating the 
forces acting on the payload, which was used to estimate the line tension forces at each sample 
time. The line tension magnitudes at each sample time were determined by least squares because 
two line tension magnitudes were computed but all three components of the vectors in Earth axes 
were available. Note that the accelerometer measurements from the IMU on the payload quantify 
acceleration from applied forces and, therefore, exclude gravity.  

 
Figure 6.1-6.  Capsule Free-body Diagram 

6.2 Overview of CPAS Pendulum Mode and Other Benign Modes 

Motions of a system made up of two parachutes and a capsule can be extremely complicated and 
can include not only the pendulum mode but also other modes of motion (e.g., flyout, maypole, 
and breathing modes). In addition, some of these modes can be coincident, and changes to the 
parachute’s inflated shape (including the breathing mode) can occur during all of these modes 
and affect the parachute motion and aerodynamic characteristics. 

As discussed in reference 2, it is apparent from flight tests that the system, made up of two main 
parachutes and a capsule, can undergo several distinct dynamical behaviors. The most significant 
and problematic of these is the pendulum mode, in which the system develops a pronounced 
swinging motion, which for CPAS exhibits an amplitude up to about 24 degrees. Large 
excursions away from vertical by the capsule could cause it to strike the ground at a large 
horizontal or vertical speed or at a dangerous incidence angle and jeopardize the safety of the 
astronauts during a crewed mission. In reference 2, Ali et al. summarized a series of efforts taken 
by the CPAS project to understand and mitigate the pendulum issue. The period of oscillation 
and the location of the system's pivot point are determined from post-flight analysis [ref. 3].  

Other noticeable modes include: 1) the flyout (i.e., scissors) mode, in which the parachutes move 
back and forth symmetrically with respect to the vertical axis and come in contact with one 
another, similar to the motion of a pair of scissors; 2) the maypole mode, in which the two 
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parachutes circle around the vertical axis at a nearly constant radius and period; and 3) the 
breathing mode, in which deformation of the non-rigid canopies affects the axial acceleration of 
the system in an oscillatory manner. These modes are considered more benign than the pendulum 
mode but are important to understand for evaluation and prediction of the overall parachute 
characteristics. 

6.3 Approach and Description of Methods 

Because of the complicated combinations of modes, two approaches were used to model and 
understand the behavior of the two-parachute CPAS system. The initial approach was to first 
analyze the dynamics of each individual mode observed during flight using first principles and 
modal analysis and make simplifications along the way. This approach is analogous to the 
traditional modal analysis technique used to study airplane flight dynamics [ref. 4], in which the 
full nonlinear behavior of the airframe is decomposed into the phugoid and short period modes 
for the longitudinal dynamics, and into the spiral, roll-subsidence, and Dutch-roll modes for the 
lateral dynamics. The modal analysis technique provided insight into the geometric and 
aerodynamic factors affecting these individual modes. However, it is important to note that the 
modal analysis does not address the mechanisms that cause the system to enter a mode of motion 
or transition from one mode to another, nor does it describe motions in which two or more modes 
occur simultaneously.  

The other approach used in this assessment was to attempt to model the global nonlinear 
behavior of the two parachutes and capsule system using system identification techniques, which 
have been successfully applied to aircraft flight testing. This global system identification 
modeling technique used a two-step process: equation error modeling followed by output-error 
model optimization. As opposed to the modal analysis, it was hoped that a global model 
developed from system identification would be able to evaluate and model all the parachute 
motions, including the mechanisms that cause the system to enter a specific mode or transition 
from one mode to another, and describe motions in which two or more modes occur 
simultaneously. 

As part of this assessment, an independent flight simulation was developed. Equations of motion 
were derived for a capsule connected to two parachutes. The capsule is modeled as a rigid body 
having 6 degrees of freedom (DOF), and each parachute is modeled as a particle having 3 DOF. 
This independent flight simulation was coupled with the system identification tools to allow the 
application of the equation-error and output-error methods. In addition, analytical check cases of 
parachute modes of motion were developed and used to validate the independent simulation and 
FAST, which was used for the CPAS simulation. The description of the equations of motion, the 
resulting flight simulation, and the analytical check cases are described in this section. Note that 
in Sections 6.3.1 and 6.3.2, which address system dynamics, the symbol  ̂  is used to represent a 
unit vector; in Sections, 6.3.5 through 6.3.7, which address system identification, the symbol  ̂  is 
used to represent a parameter estimate. 

6.3.1 Pendulum Motion Modal Analysis 

Key results from contemporary studies of the pendulum motion are provided here in brevity; 
details of the analyses are given in references 5 and 6.  
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6.3.1.1 Dynamics and Aerodynamics Model Structure 

The planar dumbbell model used to study the underlying dynamics of the pendulum motion is 
illustrated in Figure 6.3.1-1. The capsule is modeled as a particle rather than an extended rigid 
body, and aerodynamic forces acting on the capsule are ignored [ref. 7]. The two parachutes are 
treated as a single particle. The rigid body ܤ contains two particles. Particle ஼ܲ has a mass of ݉஼, 
the total mass of two parachutes, which includes dry mass as well as the mass of air trapped in 
each of the canopies. The mass of the entrapped air is calculated based on the method described 
in Section 6.1, assuming constant air density. Particle ௅ܲ has a mass of ݉௅ and represents the 
capsule. Body ܤ moves such that ஼ܲ and ௅ܲ remain at all times in a plane fixed in a Newtonian 
reference frame ܰ. A right-handed set of mutually perpendicular unit vectors ܖෝଵ, ܖෝଶ, and ܖෝଷ is 
fixed in ܰ. Unit vectors ܖෝଵ and ܖෝଷ lie in the plane in which motion takes place and are directed 
as shown in Figure 6.3.1-1; ܖෝଵ is horizontal, ܖෝଶ is directed into the page, and ܖෝଷ is vertical, 
directed downward. A right-handed set of mutually perpendicular unit vectors ܊መ ଵ, ܊መ ଶ, and ܊መ ଷ is 
fixed in ܤ. Unit vectors ܊መ ଵ and ܊መ ଷ are directed as shown in Figure 6.3.1-1; ܊መ ଵ has the same 
direction as the position vector ܚ௉಴௉ಽ from ஼ܲ to ௅ܲ. Unit vector ܊መ ଶ is directed into the page  
(note that it is fixed in ܰ as well as in B).  

 
Figure 6.3.1-1.  Dumbbell Model for Pendulum Motion 

The mass center of B, B*, is fixed in B between particles ஼ܲ and ௅ܲ. The distance ܴ௅ from B* to ௅ܲ can be expressed in terms of the distance L between ஼ܲ and ௅ܲ: 

 ܴ௅ = ݉஼݉஼ + ݉௅ (1-6.3.1) ܮ

The distance ܴ஼ from B* to ஼ܲ can be expressed similarly: 

 ܴ஼ = ݉௅݉஼ + ݉௅ (2-6.3.1) ܮ
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The resultant of the forces acting on ௅ܲ is given by 

 ۴௅ 	= 	 ௅ܹܖෝଷ 	− መ܊ܶ	 ଵ (6.3.1-3) 

where −ܶ܊መ ଵ represents the internal force applied to ௅ܲ to keep it fixed in rigid body B,  ௅ܹ = 	݉௅	݃, and ݃ is the magnitude of the local gravitational force per unit mass. As mentioned 
earlier, aerodynamic force acting on the capsule is neglected. The resultant of the forces acting 
on ஼ܲ is given by 

 ۴஼ 	= 	 ஼ܹܖෝଷ + (ܶ መ܊(௫ܣ	− ଵ መ܊௭ܣ	+ ଷ (6.3.1-4) 

where Ax and Az characterize the resultant of the aerodynamic forces applied to the two 
parachutes represented by ஼ܲ . 	 ஼ܹ is the sum of the dry weights of the two parachutes; the weight 
of the air trapped in their canopies is ignored because the gravitational force exerted on that air is 
assumed to be counteracted by buoyancy effects from the ambient atmosphere. 

The following two relationships governing translation and rotation of the dumbbell are derived in 
reference 5: 

 
ே	஻∗܉ = 1݉஼ +݉௅ ௫ܣ]−} sin ߠ + ௭ܣ cos +ෝଵܖ[ߠ [ ஼ܹ + ௅ܹ − ௫ܣ cos ߠ + ௭ܣ sin ෝଷ} (6.3.1-5)ܖ[ߠ

 ൫݉஼ܴ஼	 ଶ + ݉௅ܴ௅	 ଶ൯ߠሷ = ܴ஼( ஼ܹ sin ߠ + (௭ܣ − ܴ௅ ௅ܹ sin (6.3.1-6) ߠ

One can obtain Equation (6.3.1-6) by summing moments about the mass center, B*, and writing 
Euler’s equation of rotational motion for B; the coefficient multiplying ߠሷ 	is the central moment 
of inertia of B for a line parallel to	܊෡ ଶ. In view of Equations (6.3.1-1) and (6.3.1-2) and the fact 
that ௅ܹ = 	݉௅	݃, Equation (6.3.1-6) can be rewritten as 

ሷߠ  + ଵ௠಴௅ [(݉஼ ݃ − ஼ܹ) sin	 ߠ − [௭ܣ =  ,௫, the magnitude of the resultant of the aerodynamic axial forces applied to the two parachutesܣ (6.3.1-7) 0
can be expressed as 

௫ܣ  =  ஺ (6.3.1-8)ܥஶܵ୰ୣ୤ݍ2

where ݍஶ is the dynamic pressure, ܵ୰ୣ୤ is the reference area of a single parachute, and ܥ஺ is the 
drag coefficient for a single parachute. The absolute value of ܣ௭ is the magnitude of the resultant 
of the aerodynamic normal forces applied to the two parachutes; ܣ௭ can be expressed as 

௭ܣ  =  ே (6.3.1-9)ܥஶܵ୰ୣ୤ݍ2−

where ܥே is the aerodynamic normal force coefficient for a single parachute. As discussed in 
references 7 and 8, ܥ஺ and ܥே are nonlinear functions of ߙ, the instantaneous angle of attack of 
the parachute:  

(ߙ)஺ܥ  = ஺೚ܥ + ଴ߙ஺ഀܥ12 ቆ ଴ଶߙଶߙ − 1ቇ (6.3.1-10)

(ߙ)ேܥ  = ଴ଶߙேഀ2ܥ ଷߙ) − (6.3.1-11) (ߙ଴ଶߙ

Here, ߙ଴ is the stable trim angle of attack, and ܥேഀ is the slope of the ܥே curve at ߙ଴. 
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In a steady-state flight condition, ܥ஺ and ܥே are nonlinear functions of α, the instantaneous angle 
of attack of the parachute, as shown with the red curves in Figure 6.3.1-2 and discussed in 
reference 7. Equilibria exist at the three points where ܥே = 0. The equilibrium point α = 0 is 
unstable, and the two equilibrium points at α = ±ߙ଴ are stable. In this analysis, ܥ஺ is treated as a 
constant, and ܥேഀ, the slope of the curve for ܥே, is taken to be constant in the neighborhood of an 
equilibrium point. ܥே is expressed as 

ேܥ  = ߙ)ேഀܥ − (଴ߙ + ேܥ ሶഀ ሶொߙ = ߙ)ேഀܥ − (଴ߙ + ேܥ ሶഀ ሶߠ  (6.3.1-12) 

where ߙ଴ is the trimmed angle of attack of the parachute and the term ܥே ሶഀ  ሶொ is added to accountߙ
for unsteady flow when α is changing with time. In the literature (e.g., refs. 9 and 15), ܥே ሶഀ  is 
multiplied by the time derivative of the angle of attack at the aircraft mass center, a point having 
steady-state velocity. Instead, we use the time derivative of angle of attack at a point Q because, 
as discussed here, the velocity of this point is nearly constant. ߙொ = ߠ − ሶொߙ ,therefore ;ߛ = ሶߠ  
because γ is constant.  

The location can be determined of a pivot point Q whose velocity ܞ	ே ொ in N is nearly constant. 
The magnitude of ܞ	ே ொ is denoted by V∞ and regarded as constant. Hence, ܞ	ே ொ can be written as ܞ	ே ொ = ஶܸ൫cos ொߙ መ܊ ଵ + sin ொߙ መ܊ ଷ൯ 
where ߙொ is the angle of attack at Q. The velocity ܞ	ே ௉಴ of ஼ܲ in N then can be expressed as 

ே	ܞ  ௉಴ = ே	ܞ ொ + መ܊ሶߠ஼ܮ ଷ = ஶܸ cos ொߙ መ܊ ଵ + ൫ ஶܸ sin ொߙ + መ܊ሶ൯ߠ஼ܮ ଷ (6.3.1-13) 

where ܚொ௉಴ = መ܊஼ܮ− ଵ is the position vector from Q to ஼ܲ. The tangent of the angle of attack α at ஼ܲ is given by 

 tanߙ = ேܞ ௉಴ ∙ መ܊ ଷܞே ௉಴ ∙ መ܊ ଵ = ஶܸ sin ொߙ + ሶஶܸߠ஼ܮ cos ொߙ  (6.3.1-14)

When both angles of attack are small, the following approximation can be used: 

ߙ  ≈ ொߙ + ሶஶܸߠ஼ܮ  (6.3.1-15)

The second term on the right-hand side is referred to as angle of attack induced by ߠሶ ; 
ொߙ  = ߠ − ߛ = ߠ + ଴ߙ ଴, whereߙ =  ,is constant. Thus ߛ−

ߙ  − ଴ߙ ≈ ߠ + ሶஶܸߠ஼ܮ  (6.3.1-16)

Substitution from Equation (6.3.1-16) into Equation (6.3.1-12) yields 

 

ேܥ = ேഀܥ ቆߠ + ሶஶܸߠ஼ܮ ቇ + ேܥ ሶഀ ሶߠ  = ߠேഀܥ + ൬ܥே ሶഀ + ேഀܥ ஼ܸஶ൰ܮ ሶߠ  ≜ ߠேഀܥ + ൫ܥே ሶഀ ൯୲୭୲ߠሶ  
(6.3.1-17)
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where ൫ܥே ሶഀ ൯୲୭୲, total aerodynamic damping, is defined to be ܥே ሶഀ + ேഀܥ ஼ܮ ஶܸ⁄ . 
Substitution from Equation (6.3.1-17) into (6.3.1-9) and then into (6.3.1-7) yields 

௭ܣ  = ஶܵ୰ୣ୤ݍ2−	 ቂ൫ܥே ሶഀ ൯୲୭୲ߠሶ +  ቃ (6.3.1-18)ߠேഀܥ

and 

ሷߠ  + ܮஶܵ୰ୣ୤݉஼ݍ2 ൫ܥே ሶഀ ൯୲୭୲ߠሶ + 1݉஼ܮ ൣ(݉஼ ݃ − ஼ܹ) sin ߠ + ൧ߠேഀܥஶܵ୰ୣ୤ݍ2 = 0 (6.3.1-19)

The total weight of the system, Wtot, is equal to the sum of the weight of the load and the dry 
weight of the two parachutes (i.e., Wtot = WL + WC). During equilibrium descent in the ܖෝଶ −  ෝଷܖ
plane, the resultant axial force applied to the two parachutes balances the gravitational force ୲ܹ୭୲ܖෝଷ, resulting in zero acceleration in the vertical direction. Consequently, Wtot is equal  
to Ax, or ୲ܹ୭୲ = ௫ܣ = ஶܵ୰ୣ୤ can be replaced with ୲ܹ୭୲ݍ஺. Thus, 2ܥஶܵ୰ୣ୤ݍ2 ⁄஺ܥ , and  
Equation (6.3.1-19) can be rewritten as 

ሷߠ  + ୲ܹ୭୲݉஼ܥܮ஺ ൫ܥே ሶഀ ൯୲୭୲ߠሶ + 1݉஼ܮ ൤(݉஼ ݃ − ஼ܹ) sin ߠ + ୲ܹ୭୲ܥ஺ ൨ߠேഀܥ = 0 (6.3.1-20)

Over the past 50 years, a number of analytical, numerical, and experimental investigations have 
been performed, with the goal of understanding parachute pitch-plane dynamics (e.g., refs. 7 and 
10). Reference 11 used computational fluid dynamics to study the stability of various main 
parachute configurations from the Apollo and MPCV Programs. It was demonstrated that an 
increase in the porosity of the parachute improved its stability characteristics, thus reducing the 
severity of the pendulum motion. Figure 6.3.1-2 shows representative plots of ܥே and ܥ஺, 
comparing a stable versus an unstable main parachute configuration. It is apparent from the  ܥே versus ߙ plot that the unstable configuration has a negative slope at 0 = ߙ and two stable 
equilibrium points at ±ߙ௢. As described in reference 11, by increasing the parachute porosity, 
the ܥே slope becomes close to zero at 0 = ߙ and is considered the stable configuration. In 
addition, the two stable values ߙ௢ shift closer to 0 = ߙ. However, this modification comes at a 
cost in the reduction of ܥ஺, which results in a higher descent velocity. References 10 and 12 
provide similar insight regarding the flow physics associated with non-porous versus porous 
configurations and how these affect the parachute stability characteristics. The current  
study focuses on the unstable Orion main parachute design (modeled by the red curves in 
Figure 6.3.1-2), which is highly susceptible to the pendulum motion under the two-main cluster 
configuration.  
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Figure 6.3.1-2.  CN and CA Representative of Unstable and Stable Parachute Configurations 

6.3.1.2 Linear Analysis 

Much insight into the stability of the parachutes can be obtained by assuming that ܥே is a linear 
function of ߙ in the neighborhood of a stable equilibrium point, ߙ௢. When the swing angle 
remains small, the rotational equation of motion is found to have the form of the second-order 
linear differential equation governing damped, free vibrations, and a general solution of the 
differential equation is given in Equation (6.3.1-25). A point on the dumbbell whose trajectory is 
nearly a straight line for undamped, small-amplitude oscillations is identified. The distance from 
this pivot point to the capsule is of interest because the capsule moves as though that distance is 
the length of a simple pendulum. In the case of a simple pendulum, the distance between the 
pivot point and the pendulum bob determines the distance traveled by the bob on a circular arc as 
the pendulum swings. The distance between the pivot point and the pendulum bob also 
determines the period of oscillation. Analogously, the distance from the pivot point to the 
capsule is an important parameter in capsule-parachute pendulum motion. When this distance is 
minimized, undesirable swinging motion of the capsule is minimized.  

When ߠ remains small, Equation (6.3.1-20) can be approximated as  

ሷߠ  + ୲ܹ୭୲݉஼ܥܮ஺ ேܥ) ሶഀ )୲୭୲ ሶߠ + 1݉஼ܮ ൤(݉஼ ݃ − ஼ܹ) + ୲ܹ୭୲ܥ஺ ேഀ൨ܥ ߠ = 0 (6.3.1-21)

This second-order linear differential equation has the form  

ሷݔ  + ሶݔ2ܾ + ߱௡ଶݔ = 0 (6.3.1-22) 

which governs damped free vibrations. ߱௡ is referred to as the circular natural frequency, and ܾ/߱௡ is the fraction of critical damping or damping ratio. ܾ and ߱௡ଶ are defined as 

 ܾ = ୲ܹ୭୲2݉஼ܥܮ஺ ேܥ) ሶഀ )୲୭୲ (6.3.1-23)
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and 

 ߱௡ଶ = 1݉஼ܮ ൤(݉஼ ݃ − ஼ܹ) + ୲ܹ୭୲ܥ஺ ேഀ൨ܥ  (6.3.1-24)

The general solution of Equation (6.3.1-21) is given by 

ߠ  = ݁ି௕௧[ܥଵ sin (߱ௗ (ݐ + ଶܥ cos (߱ௗ [(ݐ  (6.3.1-25)

where the damped natural frequency, ߱ௗ, is given by  

 ߱ௗ = ඥ߱௡ଶ − ܾଶ  (6.3.1-26)

and the constants ܥଵ and ܥଶ can be expressed in terms of the initial values ߠ଴ = ݐ)ߠ = 0) and  ߠ଴ሶ = ݐ)ሶߠ = 0) as 

ଵܥ  = 1߱ௗ ൫ߠ଴ሶ + ଴൯ߠܾ  (6.3.1-27)

ଶܥ  = ଴ߠ  (6.3.1-28)

The constants appearing in the fraction on the right-hand side of Equation (6.3.1-23) are all 
positive; therefore, the sign of ܾ is determined by the sign of (ܥே ሶഀ )୲୭୲. Exponential decay in  ߠ occurs for (ܥே ሶഀ )୲୭୲ > 0, whereas there is exponential growth in ߠ for (ܥே ሶഀ )୲୭୲ < 0. In either 
case, the damped frequency ߱ௗ of oscillations in ߠ is smaller than ߱௡; consequently, the period 
of damped oscillations is larger than that of undamped oscillations. 

Solutions of dynamical equations governing planar motions of the dumbbell reveal the existence 
of a point ܳ, on the line joining ௅ܲ and ஼ܲ, whose trajectory in ܰ is very nearly a straight line; 
from this observation, it can be inferred that the magnitude of the acceleration ܉ொ	ே  of ܳ in ܰ is 
nearly zero. In what follows, the distance ܮ௅ from ௅ܲ to ܳ is such that ܉ொ	ே ∙ መ܊ ଷ = 0 for 
undamped oscillations having small amplitude. It is also shown that, under the same conditions, ܉ொ	ே ∙ መ܊ ଵ is small when the initial values ߠ଴ and ߠ଴ሶ  are zero and small, respectively. ܳ is referred 
to as the pivot point; the smaller the value of ܮ௅, the better the landing conditions will be for the 
capsule.  

With the aid of Equation (6.3.1-5), the acceleration ܉ொ	ே  of ܳ in ܰ is given by 

 

ே	ொ܉ = ே	஻∗܉ + ௅ܮ) − ܴ௅)൫ߠሷ መ܊ ଷ + ሶߠ ଶ መ܊ ଵ൯= ൤( ஼ܹ + ௅ܹ) cos ߠ − ௫݉஼ܣ +݉௅ + ௅ܮ) − ܴ௅)ߠሶ ଶ൨ መ܊ ଵ+ ൤( ஼ܹ + ௅ܹ) sin ߠ + ௭݉஼ܣ +݉௅ + ௅ܮ) − ܴ௅)ߠሷ൨ መ܊ ଷ	 (6.3.1-29)

One can determine the value of ܮ௅ such that ܉ொ	ே ∙ መ܊ ଷ = 0 when ߠ remains small and oscillations 
are undamped [ref. 5]: 

ே	ொ܉  ∙ መ܊ ଷ = ( ஼ܹ + ௅ܹ) sin ߠ + ௭ܣ − ݉஼ߠܮሷ݉஼ + ݉௅ + ሷߠ௅ܮ = 0	 (6.3.1-30)
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In view of Equation (6.3.1-7) and the fact that ௅ܹ = ݉௅ ݃, 

 
( ஼ܹ + ௅ܹ) sin	 ߠ + (݉஼ ݃ − ஼ܹ) sin ஼݉ߠ +݉௅ + ሷߠ௅ܮ = ݃ sin ߠ + ሷߠ௅ܮ 	= 0 (6.3.1-31)

Thus, after substitution from Equation (6.3.1-20) with (ܥே ሶഀ )୲୭୲ = 0, 

ሷߠ௅ܮ−  = ܮ௅݉஼ܮ ൤(݉஼ ݃ − ஼ܹ) sin ߠ + ௧ܹ௢௧ܥ஺ ൨ߠேഀܥ = ݃ sin	 (6.3.1-32) 	ߠ

When ߠ remains small, ܮ௅ can be expressed as 

௅ܮ  = ݉஼ ݃ ஺(݉஼ܥ ݃ − ஼ܹ)ܥ஺ + ୲ܹ୭୲ܥேഀ ܮ  (6.3.1-33)

It is easily shown that ܮ௅ = ܴ௅ when ܥ஺ = ேഀܥ When .∗ܤ ேഀ, in which case ܳ is coincident withܥ = 0 (a hypothetical limiting case), it is evident that ܮ௅ slightly exceeds ܮ because the 
numerator in Equation (6.3.1-33) becomes the sum of the masses of the dry parachutes and 
entrapped air, whereas the denominator consists only of the masses of entrapped air.  

As the distance ܮ௅	decreases, the pivot point moves closer to the capsule, which decreases the 
distance the payload travels over a circular path during pendulum motion. Equation (6.3.1-33) is 
a key mathematical relationship that substantiates observations made in previous studies of 
pendulum motion: 

1. Increasing the parachute ܥேഀ	moves the pivot point toward the payload and reduces the 
distance traveled by the capsule as it swings. In other words, improving the static stability 
alleviates the severity of the pendulum motion.  

2. Decreasing the parachute drag coefficient (by increasing its porosity) improves the static 
stability of the parachutes. In the context of the linear pendulum analysis, this is equivalent to 
moving the pivot point toward the payload and reducing the distance traveled by the capsule 
as it swings. However, this benefit comes at the expense of increasing the steady-state 
descent rate, which may not be desirable. Note that the overall stability of the pendulum 
motion is dependent on both static and dynamic stability. The latter is not addressed in this 
analysis. 

3. Decreasing the payload mass (the largest contributor to ୲ܹ୭୲) shifts the pivot point toward the 
parachutes and increases the distance traveled by the capsule as it swings.1  

4. An increase in the atmospheric density increases the mass of the air entrapped in the canopy 
(the larger part of ݉஼) and moves the pivot point toward the parachutes. 

These observations are consistent with conclusions drawn in references 7, 10, and 11.  

                                                 
1 While this observation seems consistent with reference 7, experience from the CPAS drop tests suggests the 
opposite may be true. Half of the nominal two-parachute CPAS development drop tests experienced pendulum 
motion, but there were no observations of pendulum motion for the Capsule Pallet Separation System (CPSS), 
which used the same parachute configuration numerous times but with a payload that weighed about half as much. 
There may have been other contributing factors, and the number of tests is insufficient to draw a conclusion with 
high confidence; however, it is still worth noting this discrepancy as it directly applies to the parachute system 
analyzed in this study. 
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6.3.2 Flyout, Maypole, and Breathing Modal Analysis  

The flyout (scissors), maypole, and breathing modes are described separately in this section. 
Reference 13 provides complete derivation of the equations of motion. 

6.3.2.1 Flyout Mode 

Reference 3 describes the flyout, or scissors, motion as two parachutes moving sinusoidally 
away from or toward the vertical axis in a symmetrical manner, while the capsule's descent speed 
changes sinusoidally. A simple planar model involving three particles is used to study the 
underlying dynamics of the scissors motion, as shown in Figure 6.3.2.1-1. Particle ௅ܲ has a mass 
of ݉௅ and represents the capsule. The two parachutes are treated as identical particles, ஻ܲ and ஼ܲ; each has a mass of ݉஼, which includes dry mass as well as the mass of air trapped inside the 
canopy. The system moves such that the three particles remain at all times in a plane fixed in a 
Newtonian reference frame ܰ. A right-handed set of mutually perpendicular unit vectors ܖෝଵ, ܖෝଶ, 
and ܖෝଷ is fixed in ܰ. Unit vectors ܖෝଵ and ܖෝଷ lie in the plane in which motion takes place and are 
directed as shown in Figure 6.3.2.1-1; ܖෝଵ is horizontal, ܖෝଶ is directed out of the page, and ܖෝଷ is 
vertical, directed downward. ஻ܲ and ஼ܲ each are connected to ௅ܲ by a massless, rigid link; the 
two links are connected by a revolute joint whose axis is parallel to ܖෝଶ. ஻ܲ and one link are fixed 
in a reference frame ܤ, whereas ஼ܲ and the other link are fixed in a reference frame ܥ. The 
orientations of ܤ and ܥ in ܰ are described by angles ߠଵ and ߠଶ, respectively. A dextral set of 
mutually perpendicular unit vectors ܊መ ଵ, ܊መ ଶ, and	܊መ ଷ is fixed in ܤ and directed as shown in  
Figure 6.3.2.1-1; ܊መ ଶ is directed out of the page. A similar set of unit vectors ̂܋ଵ, ̂܋ଶ, and ̂܋ଷ is 
fixed in ܋̂ ;ܥଶ is directed into the page. Note that ܊መ ଶ and ̂܋ଶ are each fixed in the three reference 
frames ܰ, ܤ, and ܥ. The resultant external forces acting on ௅ܲ, ஻ܲ, and ஼ܲ are denoted by ۴௅, ۴஻, 
and ۴஼, respectively.  

 
Figure 6.3.2.1-1.  Scissors Mode Planar Model 

The equation of motion governing the horizontal speed of ௅ܲ, which is not presented, shows that 
horizontal acceleration of ௅ܲ vanishes under the following conditions: (۴௅ + ۴஻ + ۴஼) ∙ ෝଵܖ = 0, 
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ଵߠ = ሶଵߠ ,ଶߠ = ሷଵߠ ሶଶ, andߠ =  ሷଶ. The latter three conditions simply correspond to the symmetricߠ
motion of the parachutes that characterizes the scissors behavior under consideration. In the 
following, all four conditions are assumed to exist, and the horizontal speed of ௅ܲ is taken to be 
constant and equal to zero. In that case, the three-particle system has three DOFs in ܰ, and three 
motion variables ݑଵ, ݑଶ, and ݑଷ are introduced as follows: ݑଵ is the projection onto ܖෝଷ of the 
velocity of ௅ܲ  in N, ݑଶ = ଵሶߠ	 , and ݑଷ = ଶሶߠ	 . Using Kane’s method [ref. 14], the equations of 
motion can be written in matrix form as 

 

቎݉௅ + 2݉஼ ݉஼ܮ sin ଵߠ ݉஼ܮ sin ܮଶ݉஼ߠ sin	 ଵߠ ݉஼ܮଶ 0݉஼ܮ sin	 ଶߠ 0 ݉஼ܮଶ ቏ ൝ݑሶଵݑሶ ଶݑሶ ଷൡ= ቐܖෝଷ 	 ∙ 	 (۴௅ + ۴஻ + ۴஼) − ݉஼ܮ(cos	 ଵߠ ଶଶݑ + cos	 ଶߠ መ܊ܮ(ଷଶݑ ଵ ∙ ۴஻܋̂ܮଵ ∙ ۴஼ ቑ 

(6.3.2-1)

The mass matrix is symmetric, as expected. One can divide the second and third equations by ܮ. 
Symmetric motion of the parachutes occurs when the magnitude of the normal force ܊መ ଵ ∙ ۴஻ 
applied to ஻ܲ is identical to the magnitude of the normal force ̂܋ଵ ∙ ۴஼ applied to ஼ܲ, the initial 
values of ߠଵ and ߠଶ are identical, and the initial values of ݑଶ	and ݑଷ are identical. 

According to reference 7, the contribution of aerodynamic forces to ۴௅ is ignored, and the force 
can be expressed as 

 ۴௅ = ݉௅݃ܖෝଷ = ௅ܹܖෝଷ (6.3.2-2)

The resultant external force applied to ஻ܲ is given by 

 ۴஻ = መ܊୲୭୲(ேܥ)−]ஶܵ୰ୣ୤ݍ ଵ − መ܊஺ܥ ଷ] + ஼ܹܖෝଷ (6.3.2-3)

where ஼ܹ is the dry weight of a single parachute. The weight of the air trapped in the canopy is 
ignored because the gravitational force exerted on that air is assumed to be counteracted by 
buoyancy effects from the ambient atmosphere. The total normal force coefficient, (ܥே)୲୭୲, is the 
sum of the free-stream normal force coefficient, (ܥே)୤ୱ, and the normal force coefficient due to 
parachute proximity effects, (ܥே)୮୰୭୶: 

୲୭୲(ேܥ)  = ୤ୱ(ேܥ) + ୮୰୭୶ (6.3.2-4)(ேܥ)

As shown in Figure 6.3.1-2 and Equation (6.3.1-11), (ܥே)୤ୱ is generally a nonlinear function of ߙ. In general, it is also a function of ߙሶ . For this analysis it is assumed that the parachutes are 
oscillating about some trimmed ߙ. Small angles are assumed, ߠᇱ ≈  ᇱ areߙ ᇱ andߠ ᇱ, whereߙ
deviations about the trimmed ߠ and ߙ, respectively, and ܥே varies linearly with α. This small 
angle assumption is valid for ߙ′ within approximately 15 degrees; however, this is not generally 
the case, which may introduce significant errors. (ܥே)୮୰୭୶ is a function of ܦ୮୰୭୶, the distance 
between the parachute centers, and ୮ܸ୰୭୶, the time derivative of ܦ୮୰୭୶. Proximity distance can be 

expressed as ܦ୮୰୭୶ = ܮ2 sin	 thus, its time derivative is ୮ܸ୰୭୶ ;ߠ = ܮ2 cos	 ߠ ሶߠ . The derivatives of 
the normal force coefficients have a relationship similar to Equation (6.3.2-4):  

୲୭୲(ேഀܥ)  = ୤ୱ(ேഀܥ) + ୮୰୭୶ (6.3.2-5)(ேഀܥ)
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The resultant external force applied to ஼ܲ is given by 

 ۴஼ = ଵ܋୲୭୲̂(ேܥ)−]ஶܵ୰ୣ୤ݍ − [ଷ܋஺̂ܥ + ஼ܹܖෝଷ (6.3.2-6) 

If the dynamic coupling in Equations (6.3.2-1) is ignored (valid approximation since the 
contribution of ݑሶଵ to ݑሶ ଶ is small), damping is neglected, and ߠଵ is assumed to remain small, then 
the second of Equations (6.3.2-1) describes an undamped harmonic oscillation: 

ሶݑ  ଶ = ሷଵߠ ≈ ஼ܹ − ܮ୲୭୲݉஼(ேഀܥ)ஶܵ୰ୣ୤ݍ ଵ (6.3.2-7)ߠ

The period associated with the scissors motion, ܶ, is found to be inversely proportional to (ܥேഀ)୲୭୲: 
 ܶ = ඨߨ2 ݉஼ݍܮஶܵ୰ୣ୤(ܥேഀ)୲୭୲ − ஼ܹ (6.3.2-8)

 :୲୭୲ can be expressed as a function of ܶ and key system parameters(ேഀܥ)

୲୭୲(ேഀܥ)  = ஶܵ୰ୣ୤ݍ1 ቆ4ߨଶ݉஼ܶܮଶ + ஼ܹቇ (6.3.2-9)

6.3.2.2 Maypole Mode 

Maypole motion described in reference 2 consists of two parachutes orbiting about the vertical 
axis. It is referred to as the spiral mode in reference 12. A simplified model used to study 
maypole motion is illustrated in Figure 6.3.2.2-1. The three particles ௅ܲ, ஻ܲ, and ஼ܲ are the same 
as those described in Section 6.3.2.1; in the present model, however, all three are assumed to be 
fixed in a rigid body ܤ. A right-handed set of mutually perpendicular unit vectors ܊መ ଵ,	܊መ ଶ , and ܊መ ଷ 
is fixed in ܤ and directed as shown in Figure 6.3.2.2-1; 	܊መ ଶ is normal to the plane containing ௅ܲ, ஻ܲ, and ஼ܲ; and 	܊መ ଷ is parallel to an axis of symmetry of ܤ, which is therefore a central principal 
axis of inertia of ܤ. A dextral set of mutually perpendicular unit vectors ܖෝଵ, ܖෝଶ, and ܖෝଷ is fixed 
in a Newtonian reference frame N. 	ܖෝଵ is horizontal, ܖෝଶ is directed out of the page, and ܖෝଷ is 
vertical, directed downward. ܤ moves in ܰ such that 	܊መ ଷ =  ෝଷ at all times. Moreover, theܖ
velocity in N of every point on the axis of symmetry of ܤ has the same constant magnitude and 
the same direction as ܖෝଷ. 
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Figure 6.3.2.2-1.  Maypole Mode Model 

For example, ௅ܲ lies on the axis of symmetry, so the velocity of ௅ܲ in ܰ can be written as 

௉ಽேܞ  = ଷܸܖෝଷ (6.3.2-10)

where ଷܸ is a constant. Hence, the acceleration in ܰ of ௅ܲ and every point on the axis of 
symmetry is zero: 

௉ಽே܉  = ૙ (6.3.2-11)

The mass center of ܤ, denoted by ܤ∗, lies on the axis of symmetry and, therefore, has an 
acceleration in ܰ equal to zero. Based on first principles, this requires that the resultant of all 
external forces applied to ܤ is equal to zero. The angular velocity ૑஻	ே  of ܤ in ܰ that 
characterizes maypole motion is parallel to a central principal axis of inertia of ܤ: 

 ૑஻ே = Ω܊መ ଷ = Ωܖෝଷ (6.3.2-12)

where Ω is a constant. Thus, the angular acceleration હ஻	ே  of ܤ in ܰ is zero: 

 હ஻ே = ૙ (6.3.2-13)

Euler’s rotational equations of motion are satisfied by Equations (6.3.2-12) and (6.3.2-13) only if 
the resultant moment about ܤ of all external forces applied to ܤ is equal to zero. The 
accelerations in ܰ of ஻ܲ and ஼ܲ are then determined to be 

ே	௉ಳ܉  = Ωܮ sin Φ Ω܊መ ଷ × መ܊ ଶ = −ܴΩଶ܊መ ଵ (6.3.2-14)

ே	௉಴܉  = −Ωܮ sin Φ Ω܊መ ଷ × መ܊ ଶ = ܴΩଶ܊መ ଵ (6.3.2-15)

where ܴ = ܮ sin	Φ, as indicated in Figure 6.3.2.2-1. 

Two additional sets of dextral, mutually perpendicular unit vectors are introduced for 
convenience in conducting kinematic analysis and expressing the forces applied to ܤ. Both sets 
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of unit vectors are fixed in ܤ. The first set contains ܍ොଵ, ܍ොଶ, and ܍ොଷ, whereas the second set 
contains ܎መଵ, ܎መଶ, and ܎መଷ. 

The resultants of the external forces acting on ௅ܲ, ஻ܲ, and ஼ܲ are once again denoted by ۴௅, ۴஻, 
and ۴஼, respectively. As in Section 6.3.2.1, ۴௅ is expressed as 

 ۴௅ = ݉௅݃ܖෝଷ = ௅ܹܖෝଷ (6.3.2-16)

The resultant external force applied to ஻ܲ is, in general, given by 

 ۴஻ = ොଵ܍୲୭୲(ேܥ)−]ஶܵ୰ୣ୤ݍ + ොଶ܍௒ܥ − [ොଷ܍஺ܥ + ஼ܹܖෝଷ (6.3.2-17)

where ஼ܹ is the dry weight of a single parachute. (ܥே)୲୭୲ can in this case be expressed as in 
Equation (6.3.2-4). In addition, it is assumed that Φ =  and the parachutes are in static ߙ
equilibrium with constant flyout angles and at some trimmed angle of attack ߙ୲୰୧୫ while 
performing the maypole motion. The resultant external force applied to ஼ܲ is similar to ܨ஻: 

 ۴஼ = መଵ܎୲୭୲(ேܥ)−]ஶܵ୰ୣ୤ݍ + መଶ܎௒ܥ − [መଷ܎஺ܥ + ஼ܹܖෝଷ (6.3.2-18)

However, the side forces associated with ܥ௒ would yield a nonzero moment about ܤ∗ that is 
parallel to ܊መ ଷ. Hence, maypole motion requires 

௒ܥ  = 0 (6.3.2-19)

Because ௅ܲ and ஻ܲ are connected by a rigid link, each exerts a force on the other. The force 
exerted by ௅ܲ on ஻ܲ can be expressed as ܶ܍ොଷ. This internal force must be accounted for when 
applying Newton’s second law to ஻ܲ; however, forming dot products with ܍ොଵ will eliminate ܶ. 
That is, 

 (۴஻ + (ොଷ܍ܶ ∙ ොଵ܍ = ۴஻ ∙ ොଵ܍ = ݉஼ ௉ಳே܉ ∙ ොଵ (6.3.2-20)܍

Substitution from Equations (6.3.2-14) and (6.3.2-17) yields {ݍஶܵ୰ୣ୤[−(ܥே)୲୭୲܍ොଵ − [ොଷ܍஺ܥ + ஼ܹܖෝଷ} ∙ ොଵ܍ = ୲୭୲(ேܥ)ஶܵ୰ୣ୤ݍ− + ஼ܹ sin	Φ 																																																											= −݉஼ܴΩଶ܊መ ଵ ∙  ොଵ܍

 																									 = −݉஼ܴΩଶ cos Φ (6.3.2-21)

This relationship can be solved for (ܥே)୲୭୲: 
୲୭୲(ேܥ)  = ݉஼ܴߗଶ cos Φ + ஼ܹ sin Φݍஶܵ୰ୣ୤  (6.3.2-22)

Thus, the aerodynamic normal force is seen to be directly proportional to the magnitude of the 
centripetal acceleration of ஻ܲ (or ஼ܲ). One can also conclude that the radius and period of the 
maypole mode is dependent on the value of (ܥே)୲୭୲ at α୲୰୧୫. For a given orbital radius, ܴ, the 
orbital angular rate is given by  

 Ω = ඨݍஶܵ୰ୣ୤(ܥே)୲୭୲ − ஼ܹ sin Φ݉஼ܴ cos Φ  (6.3.2-23)



 

 
 

NESC Document #: NESC-RP-15-01037, Vol. I Page #:  33 of 101 

The orbital period of maypole motion is thus seen to be inversely proportional to (ܥே)୲୭୲.2 
Finally, by appealing to the fact that the resultant external force applied to ܤ must be ૙ for 
maypole motion to take place, a relationship between (ܥே)୲୭୲ and ܥ஺ can be obtained. The 
resultant is given by 

 
۴஻ + ۴஼ + ۴௅ = ොଵ܍)୲୭୲(ேܥ)−]ஶܵ୰ୣ୤ݍ + (መଵ܎ − ොଷ܍)஺ܥ + + [(መଷ܎ (2 ஼ܹ + ௅ܹ)ܖෝଷ = ૙ 

(6.3.2-24)

Hence, (۴஻ + ۴஼ + ۴௅) ∙ መ܊ ଷ = ොଵ܍)୲୭୲(ேܥ)−]ஶܵ୰ୣ୤ݍ} + (መଵ܎ − ොଷ܍)஺ܥ + [(መଷ܎ + (2 ஼ܹ + ௅ܹ)ܖෝଷ} ∙ መ܊ ଷ 									= ୲୭୲(ேܥ)ஶܵ୰ୣ୤[2ݍ− sin	Φ + ஺ܥ2 cos	 Φ)] + 2 ஼ܹ + ௅ܹ 

 													= 0 (6.3.2-25)

or 

୲୭୲(ேܥ)  = 2 ஼ܹ + ݉௅݃ − ஺ܥஶܵ୰ୣ୤ݍ2 cos Φ2ݍஶܵ୰ୣ୤ sin Φ  (6.3.2-26)

6.3.2.3 Breathing Mode 

Parachutes are made using flexible materials and are inherently non-rigid objects. As they 
deform during flight, the projected reference area ܵ୮୰୭୨ changes and affects the axial motion of 
the system. Reference 2 describes this axial oscillatory behavior as the “breathing mode.” Cluster 
Development Test (CDT) 3-02 flight test data showed that during the breathing mode as the 
canopies contracted from the nominal reference area, ܸୢ ୭୵୬ increased; conversely, as the 
canopies increased from the nominal reference area, ܸୢ ୭୵୬ decreased. This oscillatory behavior 
occurred with a period of 4.5 seconds.  

The underlying dynamics of the breathing mode are straightforward and can be represented by 
Equations (6.3.2-27) through (6.3.2-29). The parameter ߟ is used to approximate the deformation 
of the parachute away from its nominal projected area, with η < 0 depicting a contracted canopy 
and η > 0 an expanded canopy. The oscillatory deformation behavior can be represented by a 
second-order harmonic oscillator. The natural frequency, ߱௡, is dependent on many parameters 
(e.g., the parachute material properties, porosity, natural environments). 

ሷߟ  + ሶߟ݀ + ߱௡ଶߟ = 0 (6.3.2-27)

The ܥ஺ consists of a baseline term and a term dependent on ߟ: 

஺ܥ  = ஺బܥ + (6.3.2-28) ߟ஺ആܥ

The equation of motion in the down direction is 

 (݉௅ + 2݉஼,ୢ୰୷)ݓሶ = ܵ୰ୣ୤ݓߩଶܥ஺ + (݉௅ + 2݉஼,ୢ୰୷)݃ (6.3.2-29)

where ݉஼,ୢ୰୷ is the dry mass of the parachutes and w is the velocity in the down direction.  

                                                 
2 This conclusion appears to contradict the findings in reference 12, which suggests that the orbital period increases 
with ܥே. However, the authors of reference 12 state that those results are only applicable to a narrow range of initial 
conditions, which may explain the discrepancy. 
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6.3.3 Independent Parachute/Capsule Simulations Implementing Full Three-object 
Nonlinear Equations of Motion 

A MATLAB-based standalone CAPDYN simulation was created to investigate the motion of a 
generic crew module capsule connected to one or two parachutes. MATLAB was selected for the 
simulation for greater ease in integrating it with existing MATLAB-based system identification 
tools. CAPDYN is a complex, multiple DOF simulation that models the interaction of one or two 
parachutes connected with flexible riser lines (modeled as springs with damping that apply 
tension-only forces along the direction of the lines) to a crew module capsule, each under the 
influence of forces due to gravitational attraction, aerodynamics, and the force exerted by each 
riser line. The gravitational force exerted on the air entrapped in each canopy is assumed to be 
counteracted by buoyancy effects from the ambient atmosphere. 

6.3.3.1 CAPDYN Notations 

Many authors use different and varied notations for expressing vector quantities, as well as 
direction cosine matrices (DCMs) and quaternions. This section explains the notations used 
herein. To define a vector that is directed from one point “A” to another point “B,” the notation 
RB/A is used. With this notation, no specific coordinate frame is implied. To identify the 
coordinate frame in which a vector is expressed, the vector is enclosed in parentheses with a 
subscript identifying the frame. For example, if the vector RB/A is expressed in the North-East-
Down (NED) frame (defined in the next section), then it is denoted by (RB/A) NED. If the vector 
RB/A is expressed in the capsule body frame (“b”) (also defined in the next section), then it is 
denoted by (RB/A) b. 

Likewise, DCM and quaternion notation used herein employs a similar notation. Assume some 
quaternion represents the orientation of coordinate frame “C” relative to the axes of coordinate 
frame “D,” then the quaternion that represents the orientation of frame D relative to frame C is 
written as q D/C, which can be thought of as the quaternion that transforms vectors from frame C 
to frame D. Similarly, a DCM expressing the relative orientations of those frames could be 
denoted as C D/C. 

Throughout this document, the orientations of coordinate frames is defined using quaternions 
rather than DCMs, although either is mathematically suitable. However, throughout the 
mathematical literature, there are two forms of quaternions, which are distinguished by how they 
are used. One form of quaternion seen in mathematical literature is used to rotate a specified 
vector through some angle in a right-hand sense about some direction as defined by the 
quaternion. The other form used in flight mechanics applications (and in this document) 
describes the relative orientations of two different coordinate frames in which the components of 
a common vector are defined. In the latter application used herein, the vector itself is not rotated 
by the quaternion; rather, a common fixed vector as observed in two coordinate frames whose 
relative orientations are defined by a quaternion can be transformed from one frame to the other 
using that quaternion. The defining relationship between a vector expressed in coordinate frame 
C, or (R)C, and the same vector expressed in another coordinate frame D, or (R)D, is provided in 
the quaternion notation used herein as the following quaternion product of three quaternions: 
(R)D = (qD/C)*

  (R)C    qD/C. The middle quaternion shown on the right-hand side of the equation 
is a quaternion representation of the vector being transformed, with zero scalar part, and vector 
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part equal to the components of the vector (R)C. The asterisk superscript on the leading 
quaternion on the right side of the equation represents the conjugate of quaternion q D/C. 

6.3.3.2 CAPDYN Coordinate Frames 

For the equation of motion derived herein, a right-handed reference frame with its x-axis pointed 
north, its y-axis pointed east, and its z-axis pointed down with its origin placed at some arbitrary 
location is defined as the NED frame. For the purposes of this analysis, oblate or spherical Earth 
geometry and kinematics are not considered, nor is the rotation of the Earth or its orbit around 
the Sun. Per these simplifications, the NED frame is considered an inertial frame for applying 
Newton’s laws of motion. The precise location of the origin of the NED frame is arbitrary and, 
without loss of generality, in this analysis is assumed to be located on the surface of the Earth 
somewhere in the general vicinity of the three bodies being analyzed (i.e., the capsule and each 
of the two parachutes). 

Additionally, the analysis described herein does not model the inverse-square gravity model  
(g = µ/r2, where r is the distance from the center of the Earth to the center of mass (CM) of an 
object, including its altitude above the surface of the spherical or oblate Earth, and µ is the 
product of the gravitational constant and the mass of the Earth). Instead of the inverse-square 
gravity model, the analyses described herein use a fixed value of gravity at the mean surface of 
the Earth, or 9.80665 meters per second squared (m/s2), or 32.17405 ft/s2, which is assumed to be 
constant at all altitudes. 

The capsule includes two coordinate frames defined as the capsule structural reference frame 
and the capsule body frame. The capsule structural frame is used to define the location of 
specific elements of the capsule geometry and the placement of items in the capsule. Its x-axis is 
located along the axis of symmetry of the capsule with its direction pointed aft, toward the 
capsule heat shield; its y-axis points toward the crew entry hatch, and its z-axis completes a 
right-handed coordinate frame. Its origin is arbitrary and is normally positioned some distance 
forward of the capsule’s top, and it is sometimes defined as the virtual point that is the apex of 
the capsule’s conical shape. However, the precise location is not important for the derivation of 
the equation of motion in this document (the relative locations of items of interest in the capsule 
are important). 

The capsule body frame is a right-handed coordinate frame with its origin located at the CM of 
the capsule with its x-axis pointed forward or away from the crew module heat shield; its y-axis 
is parallel to the y-axis of the capsule structural frame, and its z-axis completes a right-handed 
coordinate frame. The axes of the capsule body frame are rotated 180 degrees about the y-axis 
compared with the capsule structural reference frame, and its origin is offset from the origin of 
the capsule structural frame. It is offset axially along the axis of symmetry from the arbitrary 
location specified for the origin of the capsule structural frame to the actual CM of the capsule. 
In general, it is located off the axis of symmetry of the capsule due to the non-zero lateral CM 
location of the capsule relative to its axis of symmetry. The distribution of mass in the capsule is 
designed intentionally so that its CM is offset from the axis of symmetry to allow the desired 
steady-state “hang angle” of the capsule as it descends under the influence of its parachutes. 

Figure 6.3.3.2-1 is a depiction of the crew module geometry showing the two coordinate frames 
and their relative positions and orientation. 
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Figure 6.3.3.2-1.  Capsule Coordinate Frame Definitions 

Each parachute is modeled as a “point mass” whose dynamics are influenced only by forces 
exerted on them from aerodynamics, tension in the riser lines connecting them to the capsule, 
and gravity, resulting in three translational DOFs for each parachute. The parachute orientations 
change due to the translation of each parachute relative to the attach point on the capsule, while 
connected by their riser lines to the capsule. The parachutes are not modeled as rigid bodies with 
specified moments of inertia whose rotational dynamics could be computed by moments applied 
to them. However, the rotational orientation of the parachute canopies caused by their translation 
relative to their attach point on the capsule is obtained in these derivations by consideration of 
the kinematics of such motion. 

For the purposes of the derivations included herein, each parachute is assumed to be a point mass 
with no rotational dynamics. Affixed to each parachute is a “wind” reference frame whose origin 
is located at the point-mass representation of the parachute mass at a specified distance above the 
plane of the opening to the parachute canopy’s hemispherical shape and along its axis of 
symmetry. Such a parachute “wind” reference frame allows for traditional aerodynamic forces to 
be applied to the parachutes using air relative velocity and angle of attack. For the purposes of 
the derivations herein, the x-axis of each parachute “wind” reference frame is defined such that it 
points toward its attach point on the capsule, in the direction of its riser line force that connects it 
to the crew-module attach point. Its z-axis is defined such that the instantaneous air relative 
velocity vector (i.e., the velocity of each parachute relative to winds applied to it) is contained in 
the parachute wind frame x-z plane. Finally, the y-axis of each parachute wind frame completes 
a right-handed reference frame. As a consequence of these parachute “wind” reference frame 
definitions, the orientations of the axes continually change relative to NED as each parachute’s 
air relative velocity vector changes direction due to parachute translational motion and winds 
applied, and due to the effects of the forces from the riser lines connecting the parachutes to the 
capsule. Due to the definitions used for the parachute wind reference-frame axes, the total angle 
of attack of each parachute is contained in the x-z plane with no sideslip aerodynamic angle in 
the y-axis directions, as for “wind axis” coordinate frames often described in airplane and missile 
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aerodynamic and dynamics analyses. However, these definitions of the x-, y-, z-axes do not 
preclude applying aerodynamic forces along the y-axis of each parachute. 

Figure 6.3.3.2-2 is a depiction of the relative orientations and positions of the two parachutes 
relative to the capsule and the inertial NED frame. The figure shows the parachute “wind” 
reference-frame axis definitions as described and the geometric parameters used to define the 
relative orientation and position of each parachute from the capsule. 

 
Figure 6.3.3.2-2.  Parachute Wind Reference Frame Definitions 

6.3.3.3 Parachute Equations of Motion 

The forces applied to each parachute and the forces and moments applied to the capsule are 
created by aerodynamic, gravity, and tension forces in the riser lines that connect each parachute 
with its corresponding attach point on the capsule. The riser lines are considered elastic lines that 
apply tension-only forces modeled as springs with damping (numerical values are provided in 
Table 7.1-1). Those forces and moments are shown in the free-body diagrams of each parachute 
and the capsule in Figure 6.3.3.3-1. 
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Figure 6.3.3.3-1.  Free-body Diagram of Three-object Equation of Motion 

The forces applied to each parachute by the riser lines connecting them to the capsule are, by 
Newton’s third law of motion, equal in magnitude and opposite in direction to the forces applied 
by the riser lines to the capsule. This is illustrated in Figure 6.3.3.3-1 by the vectors F1 and –F1 
and F2 and –F2 as identified in the free-body diagram of each body. Since the riser lines are 
assumed to provide tension-only connections that allow line stretch but no compression forces, 
the force provided by each riser line is consistent with modeling as a spring with damping so that 
the force applied is computed as shown in Equations (6.3.3-1) through (6.3.3-3): 

 ۴ଵ = ଵܶ	ܖෝଵ											۴ଶ = ଶܶ	ܖෝଶ	 (6.3.3-1) 

 ଵܶ = ்݇* (lଵ – lଵ_௜௡௜௧௜௔௟)	 + 		݇஽ lଵሶ  (6.3.3-2) 

 ଶܶ = ்݇* (lଶ – lଶ_௜௡௜௧௜௔௟)	 + 		݇஽ lଶሶ  (6.3.3-3) 

In the equations above, kT is the spring constant (lbf/ft), kD is the spring damping constant (lbf-
s/ft), l1 and l2 are the current lengths of the riser lines for parachutes 1 and 2, l1initial and l2initial 
are the initial (unstretched) lengths of the parachute riser lines, and the l1 and l2 dot terms are the 
rates of change of the riser line lengths. The unit vectors from the parachute attach point on the 
capsule to each parachute are computed as shown in Equations (6.3.3-4): 

ෝଵܖ  = ୔ଵ/୅୔หܚ୔ଵ/୅୔หܚ  (6.3.3-4a)
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ෝଶܖ  = ୔ଶ/୅୔หܚ୔ଶ/୅୔หܚ (6.3.3-4b)

If the unit vectors shown in Equations (6.3.3-4) are computed in the NED reference frame, then 
they can be transformed to the capsule body frame, b, as needed.  

For the purposes of this analysis, it is assumed that the aerodynamic forces exerted on the two 
parachutes (A1 and A2, as shown in Figure 6.3.3.3-1) will be specified in the parachute’s wind 
frame as described earlier, using typical aerodynamic conventions with axial force applied 
opposite its x-axis, normal force applied opposite its z-axis, and side force applied in the 
direction of its y-axis. The total angle of attack will be computed in Equation (6.3.3-10b) to 
compute the aerodynamic force coefficients, and the aerodynamic forces will be computed from 
those coefficients and each parachute’s aerodynamic reference area and dynamic pressure. The 
aerodynamic coefficients ܥ஺, ܥ௒, and ܥே represent the axial force, side force, and normal force 
coefficients, respectively, for each parachute, and are used to compute the aerodynamic forces in 
the parachute wind frame as shown in Equations (6.3.3-5): 

	௉ଵ(ଵۯ)  = 		ଵ	ܵୖୣ୤		ଵ	௢ݍ		 ቐ−ܥ஺ଵ			ܥ௒ଵ−ܥேଵቑ (6.3.3-5a) 

	௉ଶ(ଶۯ)  = 		ଶ	ܵୖୣ୤		ଶ	௢ݍ		 ቐ−ܥ஺ଶ			ܥ௒ଶ−ܥேଶቑ (6.3.3-5b) 

The notation ( )P1, ( )P2 indicates that the aerodynamic force shown in Equations (6.3.3-5) is in 
the wind frame of parachute 1 or 2. The terms qo 1 SRef 1 and qo 2 SRef 2 in Equations (6.3.3-5) 
represent the product of the dynamic pressure (pounds per square foot (psf)) and aerodynamic 
reference area (square feet (ft2)) of parachutes 1 and 2, respectively, and convert the 
nondimensional aerodynamic coefficients into physical aerodynamic forces (pounds force (lbf)) 
exerted on the parachutes. As described earlier, the parachutes are assumed to be point masses, 
or particles, subject only to forces applied that result in 3-DOF translational motion. Therefore, 
no aerodynamic moments are considered for the parachutes in this analysis. 

Once the aerodynamic forces of each parachute have been computed in their respective wind 
reference frames, as defined in Equations (6.3.3-5), those aerodynamic forces are transformed to 
the NED frame before combining with the other forces applied to the parachutes (also 
represented in the NED frame). Newton’s second law of motion is applied to compute the 
parachute translational accelerations and velocities. Later in this section, the mathematical steps 
necessary for computing the orientation of each parachute’s wind reference-frame axes are 
presented. Steps are presented for computing the DCM and/or quaternion that defines the 
orientation of the parachute wind reference frames relative to the NED frame that allows a 
transformation of the parachute’s aerodynamic forces to the NED frame.  

Once the aerodynamic forces applied to each parachute have been transformed to the NED 
frame, they can be combined with the riser line forces and the weight of each parachute to apply 
Newton’s law since the NED frame is assumed to be an inertial reference frame. The 
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translational dynamics equations for each parachute in the NED frame are shown in  
Equations (6.3.3-6): 

 ൫܉ଵ൯ோ஽	 = 		 ∑ ۴ଵ ோ஽݉ଵ = 	 ቀۯଵ − 	ܶଵ ෝଵቁோ஽݉ଵܖ 	 +  (6.3.3-6a)			ோ஽܏

 ൫܉ଶ൯ோ஽	 = 		 ∑ ۴ଶ	ோ஽݉ଶ = 	 ቀۯଶ − 	ܶଶ ෝଶܖ ቁோ஽݉ଶ 	 +  (6.3.3-6b)			ோ஽܏

The term ܏ோ஽in Equations (6.3.3-6) represents the gravity vector at the surface of the Earth with 

components (0 0 g0) since gravity is assumed to be directed in the down direction, or along the | 
z-axis of the NED frame. The negative sign on the riser line force applied to each parachute is 
needed because the direction of the unit vectors ܖෝଵ and ܖෝଶ is directed from the capsule parachute 
attach point to each parachute, and so the force exerted on each parachute is equal in magnitude 
and opposite in direction per application of Newton’s third law. Once the acceleration of each 
parachute in the NED frame has been computed, that acceleration can be integrated to compute 
the velocity of each parachute relative to the NED frame. This velocity can then be integrated 
again to compute the translation of each parachute relative to the NED frame. Summarizing, the 
following equations of motion are provided for each parachute’s translational DOF, as shown in 
Equations (6.3.3-7): 

 ௗௗ௧ ൫܄ଵ൯ோ஽	 = ோ஽(ଵ܉)	 			 →     ൫܄ଵ൯ோ஽ = ׬ ோ஽(ଵ܉) (7a-6.3.3) ݐ݀

 ௗௗ௧ ൫܀ଵ൯ோ஽	 = ோ஽(ଵ܄)	 			 		→     ൫܀ଵ൯ோ஽ = ׬ ோ஽(ଵ܄) ݐ݀ (6.3.3-7b)

 ௗௗ௧ ൫܄ଶ൯ோ஽	 = ோ஽(ଶ܉)	 			 →     ൫܄ଶ൯ோ஽ = ׬ ோ஽(ଶ܉) ݐ݀ (6.3.3-7c)

 ௗௗ௧ ൫܀ଶ൯ோ஽	 = ோ஽(ଶ܄)	 			 		→     ൫܀ଶ൯ோ஽ = ׬ ோ஽(ଶ܄) ݐ݀ (6.3.3-7d)

As described earlier, the definition of the parachute wind reference frame places its x-axis along 
the riser lines connecting each parachute to the capsule attach point and pointed toward the 
capsule attach point. The z-axis is defined so that it and the x-axis are contained in a plane that 
contains the x-axis and the instantaneous air relative velocity vector (i.e., the velocity of the 
parachute relative to local wind (Vrel = Vground relative – Vwind)). Finally, the y-axis is defined such 
that it completes a right-handed frame. 

Equations (6.3.3-4) define unit vectors that point from the capsule parachute attach point to each 
parachute’s wind frame origin. If the vectors used in those calculations are measured in the NED 
frame, then ܖෝଵ and ܖෝଶ unit vectors define unit vectors that point from the capsule attach point to 
each parachute in the NED frame. This is so that, per the definition of the x-axis described in the 
preceding paragraph, the x-axis unit vectors of each parachute’s wind reference frame are 
represented by the unit vectors –ܖෝଵ and –ܖෝଶ. 

Because the y-axis of each parachute’s wind reference frame is defined to be perpendicular to the 
plane containing its x-axis and the air relative velocity vector, the unit vector for the y-axis can 
be computed using a cross-product operation as ଎̂ = 	 (଍̂ × (୰ୣ୪܄ |଍̂ 	× ⁄|୰ୣ୪܄ , where ଍̂	and ଎̂ 



 

 
 

NESC Document #: NESC-RP-15-01037, Vol. I Page #:  41 of 101 

represent the unit vectors for the x-axis and the y-axis of the parachute wind reference frame; Vrel 
is the air relative velocity vector, with all defined relative to the NED frame; × represents the 
vector cross-product operator; and the vertical bars (| |) indicate the magnitude of a vector 
quantity. 

The cross product ଍̂ ×   times the magnitude of	୰ୣ୪ is defined as the magnitude of unit vector ଍̂܄
Vrel times the sine of the angle between them, and its direction is in a right-hand rule sense of 
crossing the ଍̂	 unit vector with the Vrel vector. The sine of the angle between the ଍̂	 unit vector 
and Vrel is the sine of the total angle of attack of each parachute. To define polarity of the angle 
of attack consistent with typical aerospace applications (e.g., positive sideslip angle produces 
aerodynamic force in the positive y-axis direction, and positive angle of attack produces 
aerodynamic force in the negative z-axis direction), the cross product (– ଍̂) ×  ୰ୣ୪ will define the܄
proper direction of the y-axis unit vector ଎̂ of the parachute wind frame. Once the x-axis and 
y-axis unit vectors of each parachute’s wind frame are known, then the z-axis unit vector ܓመ  can 
be computed as ܓመ = 	 ଍̂ × ଎̂ to define a right-hand reference frame. The following equations 
describe this approach: 

 ൫଍̂௉ଵ൯ோ஽	 = −൫ܚ௉ଵ/஺௉൯ோ஽ቚ−൫ܚ௉ଵ/஺௉൯ோ஽ቚ = −൫ܖෝଵ൯ோ஽ (6.3.3-8a)

 ቀ଎̂௉ଵቁோ஽ = −(଍̂௉ଵ)ோ஽ × ൫܄௉ଵ ୰ୣ୪൯ோ஽ቚ−(଍̂௉ଵ)ோ஽ × ൫܄௉ଵ ୰ୣ୪൯ோ஽ቚ (6.3.3-8b)

 ൫	ܓመ ௉ଵ൯ோ஽ = ቀ଍̂௉ଵ × ଎̂௉ଵቁ (6.3.3-8c)

 (଍̂௉ଶ)ோ஽	 = ோ஽ห(௉ଶ/஺௉ܚ)−ோ஽ห(௉ଶ/஺௉ܚ)− = −൫ܖෝଶ൯ோ஽ (6.3.3-8d)

 ቀ଎̂௉ଶቁோ஽ = −(଍̂௉ଶ)ோ஽ × ൫܄௉ଶ ୰ୣ୪൯ோ஽ห−(଍̂௉ଶ)ோ஽ ห × ൫܄௉ଶ ୰ୣ୪൯ோ஽ (6.3.3-8e)

መܓ)  ௉ଶ)ோ஽ = ൫଍̂௉ଶ × ଍̂௉ଶ൯ (6.3.3-8f)

Once the unit vectors of each parachute’s wind reference frame relative to the NED frame are 
computed as defined by Equations (6.3.3-8), the DCM or quaternion that defines their 
orientations relative to the NED frame can readily be computed. For example, the DCM for the 
orientation of the parachute’s wind reference frame relative to the NED frame is defined, with its 
rows equal to the elements of the ଍̂, ଎̂, and	ܓመ  unit vectors of the parachute’s body frame, as: 

	௉ଵ/ோ஽ܥ  = 	 ۔ۖەۖ
መܓቀ଎̂௉ଵቁோ஽൫	൫଍̂௉ଵ൯ோ஽ۓ ௉ଵ൯ோ஽ۙۘۖ

ۖۗ 	 = 		 ێێۏ
ۍێ ൫଍̂௉ଵ൯ோ஽௫ ൫଍̂௉ଵ൯ோ஽௬ ൫଍̂௉ଵ൯ோ஽௭ቀ଎̂௉ଵቁோ஽௫ ቀ଎̂௉ଵቁோ஽௬ ቀ଎̂௉ଵቁோ஽௭൫ܓመ ௉ଵ൯ோ஽௫ ൫ܓመ ௉ଵ൯ோ஽௬ ൫ܓመ ௉ଵ൯ோ஽௭ۑۑے

ېۑ
 (6.3.3-9a) 
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			௉ଶ/ோ஽ܥ  = 	 ۔ۖەۖ
መܓቀ଎̂௉ଶቁோ஽൫	൫଍̂௉ଶ൯ோ஽ۓ ௉ଶ൯ோ஽ۙۘۖ

ۖۗ 	 = 	 ێێۏ
ۍێ ൫଍̂௉ଶ൯ோ஽௫ ൫଍̂௉ଶ൯ோ஽௬ ൫଍̂௉ଶ൯ோ஽௭ቀ଎̂௉ଶቁோ஽௫ ቀ଎̂௉ଶቁோ஽௬ ቀ଎̂௉ଶቁோ஽௭൫ܓመ ௉ଶ൯ோ஽௫ ൫ܓመ ௉ଶ൯ோ஽௬ ൫ܓመ ௉ଶ൯ோ஽௭ۑۑے

ېۑ 		 (6.3.3-9b) 

Once the orientation of each parachute’s wind frame is defined with a DCM as shown in 
Equations (6.3.3-9) or equivalently with a quaternion, the aerodynamic forces applied to each 
parachute can be transformed from body frame to NED. 

6.3.3.4 Derivation of Capsule Equations of Motion 

For the purposes of this analysis, it is assumed the aerodynamic forces and moments exerted on 
the capsule (AC and MC, as shown in Figure 6.3.3.3-1), are specified in its body frame as 
described in Section 6.3.3.2. Typical aerodynamic conventions are used, with axial force applied 
opposite the x-axis, normal force applied opposite the z-axis, and side force applied in the 
direction of the y-axis. The aerodynamic moments are defined relative to the capsule’s 
aerodynamic reference center (ARC), which is an arbitrary location chosen by the developers of 
the aerodynamic model. The location of the ARC is specified in the capsule’s structural 
reference frame, as defined in Section 6.3.3.2. As a result, aerodynamic moments exerted on the 
capsule must be transferred from the ARC to its CM before applying Euler’s law for the capsule 
rotational equations of motion. 

The aerodynamic forces applied to the capsule are computed using nondimensional aerodynamic 
coefficients for axial force, side force, and normal force denoted as ܥ஺, ܥ௒, and ܥே, respectively. 
By traditional definitions, aerodynamic axial force is directed in the negative x-axis direction of 
the capsule body frame, aerodynamic side force is directed in the positive y-axis direction, and 
aerodynamic normal force is directed in the negative z-axis direction. These coefficients 
generally are defined as functions of Mach number, angle of attack, and sideslip angle, or 
alternatively for axisymmetric or nearly axisymmetric bodies, as Mach number, total angle of 
attack, and aerodynamic roll angle. The relationship of the total angle of attack (αTotal) and 
aerodynamic roll angle (φAero) with angle of attack (α) and sideslip angle (β) are 

 tan(߶୅ୣ୰୭) = tan(ߚ)sin(ߙ) (6.3.3-10a)

 cos(ߙ୘୭୲ୟ୪) = cos(ߙ) cos(ߚ) (6.3.3-10b)

Once the aerodynamic angles (α and β) or (αTotal and φAero) and the aerodynamic force 
coefficients have been computed, the capsule aerodynamic forces in its body reference frame can 
be computed as 

௕(஼ۯ)  = ௢ݍ ஼ ܵୖୣ୤ ஼ ቐ − 		஺஼ܥ ே஼ܥ−௒஼ܥ ቑ (6.3.3-11)

The term “qo C SRef C” in Equation (6.3.3-11) represents the product of the capsule dynamic 
pressure, qo C (psf), and its aerodynamic reference area, SRef C (ft2), and converts the 
nondimensional aerodynamic coefficients into physical aerodynamic forces (lbf) exerted on the 
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capsule. The subscript b for the capsule aerodynamic force AC indicates that it is resolved in its 
body axis frame. 

As was the case with the parachute equations of motion, the aerodynamic forces applied to the 
capsule can be transformed from the body frame to the NED frame for application of Newton’s 
second law.  

In a similar manner, the aerodynamic moments applied to the capsule are computed using 
nondimensional aerodynamic coefficients for roll axis, pitch axis, and yaw axis denoted as Cl, 

Cm, and Cn, respectively. By traditional definitions, aerodynamic moment coefficients are 
defined to produce positive right-hand rule moments about the body frame x-, y-, and z-axes. 
These coefficients generally are defined as functions of Mach number, angle of attack, and 
sideslip angle, or alternatively for axisymmetric or nearly axisymmetric bodies, as Mach number, 
total angle of attack, and aerodynamic roll angle. The aerodynamic angles were defined 
previously, with Equations (6.3.3-10) showing the relationship between them. Once the 
aerodynamic angles (α and β) or (αTotal and φAero) and the aerodynamic moment coefficients 
have been computed, the aerodynamic moments about the capsule aerodynamic reference center 
can be computed as 

	௕(஺ோ஼	஼ۻ)  = 		஼	ℓୖୣ୤	େ	Sୖୣ୤	஼	௢ݍ		 ቐ  ௡ቑ (6.3.3-12)ܥ	௠ܥ	ℓܥ	

The term “ݍ௢	஼	Sୖୣ୤	େ	ℓୖୣ୤	஼” in Equation (6.3.3-12) represents the product of the capsule 
dynamic pressure, qo C (psf), with its aerodynamic reference area, SRef C (ft2), and its 
aerodynamic reference length, ℓୖୣ୤	஼	(ft), to convert the nondimensional aerodynamic moment 
coefficients into physical aerodynamic moments (ft-lbf) exerted on the capsule at the 
aerodynamic reference center. The subscript b for the capsule aerodynamic moments, (MC ARC)b, 
in Equation (6.3.3-12), indicates that it is resolved in the capsule body axis frame. The subscript 
“C ARC” indicates that the moment computed as in Equation (6.3.3-12) is about the capsule’s 
aerodynamic reference center and must be transferred to the crew module capsule CM before use 
in the rotational equation of motion. 

In addition to the static or steady-state aerodynamic moments exerted on the capsule, there are 
also moments exerted due to aerodynamic damping caused by the angular velocity of the crew 
module and/or the rate of change of angle of attack and sideslip angle. The aerodynamic 
damping moments are computed from nondimensional aerodynamic damping coefficients Clp, 

Cmq, Cnr, , ఈሶ	௠ܥ , and	ܥ୬	ఉሶ . The aerodynamic damping derivative coefficients are converted to 

physical moments exerted on the capsule as 

 ൫ۻ஼	ୢୟ୫୮୧୬୥൯௕ = ஼	௢ݍ		 	ܵୖୣ୤	஼ 	ℓୖୣ୤	஼ ℓୖୣ୤	஼2 ோܸ௘௟ ܥ 	 ൞ ℓ௣ܥ ௠௤ܥ		݌ ݍ + ௠ఈሶܥ ሶߙ	 ௡௥ܥ	 ݎ + ௡ఉሶܥ ሶߚ	 	 ൢ (6.3.3-13)

The transfer of the aerodynamic moments from the capsule’s ARC to its CM can be 
accomplished by computing the additional aerodynamic moment on the capsule about its CM, 
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due to the aerodynamic forces applied at the ARC by computing the vector cross product of the 
vector from the capsule CM to its ARC and its aerodynamic force vector as 

 ൫Δۻ஼൯௕		 = ൫ܚ஺ோ஼/஼൯௕		 × 	 ൬	ۯ஼			൰௕ (6.3.3-14a) 

 ൫ܚ஺ோ஼/஼൯௕		 = 		 ቐ−(ݔ஺ோ஼ − ஺ோ஼ݕ)			஼)ௌݔ − ஺ோ஼ݖ)−஼)ௌݕ −  ஼)ௌቑ (6.3.3-14b)ݖ

where ݔ஺ோ஼, ,஺ோ஼ݕ ஺ோ஼ݖ , are the locations of the ARC and ݔ஼, ,஼ݕ  ஼ are the locations of the capsuleݖ
CM, each in the capsule structural reference frame (denoted by the subscript S). The negative 
signs on the x-axis and z-axis differences are used to transform from capsule structural frame to 
capsule body frame because the x-axis and z-axis directions are reversed for the capsule 
structural reference frame and the capsule body reference frame. 

The total aerodynamic moment exerted on the capsule about its CM in the capsule body 
reference frame is the sum of the static aerodynamic moment relative to the aerodynamic 
moment reference center (MC ARC)b in Equation (6.3.3-12), the incremental moment of the 
aerodynamic forces about the capsule CM (ΔMC)b in Equation (6.3.3-14a), and the aerodynamic 
damping moment ൫ۻ஼	ୢୟ୫୮୧୬୥൯௕ in Equation (6.3.3-13): 

 ൫ۻ஼൯௕		 = 		൫ۻ஼	஺ோ஼൯௕		 + 		 ൫Δۻ஼൯௕		 + 			 ቀܥۻ	dampingቁܾ			 (6.3.3-15) 

Once the aerodynamic forces applied to the capsule have been computed and transformed to the 
NED frame as described in the previous section, they can be combined with the riser line forces 
from each parachute and with the capsule weight to apply Newton’s second law of motion since 
the NED frame is assumed to be an inertial reference frame. The translational equation of motion 
for the capsule in the NED frame are 

 ൫܉஼൯ோ஽	 = 	 ∑ ۴஼	ோ஽݉஼ = ൫ۯ஼ + ଵܶ ෝଵܖ + ଶܶ ෝଶ൯ோ஽݉௖ܖ +  (6.3.3-16)			ோ஽܏

As before, the term ܏ோ஽in Equation (6.3.3-16) represents the gravity vector at the surface of the 

Earth with NED frame components (0 0 go) since gravity is assumed to be directed in the down 
direction, or along the z-axis of the NED frame. The terms T1 and T2 and ܖෝଵ and ܖෝଶ were defined 
previously as the forces applied to the capsule by each parachute’s riser lines and the unit vector 
from the capsule parachute attach point to each parachute, respectively. Once the acceleration of 
the capsule in the NED frame is computed, it can be integrated to compute the velocity of the 
capsule CM relative to the NED frame, and then that velocity can be integrated again to compute 
the translation of the crew module CM relative to the NED frame. Summarizing, the following 
integrations are performed for the capsule translational DOFs: 

 ௗௗ௧ ൫܄௖൯ோ஽ = 									ோ஽(௖܉) 	→    ൫܄௖൯ோ஽  =  ׬(܉௖)ோ஽	݀ݐ (17-6.3.3a) 

 ௗௗ௧ ൫܀௖൯ோ஽ = 									ோ஽(௖܄) 			→     ൫܀௖൯ோ஽  =  ׬(܄௖)ோ஽	݀ݐ (17-6.3.3b) 

Once the aerodynamic forces applied to the capsule are computed as defined in the previous 
section, the capsule rotational dynamics can be computed from the application of Euler’s law of 
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motion for rotational angular momentum of the capsule. This indicates the change in angular 
momentum of an object relative to an inertial frame of reference is equal to the sum of the 
moments applied to that body.  

If IC is the moment of inertia tensor (or dyadic) of the body and ωc is the angular rate of that 
body relative to some inertial frame of reference, then the angular momentum of that body HC is 
defined as HC = IC ωc. Further, application of Euler’s law of rotational motion can be used to 
compute the time derivative of the angular momentum as 

 
ௗௗ௧ ൫۶஼൯ோ஽ = ௗௗ௧ ቀ۷஼ ∙ ࣓஼ቁோ஽ = ௗௗ௧ ቀ۷஼ቁ௕ ∙ ࣓஼ 	+ 		۷஼  ∙ ௗௗ௧ ൫࣓஼൯௕ 

 																																																																		+	࣓஼	 × 	 ቆ۷	஼ ∙ ࣓஼ቇ = ∑ 	൫ۻ൯௕	 (6.3.3-18) 

The cross-product term shown in Equation (6.3.3-18) is required because the reference frame 
used for the calculations is the capsule body frame, which is rotating with an angular velocity of 
ω relative to the inertial NED frame (although the components of ω are expressed in the rotating 
capsule body frame b). Assuming the capsule moment of inertia tensor (or dyadic) is constant, 
Equation (6.3.3-18) can be rearranged to compute the time rate of change of the angular velocity 
of the capsule body reference frame axes relative to the inertial NED frame in the capsule body 
frame as 

 ௗௗ௧ ൫࣓஼൯	௕	 = 	۷	஼ିଵ	 ቄ		∑൫ۻ൯௕	 −	൫࣓஼൯	௕	 × 	 ቀ۷	஼ ∙		 	 ൫࣓஼൯	௕ቁ		ቅ (6.3.3-19) 

The sum of the moments applied to the capsule CM in its body reference frame Σ(M)b consists 
of the aerodynamic moment as defined in Equations (6.3.3-12) through (6.3.3-15), and the 
moment about the capsule CM due to each parachute’s riser line force applied to the attach point 
on the capsule, which is offset from its CM. The moments exerted about the capsule CM from 
the parachute riser lines in its capsule body frame are defined as 

 ൫ۻ௉ଵ	஼൯௕		 = ൫ܚ஺௉/஼൯௕	 ×	ܶଵ		൫ܖෝଵ൯௕ (6.3.3-20a) 

 ൫ܚ஺௉/஼൯௕	 = 	 ቐ−(ݔ஺௉ − ஺௉ݕ)				஼)ௌݔ − ஺௉ݖ)−஼)ௌݕ − ஼)ௌݖ ቑ (6.3.3-20b) 

 ൫ۻ௉ଶ	஼൯௕		 = ൫ܚ஺௉/஼൯௕	 ×	ܶଶ		൫ܖෝଶ൯௕ (6.3.3-20c) 

As with the aerodynamic moment calculation, the vector from the capsule CM to its parachute 
attach point (rAP/C)b in Equations (6.3.3-20) is defined relative to the locations in the capsule 
structural reference frame and transformed to its body frame by negating the x- and z-axis 
components. The force applied by each parachute’s riser line is the product of a scalar force 
magnitude, T1 or T2, and a unit vector in capsule frame, denoted by (ܖෝଵ)b or (ܖෝଶ)b in Equations 
(6.3.3-20a) and (6.3.3-20c) and defined in Equation (6.3.3-4). In summary, the sum of moments 
about the capsule CM is 

 ∑ 	൫ۻ൯௕ =			ቀۻ஼ቁ௕	 + 		ቀۻ௉ଵ	஼ቁ௕	 +	ቀۻ௉ଶ	஼ቁ௕	 (6.3.3-21) 
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Equation of motion (6.3.3-19) provides capsule-body-frame components of the angular 
acceleration of the capsule relative to the inertial NED frame. Capsule-body-frame components 
of the angular velocity of the capsule relative to the NED frame are obtained by integration: 

 ൫࣓௖൯	௕ = ׬ 	( ሶ࣓ ஼ 	)௕	݀(22-6.3.3) ݐ 

6.3.4 Analytic Check Cases for Simulation Verification 

This section presents an overview of a series of analytical check cases developed for the purpose 
of verification of the new flight simulation tool, CAPDYN. The individual verification cases are 
identified in Table 6.3.4-1. Cases 1 through 5 were designed to isolate and verify limited aspects 
of the numerical solution of the equations of motion in CAPDYN by reducing the configuration 
to its simplest form and simplifying the motion characteristics to their basic components. The 
CAPDYN results were verified for cases 1 through 5 by comparing the predicted motion with the 
analytical solution and with results from FAST (i.e., the Flight Analysis and Simulation Tool) in 
three of the five cases. Cases 6 through 10 describe more complex motion, where a comparison 
of results from CAPDYN and FAST was used to assess verification of CAPDYN. The details of 
the derivation and development of each case, as well as the verification results from CAPDYN 
and FAST, are included in the appendices (see Volume II). 

Table 6.3.4-1.  Table of Contents of Analytical Verification Cases 

   Development Verification 

Case # Title Appendix Simulations 

1 Constant Density Descent A CAPDYN and FAST 

2 Exponential Density Descent B CAPDYN and FAST 

3 Vertical Wind Shear, Constant Density C CAPDYN  

4 Steady State Glide D CAPDYN and FAST 

5 Horizontal Wind Shear, Constant Density E CAPDYN 

6 Pendulum Motion F CAPDYN and FAST 

7 Damped Pendulum Motion G CAPDYN and FAST 

8 Maypole Motion H CAPDYN and FAST 

9 Nonplanar Pendulum Motion I CAPDYN and FAST 

10 Nonplanar Flyout Motion  J CAPDYN and FAST 

FAST is a multi-body, variable-DOF simulation developed for the study of atmospheric and 
powered flight. It has been used extensively by the CPAS project for pretest analysis and post-
test reconstruction, including modeling two-parachute cluster pendulum dynamics. 

6.3.5 Nonlinear Aerodynamic Modeling from Flight Data using Equation Error 

The equation-error method is applied most commonly to calculate aerodynamic model parameter 
estimates that minimize the sum of squared differences between values of nondimensional force 
and moment coefficients determined from measured flight data and corresponding values 
computed using the model. A separate modeling problem can be solved for each force or 
moment coefficient, corresponding to minimizing the equation-error in each individual equation 
of motion for the six rigid-body DOF. Nondimensional force coefficients are computed from 
flight data as follows 
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 ( )1
A X x xC C m a T g

q S
= − = − − −  (6.3.5-1a) 

 ( )1
Y y yC m a g

q S
= −  (6.3.5-1b) 

 ( )1
N Z z zC C m a g

q S
= − = − −  (6.3.5-1c) 

where the quantities , ,x y za a a  are components of the acceleration vector in parachute body axes, 

and not the output from accelerometers. The quantities , ,x y zg g g  are the components of 

gravitational acceleration in parachute body axes. For parachute aerodynamic modeling, the 
aerodynamic moments are assumed to be small, so that  

 0l m nC C C= = =  (6.3.5-2) 

This results in N values of the nondimensional force coefficients, where N is the number of data 
points for the flight data. These values often are called measured nondimensional force and 
moment coefficients even though they are not measured directly, but rather are computed from 
other measurements and known quantities using Equations (6.3.5-1).  

Analytic parameterized models are postulated for the dependence of the nondimensional 
aerodynamic force coefficients on a linear combination of model terms assembled from the 
measured explanatory variables, known as regressors. Note that although the combination of 
regressors is linear, each regressor can be an arbitrary linear or nonlinear function of the 
explanatory variables. The unknown parameters in the models are estimated using a least-squares 
optimization criterion. Using the ܥே modeling as an example, a selected model structure might 
include four regressors, as follows: 

 
1 2 3 41 2 3 4N N N N NC C C C C= + + +ξ ξ ξ ξ  (6.3.5-3) 

where 
1 2 3 4
, , ,N N N NC C C C  are unknown model parameters and 1 2 3 4, , ,ξ ξ ξ ξ  are regressors 

computed from measured explanatory variable data (e.g., total angle of attack and airspeed data). 
Substituting force coefficient values computed from Equation (6.3.5-1c) on the left, with 
regressor values computed from the measured explanatory variable data on the right, results in an 
over-determined set of equations for the unknown aerodynamic model parameters 

1 2 3 4
, , ,N N N NC C C C . This problem can be solved using a standard least-squares method applied 

to Equation (6.3.5-3) and other similar model equations for the other nondimensional 
aerodynamic force coefficients, individually. Determining which particular regressors (model 
terms) should be included in models such as the example shown in Equation (6.3.5-3) is called 
model structure determination, which is discussed in Section 6.3.6. 

For example, the least-squares problem for the normal force coefficient NC  is formulated using 

the model structure in Equation (6.3.5-3) as 

 = +z Xθ ε  (6.3.5-4) 

where 
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( ) ( ) ( )1 2 1 vector of values computed from flight data
T

N N NC C C N N= = ×  z   

1 2 3 4
4 1 vector of unknown parameters

T
N N N NC C C C = = × θ  

[ ]1 2 3 4 4 matrix of explanatory data vectors or regressorsN= = ×X ξ ξ ξ ξ  

( ) ( ) ( )1 2 1 vector of equation errors
T

ε ε ε N N= = ×  ε   

The matrix X  is assembled using flight data, with each column representing a regressor 
(modeling function). The best estimate of the unknown model parameters θ  in a least-squares 
sense comes from minimizing the sum of squared differences between the dependent variable 
measurements z  and the model output: 

 ( ) ( ) ( )1

2
T

J = − −θ z Xθ z Xθ  (6.3.5-5) 

The least-squares solution for the unknown parameter vector θ  is [ref. 15] 

 ( ) 1ˆ T T−
=θ X X X z  (6.3.5-6) 

and the estimated parameter covariance matrix is computed from 

 ( ) ( ) 12ˆ ˆ TCov σ
−

=θ X X  (6.3.5-7) 

The model output is 

 ˆˆ =y Xθ  (6.3.5-8) 

and the model fit-error variance estimate is 

 
( ) ( )

( )
2 ˆ ˆ

ˆ
T

pN n
σ

− −
=

−
z y z y

 (6.3.5-9) 

where the number of unknown parameters is 4pn =  for this example. The standard errors of the 

estimated parameters are given by the square root of the diagonal elements of the covariance 
matrix 

              ( )ˆ
j jjs Cθ =        1,2, , pj n=   (6.3.5-10) 

The vector of equation-error residuals is computed from 

 ˆ ˆ= −ε z y  (6.3.5-11) 

The equations above show that the equation-error method for parameter estimation has a 
relatively simple, non-iterative solution, based on linear algebra. The modeling can be done 
using Equation (6.3.5-3) (or analogous versions of these equations for the other DOF, with 
different model terms), one at a time. The equation-error method can be considered a method 
wherein the model matches nondimensional aerodynamic coefficients rather than the measured 
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outputs, as in the output-error method described later. This can be seen in Equations (6.3.5-1) 
and (6.3.5-3), where the dependent variable data in the equation-error method are 
nondimensional aerodynamic coefficient data computed from measured flight data. 
Consequently, a model that uses equation-error parameter estimates will not produce the best 
match to the measured responses of the dynamic system (such as total angle of attack or 
airspeed), because that is not what is being optimized. On the other hand, there is no need to 
integrate equations of motion to get model outputs when using the equation-error method, 
because the matching is done in the equations of motion directly, hence, the name “equation-
error.” One important practical consequence is that the equation-error method can be applied 
equally well to data from inherently stable or unstable dynamic systems. Another important 
consequence is that the model structure can be efficiently determined using equation-error 
because the equation-error problem has a rapid, one-shot linear algebra solution, whereas output-
error requires an iterative nonlinear optimization involving integration of the equations of 
motion. The equation-error method is implemented in the System IDentification Programs for 
AirCraft or SIDPAC [refs. 15 and 21], program lesq.m, and this tool was applied to the flight 
data. 

In theory, the model residuals ˆ ˆ= −ε z y  are assumed to be white noise with no deterministic 
character. However, because of small aerodynamic model structure errors and unmodeled effects 
(e.g., aeroelasticity and unsteady aerodynamics), most practical applications of aerodynamic 
modeling produce residuals that resemble colored noise with dominant low-frequency content. 
Colored noise is time-correlated with non-uniform variance as a function of frequency, whereas 
white noise has no time correlation and constant variance as a function of frequency. This 
mismatch between theory and practice adversely impacts the computed uncertainties for the 
model parameter estimates. 

A method that corrects for colored residuals to produce accurate parameter uncertainties is 
described in references 15 and 16. This method accounts for colored residuals by modifying the 
calculation of the covariance matrix in Equations (6.3.5-7) and (6.3.5-9) with an improved 
estimate of the residual variance and time correlations. The correction is implemented in 
SIDPAC program r_colores.m, which was used to compute equation-error model parameter 
uncertainties.  

Two important indicators of the suitability of the flight data for modeling purposes are signal-to-
noise ratio (SNR) of the measured outputs to be modeled (nondimensional aerodynamic force 
coefficient data in this case), and correlations among the regressors. Measured output SNR can 
be computed independently from the modeling process using a global optimal Fourier smoothing 
technique15 to separate deterministic signal from random noise. This technique is implemented in 
the SIDPAC program smoo.m. Pairwise correlations for the regressors are quantified by the 
correlation coefficients, which can be computed using SIDPAC program regcor.m. Each 
correlation coefficient is an inner product of two data vectors scaled to unit length with their 
mean values removed. The simple pairwise correlation between regressors jξ  and kξ  is given by 

 jk
jk

jj kk

S
r

S S
=  (6.3.5-12) 
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where 

 ( ) ( )
1

N

jk j j k k
i

S i iξ ξ ξ ξ
=

   = − −    (6.3.5-13a) 

 ( ) ( )2 2

1 1

                  
N N

jj j j kk k k
i i

S i S iξ ξ ξ ξ
= =

   = − = −     (6.3.5-13b) 

 ( ) ( )
1 1

1 1
              

N N

j j k k
i i

i i
N N

ξ ξ ξ ξ
= =

= =   (6.3.5-13c) 

Similarly, the correlation between a regressor jξ  and the measured dependent variable z is 

 jz
jz

jj zz

S
r

S S
=  (6.3.5-14) 

where 

 ( )
1

1 N

i

z z i
N =

=   (6.3.5-15a) 

 ( ) ( ) ( ) 2

1 1

     
N N

jz j j zz
i i

S i z i z S z i zξ ξ
= =

 = − − = −          (6.3.5-15b) 

Correlation coefficients lie in the range [−1, 1]. A value of 1 indicates data vectors with identical 
normalized variations. A value of –1 indicates data vectors with normalized variations that differ 
only by a minus sign. A value of 0 indicates that the normalized variations are completely 
uncorrelated, which means the normalized data vectors are orthogonal.  

In general, output SNR greater than 3 and pairwise regressor correlations with magnitude less 
than 0.9 are acceptable. However, acceptable values of these metrics do not guarantee that a 
good model can be identified from the data. That determination must come from actually 
identifying models and testing their prediction capability.  

6.3.6 Model Structure Determination Using Multivariate Orthogonal Functions 

The task of determining which modeling functions should appear on the right sides of Equations 
(6.3.5-3) through (6.3.5-5) is called model structure determination. One effective method to 
accomplish this task is called multivariate orthogonal function modeling [refs. 15, 17–19]. The 
technique begins by generating candidate multivariate functions of the selected explanatory 
variable data, up to a selected maximum model complexity. Although any function of the 
explanatory variables could be used, multivariate polynomials and spline functions are preferred 
because of their similarity to a truncated Taylor series and their easy physical interpretation. 
These ordinary functions are orthogonalized so that each of the resulting orthogonal functions 
retains only the explanatory capability that is unique to that modeling function. With this data 
transformation, it is a straightforward process to select which of the orthogonal modeling 
functions are most effective in modeling the measured data for the dependent variable, and how 
many of these orthogonal functions should be included to identify a model that exhibits both a 
good fit to the modeling data and good prediction capability for other data. The final steps are an 
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error-free transformation from the selected orthogonal modeling functions back to physically 
meaningful ordinary functions of the explanatory variables, and calculation of the uncertainties 
for the associated model parameter estimates. 

The orthogonalization can be implemented using a standard QR  decomposition of the matrix of 
candidate regressors: 

 =X QR  (6.3.6-1) 

where the columns of X  contain the candidate modeling functions, Q  is an orthonormal matrix 
with the same dimensions as X , and R  is a square upper triangular matrix. Implementations of 
QR  decomposition algorithms are available in many numerical analysis software packages, 
including MATLAB, which was used for this work. Substituting the decomposition in Equation 
(6.3.6-1) into Equation (6.3.5-8) yields 

 ˆT T T=R Rθ R Q z  (6.3.6-2) 

 ˆ T=Rθ Q z  (6.3.6-3) 

From Equation (6.3.6-3), the elements of θ̂  can be found by simple back substitution, because 
R  is an upper triangular matrix. Rewriting Equation (6.3.6-3) in component form yields 
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 (6.3.6-4) 

where ࢗ௝ is the jth column of the matrix Q. The right side of Equation (6.3.6-4) is a vector of 
projections of the dependent variable vector Z onto the orthonormal functions in the columns of 
Q. The absolute values of these quantities indicate the degree of correlation of the orthonormal 
functions in the columns of Q with Z and, consequently, the effectiveness of each orthonormal 
function in modeling the dependent variable data. Note that the model parameters  ߠ෠௝, ݆ = 1, 2, … , ݊௖, are associated with the original multivariate modeling functions in the 
columns of X and not with the orthonormal functions in the columns of Q. 

The form of a multivariate orthonormal function model is 

 1 1 2 2 ... n na a a= + + + +z q q q ε  (6.3.6-5) 

where z  is an N-dimensional vector of dependent variable data (e.g., nondimensional force 

coefficient data), [ ]1 2, ,...,
T

Nz z z=z , modeled in terms of a linear combination of n mutually 

orthonormal modeling functions , 1,2,...,j j n=q . Each jq  is an N-dimensional vector that in 

general depends on the explanatory variables. The , 1,2,...,ja j n= , are constant model 

parameters to be determined, and ε  denotes the model residual vector. Equation (6.3.6-5) 
represents a mathematical model for the dependent variable z  in terms of orthonormal functions 
generated from the explanatory variable data. The importance of determining which modeling 
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functions should be included in Equation (6.3.6-5), which determines the model structure, is 
addressed below.  

Assembling the n orthonormal modeling functions from Equation (6.3.6-5) in the columns of an 
N n×  matrix Q , 

 [ ]1 2, , ..., n=Q q q q  (6.3.6-6) 

and defining the unknown parameter vector [ ]1 2, ,...,
T

na a a=a , Equation (6.3.6-5) can be written 

as 

 = +z Qa ε  (6.3.6-7) 

Equation (6.3.6-7) is the same equation error-model equation discussed earlier, except that the 
modeling functions are now mutually orthonormal functions. In this case, it is easier to determine 
an appropriate model structure because the explanatory capability of each modeling function is 
completely distinct from all the others due to the mutual orthogonality of the columns of Q . 
This decouples the least-squares modeling problem, as shown here.  

For mutually orthonormal functions, 

 
1  for  

, 1, 2, ...,
0  for  

T
i j

i j
i j n

i j

=
= = ≠

q q  (6.3.6-8) 

and TQ Q  is the identity matrix. Using Equation (6.3.6-8) in the least-squares solution from 

Equation (6.3.5-8), the jth element of the estimated parameter vector â  is given by 

 ˆ T
j ja = q z  (6.3.6-9) 

The least-squares cost function using orthonormal functions is then 

 ( ) ( ) ( )2

1

1 1
ˆ ˆ ˆ

2 2

n
T T T T

j
j

J
=

 
= − = − 

  
a z z a a z z q z  (6.3.6-10) 

Equation (6.3.6-10) shows that when the modeling functions are orthonormal, the reduction in 
the least-squares cost function resulting from including the term j ja q  in the model depends only 

on the dependent variable data z and the added orthonormal modeling function jq . The least-

squares modeling problem is therefore decoupled, which means each orthonormal modeling 
function can be evaluated independently in terms of its ability to reduce the least-squares model 
fit to the data, regardless of which other orthonormal modeling functions are already selected for 
the model. If the modeling functions were instead polynomials in the explanatory variables (or 
any other non-orthogonal function set), then the least-squares problem would be coupled and 
iterative analysis would be required to find a subset of the candidate modeling functions for an 
adequate model structure.  

The quantities T
jq z  are calculated for all cn  candidate modeling functions and are used to 

identify the model structure, which involves selecting the functions to be included in the model 
from the pool of cn  candidate modeling functions.  
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The orthonormal modeling functions to be included in the model are chosen to minimize the 
predicted squared error metric predicted squared error (PSE) defined by [refs. 15 and 20]: 

 ( ) ( ) 21
ˆ ˆPSE

T
max

n

N N
σ= − − +z Qa z Qa  (6.3.6-11) 

where the first term on the right is the mean squared fit error for the model, and the second term 
on the right is a model complexity penalty term proportional to the number of terms in the 
model, n. The latter term prevents overfitting the data with too many model terms, which is 
detrimental to model prediction accuracy [refs. 15 and 20]. The PSE metric quantifies expected 
squared prediction error for an identified model when applied to data not used in the model 

identification process. The constant 2
maxσ  is an upper-bound estimate of the squared error 

between future data and the model (i.e., the upper-bound squared error for prediction cases). An 

estimate of 2
maxσ  that is independent of the model structure can be obtained by applying a global 

optimal Fourier smoother [ref. 15] to the measured dependent variable data. This quantification 
of the dependent variable noise variance can then be multiplied by a safety factor to implement a 

conservative estimate for 2
maxσ . The process is analogous to choosing a confidence level for an 

F-ratio test in model structure determination. In this assessment, the estimated dependent 
variable noise variance was multiplied by a factor of 25 (equal to a factor of 5 for the standard 

deviation) to obtain a conservative estimate of 2
maxσ , 

 2 2ˆ ˆ25    or    5max maxσ σ σ σ= =  (6.3.6-12) 

Using a conservative upper bound estimate for 2
maxσ  means the PSE metric will tend to 

overestimate actual squared prediction errors for new data. Therefore, the PSE metric 
conservatively estimates the squared error for prediction cases.  

Combining Equations (6.3.6-10) and (6.3.6-11) yields 

 ( )2 2

1

1
PSE

n
T T

j max
j

n

N N
σ

=

 
= − + 

  
z z q z  (6.3.6-13) 

While the mean squared fit error must decrease with the addition of each orthonormal modeling 

function to the model (because ( )2T
j− q z  is always negative), the model complexity penalty term 

2
max n Nσ  must increase with each added model term (n increases). Introducing the orthonormal 

modeling functions into the model in order of most to least effective in reducing the mean 

squared fit error (quantified by ( )2T
jq z  for the jth orthonormal modeling function) means that the 

PSE metric will always have a single global minimum.  

Because the quantities Tz z , 2
maxσ , and N depend only on the dependent variable data and 

therefore cannot be altered by the model, Equation (6.3.6-13) shows that the criterion for 
including each jq  in the model can be reduced to 
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 ( )2 2T
j maxσ>q z  (6.3.6-14) 

The criterion in Equation (6.3.6-14) is the mathematical statement of a simple physical idea that 
only modeling functions that reduce the mean squared fit error by an amount that exceeds the 
maximum expected noise variance should be included in the model. This is the condition 
necessary for PSE to decrease when jq  is added to the model. Reference 20 contains further 

statistical arguments and analysis for the PSE metric, including justification for its use in 
modeling problems. 

Using orthonormal functions to model the dependent variable data makes it possible to evaluate 
the merit of including each modeling function individually, based on the PSE metric. The goal is 
to select a model structure with minimum PSE, and the PSE always has a single global minimum 
for orthonormal modeling functions. Model structure determination based on the PSE metric is 
therefore a well-defined and straightforward process that can be (and was) automated.  

The model parameters and uncertainties associated with the original modeling functions in the 
columns of the X  matrix are determined from Equation (6.3.6-3), using all rows and columns of 

the R  matrix up to and including the index associated with the last element of vector TQ z  
selected for the model [ref. 15]. SIDPAC program mof.m implements this model structure 
determination procedure using multivariate orthogonal functions and was used for this 
assessment. SIDPAC program r_colores.m was used to compute the model parameter 
uncertainties accounting for colored residuals.  

Note that there are no requirements regarding the form of the candidate modeling functions - 
they can be multivariate polynomials, multivariate spline functions, or any other linear or 
nonlinear function that can be computed from the explanatory variable data. Inputs required from 
the analyst relate only to the limits of what should be considered (e.g., which explanatory 
variables to consider, maximum order of multivariate polynomial functions to consider, spline 
knot locations). Obviously, the identified model is dependent on the candidate modeling terms 
available for selection. However, the pool of candidate modeling terms can be specified 
generously, subject to computational constraints, because the modeling algorithm automatically 
sorts which terms are important, based on the data, and omits the rest. The result is a global 
parsimonious model that characterizes the functional dependencies accurately and predicts well. 

6.3.7 Model Refinement using Output-Error 

The results of equation-error modeling are an identified model structure (specific model terms 
selected for inclusion in the model) and estimates of the model parameters (multipliers for the 
selected model terms) and their uncertainties, based on the flight data. The previous subsections 
showed that equation-error results come from matching model outputs to flight data for the 
nondimensional aerodynamic force coefficients.  

A common desire is to have model outputs match the physical system outputs. This can be done 
using the output-error approach, wherein model parameters are automatically adjusted inside a 
nonlinear simulation so that the simulation outputs match the physical system outputs in a 
weighted least-squares sense.  

To do this effectively for the CPAS flight data, a nonlinear simulation of the two-parachute-with-
payload dynamic system was required. Section 6.3.3 describes the development of the equations 
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of motion for the two-parachute-with-payload dynamic system, as well as the development and 
testing of a nonlinear simulation implemented in MATLAB, based on these equations of motion. 
A modified version of this simulation, called the CP2 nonlinear simulation (for the capsule and 
two parachutes), was implemented in MATLAB and used for the output-error analysis and 
prediction testing. The CP2 nonlinear simulation differs from the nonlinear simulation described 
earlier, called CAPDYN, in that CP2 was developed with the simulation architecture and 
interfaces necessary for use with SIDPAC programs. CP2 also used standard SIDPAC routines 
for utilities (e.g., quaternion algebra, interpolation, and numerical integration). The CP2 
nonlinear simulation was validated against CAPDYN using check cases, and CAPDYN was 
validated using analytic solutions, as described earlier and documented in Appendices A through 
J in Volume II. The CP2 nonlinear simulation was further validated by back-driving the CP2 
nonlinear simulation with flight accelerations, and noting that this produced a perfect match with 
measured flight responses of the parachutes (see Figures 7.4-1 through 7.4-3).  

Although it is possible to use FAST for output-error analysis (and that was attempted initially, 
with significant effort), FAST was not built to be used inside an output-error optimization loop, 
which is required for output-error parameter estimation. In addition, the long run times in FAST, 
the requirement to work remotely from NASA LaRC on NASA JSC computers (where FAST 
must run), and the difficulties in accessing and modifying the aerodynamic model in FAST, were 
practical problems that could not be overcome. This drove the need to develop the CP2 
MATLAB simulation, which was less general than FAST (i.e., specific to the CPAS problem), 
but faster, easier to modify and test, and readily used in the SIDPAC output-error optimizer. 

The CP2 nonlinear simulation implemented equations of motion for the two-parachute-with-
payload dynamic system, which can be described by the following general nonlinear equations of 
motion: 

                             ( ) ( ), ,
d

f t t
dt

=   
x

x u θ            ( )0 o=x x  (6.3.7-1a) 

 ( ) ( ) ( ), ,t h t t=   y x u θ  (6.3.7-1b) 

                              ( ) ( ) ( )i i i= +z y ν                   1,2, ,i N=   (6.3.7-1c) 

where f  represents the nonlinear equations of motion, h  represents equations for computing the 

outputs, ( )tx  is the state vector for the parachute cluster at time t, which includes positions and 

velocities of the parachutes and payload, ( )tu  represents the input vector to the dynamic system 

at time, t, which is composed of estimated winds aloft in this case, and the elements of the 
unknown parameter vector θ  are aerodynamic model parameters, such as those shown on the 
right side of Equation (6.3.5-3). The discrete measured output vector is ( )iz , the discrete model 

output vector is ( )iy , and ( )iν  is the discrete output measurement noise. Note that the nonlinear 

simulation is built to compute outputs at the discrete measurement times associated with the 
measured outputs from flight data ( )iz , using estimated winds aloft for ( )tu , current values of 

the model parameters θ , and a Runge-Kutta numerical method to solve the nonlinear equations 
of motion.  
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The unknown parameters in vector θ  can be estimated from measured data using an output-error 
formulation. In this approach, θ  is chosen to minimize the cost function  

 ( ) ( ) ( ) ( ) ( )1

1

1

2

N
T

i

J i i i i−

=
= − −      θ z y R z y  (6.3.7-2) 

where 1−R  is a weighting matrix. This cost function represents minimizing the weighted sum of 
squared differences between the measured outputs z and the model outputs y for the same 
measured input u. For the current problem, the measured outputs to be matched might be true 
airspeed of each parachute and various angular deflections of the parachute cluster, among other 
outputs, and the measured inputs are the estimated winds aloft. This formulation is called “output 
error” because the unknown parameters are chosen to minimize the weighted squared-error 
between the physical measured outputs and the model outputs computed using a simulation.  

The weighting matrix 1−R  is, in general, arbitrary, but if the noise ν  in Equation (6.3.7-1c) is 
assumed to be zero-mean Gaussian and R  is chosen as the discrete noise covariance matrix, i.e., 

 ( )is ,ν R0Ν  (6.3.7-3a) 

 ( ) ( ) ( )T
ijCov i E i j δ = =    ν ν ν R  (6.3.7-3b) 

then minimizing the cost function in Equation (6.3.7-2) corresponds to maximizing a Gaussian 
likelihood function, which means that the resulting parameter estimates are maximum likelihood 
estimates. Maximum likelihood parameter estimates have several desirable properties as the 
number of data points gets large (e.g., being unbiased, approaching the true value, and having 
error bounds that approach the theoretical minimum).  

Because of the nonlinearity of the cost function in Equation (6.3.7-2), along with the generally 
coupled dynamics in Equations (6.3.7-1), the output-error cost function depends nonlinearly on 
the unknown parameter vector θ . Consequently, output-error parameter estimates must be 
computed using a nonlinear optimization method. Typically, a relaxation method is used with the 
modified Newton-Raphson method (also called the Gauss-Newton method) and the simplex 
method (see reference 15 for details). When this process converges, an estimate for the noise 
covariance matrix R can be found from the simple closed-form expression: 

 ( ) ( ) ( ) ( )
1

1ˆ
N

T

i

i i i i
N =

= − −      R z y z y  (6.3.7-4) 

where R̂  is the value of R that minimizes the cost function in Equation (6.3.7-2) given that the 
parameters θ  are fixed. The relaxation method alternates between the nonlinear optimization to 
estimate θ  and the closed-form R matrix update in Equation (6.3.7-4), until estimates of both  
θ  and R converge. This procedure has been mechanized in SIDPAC program oe.m and used 
successfully for a wide variety of aerospace dynamic modeling problems. Reference 15 provides 
further theoretical and practical details on the output-error parameter estimation method and the 
solution procedure outlined here. The output-error solution, therefore, includes maximum 
likelihood estimates for both the unknown parameter vector θ  and the noise covariance matrix 

R, where the estimates from flight data are denoted by θ̂  and R̂ , respectively.  
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In practice, the number of data points for most flight test maneuvers is large because of relatively 
high sample rates used to collect data for dynamic analysis, and the parameter covariance matrix 

can be computed using maximum likelihood estimates θ̂  and R̂  as [ref. 15]: 

 ( ) ( ) ( )
1

1

1

ˆ ˆ
N

T

i

Cov i i

−
−

=

 
=  
  
θ S R S  (6.3.7-5) 

The quantity ( )iS  is the output sensitivity matrix, which quantifies the sensitivity of the model 

outputs to the model parameters, with model parameters equal to their estimated value 

 ( ) ( )
ˆ

i
i

=

∂
=

∂
θ θ

y
S

θ
 (6.3.7-6) 

Output sensitivities can be calculated analytically by solving a set of sensitivity equations 
derived by differentiating Equations (6.3.7-1) with respect to θ , or by finite differences applied 
to Equations (6.3.7-1). Reference 15 provides theoretical and practical details on computing 
output sensitivities and solving the output-error parameter estimation problem.  

When the columns of the output sensitivity matrix (the output sensitivity to individual 
parameters) are linearly independent and nonzero, each model parameter has a unique and 
significant impact on the model outputs, so that minimizing the output error will be a 
well-conditioned optimization problem leading to accurate values for the unknown parameters, 
with small uncertainties. The inputs will influence the output sensitivities through the dynamic 
and output Equations (6.3.7-1) and the covariance matrix calculation (Equation (6.3.7-5)). 

Output noise levels (quantified by R̂ ) also affect the covariance matrix calculation in  
Equation (6.3.7-5). In a rough sense, the covariance matrix is determined by squared noise-to-

signal ratio, where R̂  represents the noise variance (square of the noise level) and the output 
sensitivities ( )iS  represent the signal for the parameter estimation problem.  

The estimated parameter standard errors are computed as the square root of the diagonal 
elements of the covariance matrix 

                                         ˆ j jjCσ =                         1,2, ,j n=   (6.3.7-7) 

The 95% confidence interval for each estimated parameter is based on the Gaussian distribution 
assumption for the measurement noise and the likelihood function and can be calculated as 

                          ˆ ˆˆ ˆ2 , 2j j j j jθ θ σ θ σ ∈ − +               1,2, ,j n=   (6.3.7-8) 

The estimated parameter uncertainty calculations in Equations (6.3.7-5) through (6.3.7-8) are 
based on the assumption that the model residuals are white Gaussian noise. In practice, however, 
the model residuals are typically not white Gaussian with constant variance, as assumed in the 
theory, but are colored (time correlated) with non-uniform variance, typically as a result of 
relatively small model structure errors or unmodeled effects. The mismatch between theory and 
practice regarding the character of the model residuals results in estimated parameter uncertainty 
bounds that are overly optimistic (too small) when computed using the standard procedure of 
Equations (6.3.7-5) through (6.3.7-8). References 15 and 16 describe a rigorous and flight-
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validated solution to this problem, which involves improving the R̂  estimate and using that 
improved estimate to compute a corrected covariance matrix. The necessary correction can be 
done as a post-processing of the model residuals because only the covariance matrix is affected 
(and consequently the estimated parameter uncertainties), but not the parameter estimate θ̂ . The 
computations are analogous to those used to correct the parameter uncertainties for equation-
error parameter estimates, which were described earlier. This post-processing was applied using 
SIDPAC program m_colores.m to compute accurate parameter uncertainties for the output-
error modeling results. 

7.0 Data Analysis 

This section describes the system identification methods used to develop parachute aerodynamic 
models from flight data. A general description of the equation-error and output-error modeling 
approaches are provided in Sections 6.3.5 and 6.3.7 and can be found in reference 15. The 
material describing multivariate orthogonal function modeling is provided in Section 6.3.6 and is 
based on references 15 and 17–19. Data analysis and modeling tasks in this assessment were 
done using SIDPAC software written in MATLAB [refs. 15 and 21]. 

Flight data came mainly from onboard instrumentation and videogrammetry. Airspeed, total 
angle of attack, aerodynamic azimuth angle, and dynamic pressure came from the BET data, 
which was based on flight instrumentation data and estimated atmospheric conditions and winds 
aloft at the time of the flight test. Flight data from onboard instrumentation were corrected for 
data dropouts and were interpolated to a uniform sampling rate. Sample rate for the flight data 
used in the analysis and modeling was 10 Hz, corresponding to a sampling interval of 0.10 s. 
CPAS mass, geometry, and tension line properties are given in Table 6.1.1. 

7.1 Results for Pendulum Motion Modeling using Simplified Linear 
Equations and Defined Aerodynamic Model Structure  

The first CPAS drop test with two main parachutes that exhibited significant pendulum motion 
was CDT 3-11 [refs. 2 and 3]. According to reference 2, one-third of the way into the full open 
portion of the main parachute flight, the system developed a swinging motion of approximately 
15 degrees in amplitude, which increased up to 24 degrees as it approached the ground. During 
the pendulum motion, the system was translating toward the Northeast due to the direction of the 
wind as it descended. The parachute cluster appears to have aligned its “weak" axis with the 
direction of the wind. Reference 3 defines the “weak" axis as being parallel with the wind 
direction and orthogonal to the plane of oscillation that contains the two parachutes. The motion 
can be approximated as planar in nature; hence, Equations 6.3.1-5 through 6.3.1-11 should be 
adequate for capturing the gross characteristics of the pendulum motion. The simplified planar 
model, however, does not predict the onset of the pendulum motion nor does it predict system 
behavior with no pendulum motion. 

It is important to note that in Section 6.3.1.2, a linear analysis (small disturbance theory) was 
performed by linearizing the nonlinear CN versus α curve shown in Figure 6.3.1-2 about one of 
the stable equilibrium points at ±ߙ௢ and yields many insights into the pendulum motion using 
the concept of the pivot point. However, in reality the pendulum motion is a nonlinear 
phenomenon at which the parachutes sustain large oscillations between the two stable trim points 
at ±ߙ௢. Reference 6 provides nonlinear analysis of the pendulum motion.  
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As a part of the nonlinear analysis of the pendulum motion described in reference 6, the output-
error method [ref. 15], widely used in parameter estimation for aircraft, was applied to the 
pendulum portion of the CDT 3-11 flight data. To perform the optimization, the routine called 
oe.m in the SIDPAC toolbox [ref. 21] was used. The vector of parameters to be estimated was  

 Θ = ஺೚ܥ] ஺ഀܥ ௢ߙ ேഀܥ ேܥ ሶഀ ] (7.1.1)

The aerodynamic model structures shown in Equations 6.3.1-10 and 6.3.1-11 are based on 
previous studies [refs. 7, 8, 11, and 12] and are not identified from the flight data. An additional 
damping term, ܥே ሶഀ , was added in Equation (6.3.1-12) to account for unsteady time lag effects in 
the rotational DOF [refs. 5 and 9]. The MPCV aerodynamic database suggests that for pendulum 
motion to occur an unstable (negative) value of ܥே ሶഀ  is required. The measurements from the 
flight data to match are ߠ (swing angle), ୬ܸయ,ୟ୧୰ (air relative velocity in the Down direction), and ୪ܸୟ୲,ୟ୧୰ (root-sum-square of the air relative velocity in North and East directions). System 
properties used in the planar dynamics model are recorded in Table 7.1-1. Note that these 
properties differ slightly compared with the nominal properties used for System ID given in 
Table 6.1.1. Furthermore, the simplified model assumes constant air density and, hence, a 
constant mc. 

Table 7.1-1.  Approximate CPAS Properties used for Modal Analysis 
Parameter Value Units 

   ܵ୰ୣ୤ (single parachute)  10,563 ftଶ 235  ܮ ft 
Capsule weight, ௅ܹ 21,906 lbf 
Dry weight of two parachutes, ஼ܹ  656 lbf 
Total mass of two parachutes, (dry and 
entrapped air), ݉஼   

614 slugs 

Distance from system CM to capsule CM, ܴ௅  114 ft 
Line spring constant, K 15,000 lbf/ft 
Line damping constant, η 10,000 lbf-s/ft 

Winds act as the main source of excitation to the two-parachute cluster system. In the flight data, 
the best estimated winds are provided in the NED directions. For flight winds to be used in the 
planar dynamics model, the flight winds in the North and East directions were resolved along the 
plane of the pendulum oscillation, as shown in Figure 7.1-1. Output-error analysis converged 
within 80 iterations. Figure 7.1-2 shows a comparison between the output-error model and the 
flight data. Other than the initial amplitude mismatch during the first 15 seconds (s), the 
identified planar model appears to provide a good match with flight data in the swing-angle time 
history. The fundamental frequency (0.068 Hz) of the swing angle is virtually identical between 
the identified model and the flight data, while there appears to be a 2-second phase lag toward 
the end of the data set. The model swing-angle amplitude is within 20% of the flight data. ୪ܸୟ୲,ୟ୧୰ 
from the flight data and the model also compare well. The slightly larger differences in ୬ܸయ,ୟ୧୰ are 
likely due to the lack of best estimated winds in the Down direction. Considering the drastic 
simplification of the actual system dynamics (e.g., 18 DOF, flexible riser lines, non-rigid 
parachutes), it is noteworthy that the fundamental characteristics of the pendulum motion can be 
captured using only three output variables (swing angle, ୪ܸୟ୲,ୟ୧୰, ୬ܸయ,ୟ୧୰). 
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Figure 7.1-1.  CDT 3-11 Flight Winds 

 

 
Figure 7.1-2.  Output-error Model with CDT 3-11 Flight Data 

Table 7.1-2 shows the parameter estimation results from the output-error method by using  
the planar pendulum model described in Section 6.3.1 to match the pendulum portion of the  
3-11 flight. The estimated parameters and their standard errors are listed in columns 2 and 3, 
respectively. The standard errors were corrected for colored residuals using the m_colores.m 
function in SIDPAC [ref. 21]. The standard error on ܥே ሶഀ  is about 48% of the estimated parameter 
value, which is fairly high. This is largely due to the initial mismatch between the model and 
flight. The standard error on ܥேഀ drops to 20% of the estimated value if data only between  
30 and 60 seconds are considered. Furthermore, the large standard error on ܥேഀ may be attributed 
to model structure error by assuming a constant value of ܥே ሶഀ . In the current MPCV aerodynamic 
database, ܥே ሶഀ  is a function of α.  



 

 
 

NESC Document #: NESC-RP-15-01037, Vol. I Page #:  61 of 101 

Figures 7.1-3 to 7.1-5 compare the identified ܥே, ܥே ሶഀ , and ܥ஺ versus ߙ models with the current 
MPCV aerodynamic database. For the static ܥே model, the trends are similar, with the database 
showing a greater value for ߙ௢ but a shallower slope value of ܥே at ߙ௢ (smaller restoring force). 
For the damping derivative, the model indicates a constant ܥே ሶഀ , whereas the database shows 
variations with ߙ. Furthermore, the model shows significantly higher value of ܥே ሶഀ  (more 
dynamic instability). For ܥ஺, the database and the model show similar trends, with the database 
having a constant value of ܥ஺ between 16– = ߙ and 16 degrees. 

Table 7.1-2.  Pendulum Mode Parameter Estimation Results from CDT 3-11 
Parameter  દ෡   s(દ෡)   ܥ஺೚  0.927 0.034 ܥ஺ഀ (radିଵ)  –0.329 0.179 ߙ௢ (rad)  0.189 0.038 ܥேഀ (radିଵ)  0.1901 0.091 ܥே ሶഀ  (rad/s)ିଵ  –0.988 0.0684 

 

 
Figure 7.1-3.  CN versus α, Identified Model versus MPCV Database 

 



 

 
 

NESC Document #: NESC-RP-15-01037, Vol. I Page #:  62 of 101 

 
Figure 7.1-4.  ࢻࡺ࡯ሶ  versus α, Identified Model versus MPCV Database 

 

 
Figure 7.1-5.  ࡭࡯ versus ࢻ, Identified Model versus MPCV Database 

As part of the model validation, the parameters identified from the pendulum portion of the CDT 
3-11 flight shown in Table 7.1-2 were used to predict the pendulum motion from the CDT 3-12 
flight. According to reference 2, during the CDT 3-12 drop test the pendulum motion occurred 
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almost immediately after full inflation of the main parachutes and gradually increased to an 
amplitude of approximately 24 degrees until impact. Similar to the CDT 3-11 flight, the system 
was also translating toward the Northeast due to the direction of the winds as it descended. 
Figure 7.1-6 shows the CDT 3-12 flight winds resolved in the plane of the pendulum oscillation, 
which were used in the simulation as a forcing function. Figure 7.1-7 shows a comparison of the 
model (using the aero parameters identified from the CDT 3-11 flight) with the CDT 3-12 flight 
data. Once again, other than the initial amplitude mismatch, the identified planar model appears 
to provide an excellent match with flight data in the swing-angle time history. Both model and 
flight data show the swing angle fundamental frequency to be 0.07 Hz, while error in the 
amplitude of oscillation is within 10%. ୬ܸయ,ୟ୧୰ and ୪ܸୟ୲,ୟ୧୰ also show good comparisons. 

 
Figure 7.1-6.  CDT 3-12 Flight Winds 

 

 
Figure 7.1-7.  Prediction Test using CDT 3-12 Flight Data 
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It is apparent from Figures 7.1-2 and 7.1-7 that the identified planar dumbbell model does a good 
job matching the underlying dynamics of the pendulum motion from both the CDT 3-11 and  
3-12 flight data. However, its limitations should be reemphasized. The dumbbell model is not 
capable of producing some of the more complicated behaviors (e.g., the maypole and flyout 
motions) observed during the CDT 3-02 and 3-08 flights in which the pendulum motion did not 
occur [refs. 2 and 3]. The model also does not predict how pendulum motion is triggered. Visual 
inspection of the flight data with pendulum motion (3-11 and 3-12) and without pendulum 
motion (3-02 and 3-08) suggests there is a correlation between a large gradient in the wind 
direction while the magnitude exceeds a certain threshold and propensity to pendulum motion. It 
is a topic for future research.  

Finally, the current model does not provide much insight into why a cluster of three parachutes is 
more resistant toward the pendulum motion compared with a cluster of two parachutes. 
According to reference 3, CDT 3-07 involved three parachutes. Pendulum motion was observed 
during a brief interval in which the configuration of the parachutes changed from the usual 
triangular arrangement to a collinear one with coincident projections of all three parachutes onto 
the plane parallel to the wind direction. The oscillations damped out after the parachutes 
regained their triangular configuration. Equations 6.3.1-5 through 6.3.1-11, therefore, are 
applicable in the case of pendulum motion with three parachutes, with the following 
modifications: 1) ஼ܹ 	and ܯ஼	are the dry weight and total mass of three parachutes, and  
2) a coefficient of 3 replaces 2 in Equations 6.3.1-8 and 6.3.1-9. 

Simulations of the planar pendulum model with the identified output error nonlinear 
aerodynamics based on CDT 3-11 were performed to provide further insight into the pendulum 
motion. This is similar to the large disturbance studies described in reference 7. The left plot in 
Figure 7.1-8 shows the swing angle time history, and the right plot shows the phase portrait of 
the parachute α. The blue dots represents the two stable equilibrium points at ±αo (reference 7 
refers to αo as the stable glide point), while the green dot represents the unstable equilibrium 
point at α = 0. The parachute-capsule system starts out in a steady descent and is subject to a 
disturbance in θ. Due to the unstable aerodynamic damping, the parachute immediately seeks out 
the stable equilibrium at + αo and attempts to trim there. Meanwhile, the swing angle amplitude 
is still fairly small (between ~ ±0.1 rad). However, due to the negative damping, the parachute is 
unable to stay at + αo and jumps to the other stable equilibrium at –αo (crossing α = 0 along the 
way). Eventually, the system manifests into a stable limit cycle where the parachutes oscillate 
back and forth between the two stable equilibrium α, resulting in large swing angles (±0.4 rad or 
23 degrees). 
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Figure 7.1-8.  Simulation of Planar Pendulum Model with Identified Output Error Model (swing 

angle (left), angle of attack phase portrait (right)) 

Figure 7.1-9 shows simulation results of the same system, except, at T = 50 seconds, positive 
(stable) aerodynamic damping is artificially introduced. Due to the large initial swing angle and 
rate, the system almost immediately develops into the limit cycle oscillation (α jumps from 0 to 
±αo). At T = 50 seconds, the sign on ܥேఈሶ  is flipped from negative to positive. The stable 
aerodynamic damping causes the amplitude of the swing angle to diminish gradually over time 
(reducing the kinetic energy of the system). At around T = 160 sec, the parachute eventually 
settles at one of the stable equilibrium α, and the amplitude of the swing angle asymptotically 
reduces to zero. Note that this is merely a simulation study highlighting the role of the unstable 
aerodynamic damping. In reality, due to the passive nature of the system, once the pendulum 
motion occurs there is little that can be done to stop the limit cycle oscillation. 

 
Figure 7.1-9.  Simulation of Planar Pendulum Model with Identified Output Error Model (stable 

damping at T = 50 seconds; swing angle (left), angle of attack phase portrait (right)) 

Similar analysis was performed for the four possible parachute designs (i.e., statically 
unstable/dynamically unstable, statically stable/dynamically unstable, statically 
unstable/dynamically stable, and statically stable/dynamically stable) and the resultant pendulum 
motion. Figure 6.3.1-2 illustrates the difference in the CN versus α curve between a statically 
stable versus a statically unstable parachute. The unstable configuration has three trim points: 
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unstable equilibrium at α = 0 and stable equilibrium at α = ±αo. ܥேఈሶ  is positive for a dynamically 
stable configuration and negative for a dynamically unstable configuration. 

Figure 7.1-10 illustrates the case of the statically unstable/dynamically unstable configuration 
(current Orion parachutes). For the given initial swing angle and rate, the system immediately 
develops into a large limit cycle oscillation (θ ~ ±0.4 rad or 23 degrees), and the parachute α 
oscillates back and forth between the ±αo equilibrium points. 

 
Figure 7.1-10.  Statically Unstable and Dynamically Unstable Configuration; Swing Angle Phase 

Portrait (left), Angle of Attack Phase Portrait (right) 

Figure 7.1-11 illustrates the case of the statically stable/dynamically unstable configuration. The 
system sustains oscillation about the sole equilibrium point at α = 0. The amplitude of the swing 
angle limit cycle is, however, much smaller compared with the statically/dynamically unstable 
case (θ < ±0.2 rad). According to reference 10, in the parachute community, the system 
illustrated in Figure 7.1-10 is considered unstable, and the system shown in Figure 7.1-11 is 
considered stable. As discussed in Section 6.3.1, one method for improving the static stability of 
the parachute is to increase its porosity. This comes at the expense of increasing descent rate. 
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Figure 7.1-11.  Statically Stable and Dynamically Unstable Configuration; Swing Angle Phase 

Portrait (left), Angle of Attack Phase Portrait (right) 

Figure 7.1-12 illustrates the case of the statically unstable/dynamically stable configuration. For 
the given initial swing angle and rate, the system trims at the –αo equilibrium point. Due to the 
stable damping coefficient, the swing angle asymptotically goes to zero. In steady state, the 
motion can be described as a “gliding” descent. To change the dynamic stability of the system, 
gaps and ring sails must be strategically placed on the parachute. 

 
Figure 7.1-12.  Statically Unstable and Dynamically Stable Configuration; Swing Angle Phase 

Portrait (left), Angle of Attack Phase Portrait (right) 

Figure 7.1-13 illustrates the case of the statically stable/dynamically stable configuration. The 
system trims at the stable equilibrium point of α = 0 degrees, while the swing angle 
asymptotically goes to zero. In steady state, the motion can be described as a vertical descent. 
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Figure 7.1-13.  Statically Stable and Dynamically Stable Configuration; Swing Angle Phase Portrait 

(left), Angle of Attack Phase Portrait (right) 

7.2 Modal Analysis Results 

7.2.1 Flyout Mode 

The flyout/scissors motion observed during the CDT 3-02 and 3-08 flights is shown in  
Figure 7.2.1-1. The motion is approximately planar in nature. The red and blue curves indicate 
the paths traced out by the parachutes relative to the capsule during one cycle of the flyout 
motion. The observed period of oscillation from both flights is roughly 15 seconds. From 
Equation (6.2.2.1-9), a value of (ܥேഀ)୲୭୲ = 1.2	radିଵ can be determined. A value of 0.2 radିଵ 
was determined for (ܥேഀ)୤ୱ from the pendulum motion analysis shown in Table 7.1-2. This 
suggests that (ܥேഀ)୮୰୭୶ should be on the order of 1 radିଵ. 

 
Figure 7.2.1-1.  Flyout/Scissors Motion from Flight Data (CDT 3-02 (left), CDT 3-08 (right)) 

Figure 7.2.1-2 shows derived measurements taken during the CDT 3-02 flight of the total normal 
force coefficient,	(ܥேഀ)୲୭୲, resolved along the proximity axis with the corresponding proximity 
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distance, ܦ୮୰୭୶, for each parachute. ܦ୮୰୭୶ is normalized by the nominal diameter of the 
parachutes, 116 ft. The data are fairly linear for 0.6 ≤ ୮୰୭୶ܦ ≤ 1 and flatten out for ܦ୮୰୭୶ > 1. 
The red line indicates a least squares linear fit. It is apparent that (ܥே)୲୭୲ has an equilibrium at ܦ୮୰୭୶ of 0.6 (or ߠ௢ = ଵߠ = ଶߠ = 0.15 rad). The slope of the least squares fit is approximately 
1.25 radିଵ, consistent with the analysis of the scissors motion in isolation as described in the 
previous paragraph. The scatter in the plots is due in part to the multidimensional nature of the 
data set (e.g., CN is also a function of ߙሶ , Vprox, etc.). Similar exercises were performed for the 
CDT 3-08, CDT 3-11, and CDT 3-12 flights, all of which yielded consistent results (see Figures 
7.2.1-3 through 7.2.1-5). 

 
Figure 7.2.1-2.  (ࡺ࡯)࢚࢚࢕ from CDT 3-02 (parachute #1 (left), parachute #2 (right)) 

 

 
Figure 7.2.1-3.  (ࡺ࡯)࢚࢚࢕ from CDT 3-08 (parachute #1 (left), parachute #2 (right)) 

 

 
Figure 7.2.1-4.  (ࡺ࡯)࢚࢚࢕ from CDT 3-11 (parachute #1 (left), parachute #2 (right)) 
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Figure 7.2.1-5.  (ࡺ࡯)࢚࢚࢕ from CDT 3-12 (parachute #1 (left), parachute #2 (right)) 

7.2.2 Maypole Mode 

According to reference 2, the CDT 3-02 flight exhibited one full period of the maypole motion, 
as illustrated in Figure 7.2.2-1. The motion is approximately circular in nature and lasted for 
about 35 seconds. The red and blue curves indicate the paths traced out by the parachutes relative 
to the capsule during the maypole motion.  

 
Figure 7.2.2-1.  Maypole Motion from Flight Data 

The analysis discussed in this section is based on the assumption that during the maypole motion 
the parachutes orbit around the vertical axis of symmetry in a perfect circle with a constant 
angular speed. To analyze the flight data, the line integrals of the paths traced out by the 
parachutes during the maypole motion were computed. This resulted in an equivalent circle with 
a radius of 50 ft or a constant flyout angle (or ߙ୲୰୧୫) of 0.21 rad. This is consistent with the 
observation from reference 12 that the interference aerodynamic forces cause the unstable 
parachutes to seek a trim angle of attack greater than the freestream trim 0.19) ߙ rad shown in 
Table 7.1-2). Using Equation (6.2.2-22), (ܥே)୲୭୲ required to maintain the maypole motion is 
determined to be approximately 0.0485. As a verification, one can compute (ܥே)୲୭୲ using (ܥேഀ)୲୭୲ (1.25 rad-1 from flyout analysis), ߙ୲୰୧୫ (0.21 rad), and ߙ௢ (0.15 rad, from flyout 
analysis). This yields a (ܥே)୲୭୲ value of 0.072, which is in the ballpark with the 0.0485 value 
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derived from maypole analysis alone. The pendulum analysis (proximity aero ignored) in Section 
7.1 yields a ܥேഀ value of 0.19, which suggests that the scissors and maypole modes are 
dominated by proximity aerodynamics. For sustained Maypole motion, the aero (predominately 
proximity aero) balance out the centripetal acceleration of the parachutes causing them to circle 
the vertical axis at a constant flyout angle and angular velocity.  

7.2.3 Breathing Mode 

As described in Section 6.0, the breathing mode captures the physics in the coupling between 
oscillations in the parachute reference area (due to flexibility effects) with velocity in the Down 
direction. Figure 7.2.3-1 shows the best estimate parachute reference area and velocity in the 
Down direction from T = 164 to 234 seconds from the CDT 3-02 flight test. Figure 7.2.3-2 
shows the fast Fourier transform (FFT) of the time domain data. It is apparent that the parachute 
reference area has a dominate peak at 0.23 Hz (period ~4.3 sec). Vdown has two relatively large 
peaks below 0.1 Hz and a third peak at 0.23 Hz, which matches the dominate peak of the 
parachute reference area. Hence, there is an apparent coupling between Sref and Vdown. The slow 
oscillations (low frequency peaks below 0.1 Hz) in Vdown are likely due to wind. The 0.23-Hz 
mode is present throughout the entire drop test and present in CDT 3-02, 3-11, and 3-12 as well.  

Figure 7.2.3-3 shows the simulation results for the breathing mode with the system having a 
nominal ܸୢ ୭୵୬ of approximately 34 feet per second (ft/s). ߱௡ is scaled such that the period of 
oscillation is around 4.5 seconds to match the flight data. 0 = ߟ represents the nominal ܵ୮୰୭୨, 
while ߟ = ±1 represents ܵ୮୰୭୨ at its maximum and minimum derivations from the nominal. It is 
apparent that as ߟ approaches 1, Vdown approaches its minimum value of 32 ft/s, and as ߟ 
approaches −1, Vdown approaches its maximum value of 35.2 ft/s. Furthermore, ߟ has a slight 
phase lead on Vdown, as would be expected. 
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Figure 7.2.3-1.  CDT 3-02 Best Estimate Sref and Vdown (T=160 to 234 sec) 

 



 

 
 

NESC Document #: NESC-RP-15-01037, Vol. I Page #:  73 of 101 

 
Figure 7.2.3-2.  FFT CDT 3-02 Best Estimate Sref and Vdown 

 

 
Figure 7.2.3-3.  Breathing Mode Simulation Results 
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7.3 Equation-Error Aerodynamic Modeling Results 

The first step in global modeling of the CPAS drop test flight data was the application of the 
equation-error method. Flight test results obtained using the equation-error approach are 
presented in this section, along with prediction results using flight data that were not used to 
identify the models.  

Five flight tests applicable to this work were conducted with the CPAS configuration consisting 
of two main parachutes and a payload. Two other CPAS drop tests were conducted with two 
main parachutes, but they were not applicable because they utilized a modified main parachute 
configuration. Only the flight data for both main parachutes fully inflated were used for the 
analysis. The flight data from parachute 9 on flight test CDT-3-11 was selected for identifying 
the parachute aerodynamic models because that flight data had the most active dynamics for the 
longest period of time.  

Figure 7.3-1 shows modeling results for AC , YC , and NC  using CDT-3-11 flight data for 

parachute 9. The plots on the left side show the identified model fits to flight data from parachute 
9 during the CDT-3-11 flight test, and the plots on the right show the residuals, which are the 
difference between the flight data and the identified model shown in the left plots for each 
nondimensional force coefficient. 

The identified models clearly capture the main effects. The residual plots indicate small 
remaining deterministic components, but these components have amplitudes close to the noise 
levels for the flight data and, consequently, are difficult to identify. The SNR for the AC  data 

was much higher (SNR =  51) than for YC  (SNR  =  8) or NC  (SNR  =  6). Lower SNR 

compromises the model identification, because there are smaller deterministic effects standing 
out above the noise, which makes it more difficult to identify what those deterministic effects 
are, based on the data.  
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Figure 7.3-1.  CPAS Equation-error Modeling, CDT-3-11, Main 9 

Table 7.3-1 shows the identified model terms, with associated parameter values and 
uncertainties, based on CDT-3-11 flight data for the Main 9 parachute only. These model terms 
were selected from a postulated pool of candidate model terms, using orthogonalization and 
statistical modeling metrics, as described in Section 6.3.6. Each nondimensional aerodynamic 
force coefficient had its own pool of candidate model terms, assembled using measured 
explanatory variable data. All of the candidate modeling terms were polynomial terms of order 2 
or less, along with spline terms.   

The identified model can be impacted by which modeling terms are included in the pool of 
candidate modeling terms, along with the information content of the modeling data. 
Consequently, some investigation was conducted regarding the extent of the candidate modeling 
pool required. This was done by simply including many different and more complex modeling 
terms in the candidate pool, and allowing the algorithm to sort through all of them to find the 
terms with statistical significance for the model, based on the data alone. It was found that 
polynomial and spline terms with more complexity (higher order than 2) were not selected as 
statistically significant for inclusion in the model. This is not unusual for modeling problems 
using real physical data, and therefore the pool of candidate modeling terms included only 
polynomial terms of order 2 or less, along with spline terms. Note that this determination is 
based on the flight data available. It is possible that other flight data with more dynamic 
information content could produce different modeling results.  

YC

NC

AC
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As an example, the AC  modeling used a pool of candidate modeling terms composed of every 

possible polynomial combination, up to second order, of the following 14 explanatory variables: 
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where the spline notation is defined by 
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and similarly for the other spline functions.  

The model structure determination algorithm (mof.m from SIDPAC) assembled the candidate 
modeling functions (120 of them in this case), then orthogonalized these candidate modeling 
functions and ranked them as follows (showing only the top 20 most effective modeling 
functions output by mof.m): 

o.f. #    index     sqrt(mse)        dmse       perr      R2        pe         n       F 

-----     -----     ---------        ----       ----      --        --         -       - 

  1           0     1.503e-01     -6.952e-01   17.74     0.00    1.508e-01     1    152.75 

  2        1000     4.249e-02     -2.079e-02    5.01    92.01    4.590e-02     2      4.57 

  3           2     2.590e-02     -1.134e-03    3.06    97.03    3.352e-02     3      0.25 

  4  10010000000000 2.344e-02     -1.213e-04    2.77    97.57    3.396e-02     4      0.03 

  5  100000100000   2.180e-02     -7.414e-05    2.57    97.90    3.507e-02     5      0.02 

  6       10100     2.078e-02     -4.344e-05    2.45    98.09    3.658e-02     6      0.01 

  7         200     2.016e-02     -2.549e-05    2.38    98.20    3.825e-02     7      0.01 

  8       10001     1.984e-02     -1.258e-05    2.34    98.26    4.002e-02     8      0.00 

  9     2000000     1.902e-02     -3.197e-05    2.25    98.40    4.148e-02     9      0.01 

 10  100000000100   1.867e-02     -1.302e-05    2.20    98.46    4.311e-02    10      0.00 

 11         101     1.823e-02     -1.624e-05    2.15    98.53    4.465e-02    11      0.00 

 12     1100000     1.810e-02     -4.938e-06    2.14    98.55    4.625e-02    12      0.00 

 13  10000000100000 1.792e-02     -6.592e-06    2.11    98.58    4.779e-02    13      0.00 

 14  1010000000000  1.780e-02     -4.308e-06    2.10    98.60    4.930e-02    14      0.00 

 15     1010000     1.768e-02     -3.916e-06    2.09    98.62    5.077e-02    15      0.00 

 16  1000000000001  1.759e-02     -3.486e-06    2.08    98.63    5.220e-02    16      0.00 

 17  10000000000001 1.737e-02     -7.685e-06    2.05    98.67    5.356e-02    17      0.00 

 18  1000000010000  1.728e-02     -2.829e-06    2.04    98.68    5.492e-02    18      0.00 

 19          11     1.723e-02     -1.958e-06    2.03    98.69    5.626e-02    19      0.00 

 20          20     1.713e-02     -3.321e-06    2.02    98.70    5.756e-02    20      0.00 
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Minimum PSE occurs at the third ranked orthogonal function (see column marked pe, which 
contains the positive square root of the PSE metric), so the first three functions were included in 
the model, then transformed back to ordinary functions with their associated estimated 
parameters, as listed in Table 7.3-1. Note that the R2 metric indicates that the model has captured 
97 percent of the total variation in the AC  data, using only three orthogonal functions identified 

from the pool of candidate model terms. The column marked dmse shows the reduction in mean 
squared model fit error with the addition of each orthogonalized candidate modeling function. 
Note that the ordering of the functions is defined by this quantity, which therefore decreases in 
magnitude (but is always negative), moving down the rows. The PSE metric selects the first 
three orthogonal functions as those that reduce the mean squared fit error by an amount 
significantly greater than the observed noise level for the measured output data, which is the  

AC  data in this case. The column marked F is the F-ratio, a statistical metric that is large positive 

for significant functions to include in the model, the column marked perr is the percent fit 
error, and the column marked index shows an index that identifies each particular function.  
A completely analogous process was used to identify the models for YC  and NC , with the 

results given in Table 7.3-1.  

The following equations specify the model structure for the parameter values and uncertainties 
given in Table 7.3-1: 
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Table 7.3-1.  Equation-error Aerodynamic Modeling Results 
based on CDT-3-11 Main 9 Flight Data 

 Model Term Parameter Estimate 
(Standard Error) 

AC  

1  −1.9577 
(0.0077) 

q  0.9297 
(0.0068) 

2

1
o

V

V

 
− 

 
 

−2.2803 
(0.0452) 

YC  

( )sin
2
a ref

T
l

V

φ
α


 

0.2007 
(0.0280) 

( )sin
2
a ref

T
l

q
V

φ
α


 

−0.2544 
(0.0170) 

( )sinprox proxD φ  −0.0382 
(0.0024) 

( ) ( )1
0.8 sinprox proxD φ

+
−  

0.5407 
(0.0255) 

( )sin
2
a ref

T prox
l

D
V

φ
α


 

0.3701 
(0.0198) 

( )sin
2
T ref

prox
l

V

α
φ


 

−0.0834 
(0.0080) 

NC  
2
T refl

V

α
 

0.3630 
(0.0032) 

Tα  −0.0964 
(0.0017) 

( ) ( )1
0.8 cosprox proxD φ

+
−  

0.1030 
(0.0123) 

Figures 7.3-2 through 7.3-4 show prediction tests for the identified aerodynamic model using a 
presentation similar to that used in Figure 7.3-1. Only the flight data shown in Figure 7.3-1 was 
used to identify the aerodynamic model. The flight data in Figures 7.3-2 through 7.3-4 was used 
only for prediction testing. The model identified from flight data for parachute 9 on flight test 
CDT-3-11 (Figure 7.3-1) was used to predict the aerodynamics for parachute 8 on flight test 
CDT-3-11 (Figure 7.3-2), parachute 14 on flight test CDT-3-12 (Figure 7.3-3), and parachute 3 
on flight test CDT-3-8 (Figure 7.3-4). In each prediction case, explanatory variable data from the 
prediction test were used with the identified model to predict the nondimensional force 
coefficient data.  
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Although the aerodynamic model was identified from flight data for only one parachute during 
one flight test, the prediction plots in Figures 7.3-2 through 7.3-4 demonstrate that the identified 
model had good prediction capability for flight data not used in the modeling. The prediction 
quality and residual magnitudes in Figures 7.3-2 through 7.3-4 are comparable to those shown in 
the model identification plots of Figure 7.3-1, which is a strong indicator of a good model. Note 
that this does not mean the identified model is perfect, which it clearly is not, but rather that the 
model fit quality and the prediction quality are similar. This means the fit to the data is 
approximately the same for both the data used to identify the model and for data that were not 
used in any way to identify the model. Furthermore, as discussed earlier, only dynamic 
characteristics with magnitude at least three times larger than the noise level and clearly 
correlated with orthogonalized candidate model terms can be reliably modeled. The prediction 
case shown Figure 7.3-2 is for the other parachute in the CDT-3-11 flight test, whereas the 
prediction cases shown in Figures 7.3-3 and 7.3-4 are for parachutes in other flight tests, 
conducted on different days. Prediction cases for all parachutes from all five flight tests exhibited 
similar good prediction capability, with comparable residual magnitudes. 

Note that in the equation-error method, it is possible to combine data from different parachutes 
and different flight tests by simply stacking the data and conducting the analysis normally, 
because the equation-error approach uses regression and linear algebra. This approach was 
investigated with various combinations of flight data from different parachutes and flight tests, 
but it was found that the flight data from parachute 9 on flight test CDT-3-11 had sufficient data 
information content to identify aerodynamic models with good prediction capability. Using flight 
data from other parachutes on flight tests CDT-3-11 and CDT-3-12, or combined flight data for 
the parachutes on these flights resulted in similar identified model structures and model 
parameter estimates. This is supported by the fact that the models identified from the flight data 
for parachute 9 on flight test CDT-3-11 exhibited good prediction capability for all other 
parachutes and flight tests, as shown in Figures 7.3-2 through 7.3-4. Flight tests CDT-3-2,  
CDT-3-8, and CDT-3-15 had insufficient dynamic information for good model identification 
(low SNR), so the flight data from those tests were used only for prediction testing. The 
prediction capability for models identified from parachute 9 on flight test CDT-3-11 was equally 
good for all parachutes on all five flight tests, regardless of the dynamic information content in 
the flight data or the dynamic modal responses exhibited.  
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Figure 7.3-2.  CPAS Equation-error Model Prediction, CDT-3-11, Main 8 
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Figure 7.3-3.  CPAS Equation-error Model Prediction, CDT-3-12, Main 14 
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Figure 7.3-4.  CPAS Equation-error Model Prediction, CDT-3-8, Main 3 

7.4 Output-Error Aerodynamic Modeling Results 

The next step in global modeling of the CPAS drop test flight data was the application of the 
output-error method. Output-error analysis is typically done using the aerodynamic model 
structure identified from equation-error analysis, as described previously, and using the equation-
error model parameter estimates for the identified model structure as starting values for the 
output-error analysis. This process has been used successfully in the past on many different 
aircraft and flight test programs [ref. 15]. 

The parachute aerodynamic modeling problem differs from past applications in important ways, 
the most significant of which is that the dynamic system is a three-body cluster composed of two 
parachutes and the capsule payload with elastic connections between the parachutes and the 
capsule payload, rather than a single aircraft. This made the problem challenging in ways that 
were not anticipated at the initiation of the study. The main challenges encountered in the output-
error analysis for parachute aerodynamic modeling in a three-body parachute cluster were: 

• From prior work documented in the literature and wind tunnel testing, parachutes are known 
to have a strong restoring aerodynamic normal force at high values of total angle of attack. 
Because the flight tests were passive tests (not actively controlled over a desired range of 
angle of attack), the flight data included very few data points at high total angle of attack, 
which meant that the strong restoring force at high total angle of attack was not identifiable 
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from the flight data. This was not a factor for equation-error modeling, which does not 
involve integrating the equations of motion. However, this issue was important for output-
error modeling because without that strong restoring aerodynamic force, the integration of 
the equations of motion in the nonlinear simulation diverged quickly using models identified 
using equation error, which did not identify the strong aerodynamic restoring force at high 
total angle of attack. This required introducing a term for the strong restoring normal force at 
high total angle of attack in the aerodynamic model used for output-error analysis to prevent 
divergence during the output-error optimization. The added term was a stabilizing quadratic 
spline term at high total angle of attack, added to the NC  model,  

 ( ) ( )
35

35

2
2 35  for 35

35
                 0         for 35

T

T

N T T
N T

T

C
C α

α

α α
α

α
+

 − >− = 
 ≤

 (7.4-1) 

• This model term was suggested by parachute aerodynamic modeling results found in the 
literature (e.g., reference 10). The value of the 

35T
NC

α
 parameter for this model term was 

chosen by engineering judgment, to avoid divergence in the simulation runs required for 
output-error optimization. Subsequent efforts to estimate the value of this parameter value 
using output-error parameter estimation were unsuccessful. Aerodynamic models identified 
using multivariate orthogonal functions included angular rate terms, including total angle of 
attack rate and aerodynamic azimuth angle rate. When these terms are included in a nonlinear 
simulation, there are difficulties associated with initializing the quantities to match flight data 
and with computing these values accurately and without time lag inside the nonlinear 
simulation. Essentially, real-time derivatives had to be computed in the nonlinear simulation 
based only on the past values of the quantity being differentiated (e.g., total angle of attack). 
This resulted in reduced accuracy and time lag, which were both detrimental to output-error 
modeling accuracy. Note that the equation-error approach did not have this problem because 
the explanatory variables, including total angle of attack and aerodynamic azimuth angle 
time derivatives, were computed directly from the entire flight data record for the equation-
error analysis; therefore, these quantities had neither the reduced accuracy nor the time lag 
problem. 

• In the nonlinear simulation, the parachute z-axis was always directed into the air-relative 
velocity vector to make the polarity associated with the aerodynamic model consistent. 
However, when the air-relative velocity vector was nearly parallel to the parachute x-axis 
directed along the line connecting the center of the parachute and the payload attachment 
point, there were rapid oscillations of the parachute axes orientation. This is a non-physical 
characteristic related to how the parachute axes were defined. To prevent these non-physical 
rapid oscillations, a deadband was implemented (similar to the FAST implementation) to 
freeze the parachute axes orientation for low values of the air-relative velocity component 
along the parachute z-axis. This was necessary because the parachute axes orientation 
affected the computation of the total angle of attack rate and the aerodynamic azimuth angle 
rate, which were used as explanatory variables in the aerodynamic model. Similarly, when 
the air-relative velocity vector passed from one side of the parachute axes x-y plane to 
another, the aerodynamic azimuth angle rate spiked to very high values for just a few time 
steps. This effect is also non-physical because the air-relative velocity vector does not rotate 
about the parachute x-axis rapidly, but rather passes nearby or through it on the way to the 



 

 
 

NESC Document #: NESC-RP-15-01037, Vol. I Page #:  84 of 101 

other side of the parachute axes x-y plane. This effect was mitigated by freezing the 
aerodynamic azimuth angle rate inside the deadband for low values of total angle of attack.  

• The two parachutes were connected to the capsule payload by elastic riser lines, which were 
modeled in the nonlinear simulation with a fixed spring constant and damping coefficient. 
For parachute cluster dynamic modeling, the line tension dynamics and interaction of the 
capsule payload and line tension forces with the parachute aerodynamics at the start of each 
simulation run dominated the dynamic motion computed by the nonlinear simulation. 
Consequently, it was necessary to use flight data from the capsule payload to estimate line 
tension forces and use that information in the nonlinear simulation so that the modeling 
problem could be focused on the parachute aerodynamics. When this was not done, the 
problem became a difficult nonlinear dynamics problem simultaneously involving the 
parachute aerodynamics and the line tension dynamics.  

• When a dynamic system is inherently stable, output-error modeling is a simple and 
straightforward follow-on analysis, starting from the model structure and model parameter 
values computed in the equation-error analysis. However, the fact that equation-error 
modeling works regardless of the stability of the system can lull an analyst into assuming that 
the output-error solution will be simple and straightforward in the case of an unstable system. 
This generally is not true, as evidenced by this assessment, and this issue was a major source 
of unanticipated technical effort. The parachute aerodynamic modeling problem in this 
assessment could be called a brittle output-error optimization because there were stable and 
unstable terms in the NC  aerodynamic model identified using the equation-error method, 

which caused difficulty in the output-error optimization.  

Figures 7.4-1 through 7.4-3 show the output-error fit to flight data from the CDT-3-11 flight test, 
using the CP2 nonlinear simulation and back-driving the equations of motion with measured 
flight acceleration data. Bias errors in the flight data for Earth-axes velocity were estimated and 
removed using output-error parameter estimation, in the manner described earlier. The existence 
of these biases was identified by noting a drift in the Earth axes positions produced by the CP2 
nonlinear simulation when back-driving the equations of motion with measured flight 
acceleration data. The output-error parameter estimation for these bias parameters (i.e., one for 
each component of Earth axes velocity, for each parachute, for a total of six bias parameters) was 
straightforward and successful, as evidenced by the excellent match between the flight data and 
the CP2 nonlinear simulation outputs shown in Figures 7.4-1 through 7.4-3. This demonstrated 
that the CP2 nonlinear simulation was implemented properly and was a good mathematical 
representation of the CPAS parachute cluster dynamics. 
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Figure 7.4-1.  CP2 Back-driven with Flight Accelerations, CDT-3-11, Main 8 

 

 
Figure 7.4-2.  CP2 Back-driven with Flight Accelerations, CDT-3-11, Main 9 
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Figure 7.4-3.  CP2 Back-driven with Flight Accelerations 

For this CP2 simulation run, the nondimensional aerodynamic coefficients were computed from 
the CPAS flight data and using the identified equation-error model inside the CP2 nonlinear 
simulation. Figure 7.4-4 shows that the identified equation-error model was reasonably close to 
the nondimensional aerodynamic force coefficient data that resulted in the excellent output 
match shown in Figures 7.4-1 through 7.4-3.  

The next step was to use the aerodynamic model identified using the equation-error method as 
the aerodynamic model inside the CP2 simulation, then adjust the parameters in that model 
structure to best fit the CP2 outputs to the CPAS flight data in a weighted least-squares sense. 
This is the output-error approach described earlier. 

Aerodynamic model structures used for the output-error analysis were those identified from the 
flight data using the equation-error method, as described in Section 7.3 and listed in Table 7.3-1. 
The associated model parameter estimates obtained from applying the equation-error method 
were used as starting values for the output-error analysis. 
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Figure 7.4-4.  Nondimensional Aerodynamic Force Coefficient Comparison 

Unfortunately, the output-error optimization problem turned out to be very difficult, mainly as a 
result of attempting to estimate both proximity effects and other aerodynamic effects 
simultaneously, in a problem that was highly sensitive to small changes in the model parameters 
and the orientation of the parachutes. This situation might be called a brittle optimization 
problem. Many variations were attempted to help the optimization converge, such as shortening 
the data record length, providing the aerodynamic model with measured explanatory variable 
data (as opposed to time-integrated explanatory data) inside the nonlinear simulation, optimizing 
model parameters for only one aerodynamic coefficient model at a time, changing the finite 
differencing method used to compute local output sensitivities to model parameter changes, and 
using a local exhaustive search rather than the conventional slope-based modified Newton-
Raphson optimization technique. Ultimately, none of these approaches produced results that 
agreed well with the flight-test time histories.  

7.5 Simulation Comparisons with Flight Data 

7.5.1 Current Orion Model in FAST Simulation versus Flight 

The current CPAS main parachute aerodynamic model is part of the MPCV aerodynamic 
database [ref. 22]. It models the aerodynamics for the full-open, steady-state portion of a one-
main-out scenario. The effort to develop this model was spurred by the observation of 
unfavorable pendulum motion on the CDT-3-11 and CDT-3-12 full-scale drop tests. The model 
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is intended to capture this pendulum motion to enable higher fidelity risk assessments and 
control algorithm development. 

This aerodynamic model was developed through a highly manual process. The equations of the 
model were split into the three critical components of the aerodynamics: static, dynamic, and 
proximity effects. The general shape and dependencies of the static components were derived 
from historical data [refs. 10, 11, and 23]. The dynamic and proximity effects initially were not 
well understood, and the equations and the coefficient values were developed iteratively. 

The model was defined using FAST through manual updates to the aerodynamic coefficients in 
the equations at each iteration. The key parameters of interest in this reconstruction process were, 
in order of importance: descent rate, swing angle, flyout angle, and overall orbiting behavior. If 
the model could match the gross descent rate, peak swing angle, approximate pendulum 
frequency, and approximate pendulum onset, it was considered a good model. The quality of the 
drop test data was not high enough to enable exact reconstructions of the trajectories over 
minutes of flight time. Additional detail about the initial development can be found in reference 
24, and updates regarding more recent changes can be found in reference 25. 

The current Orion model (v0.94-1) implemented in FAST is compared with the BET for CDT-3-
12 in Figures 7.5.1-1 and 7.5.1-2. Note that simulation parameters used in FAST differ slightly 
from the parameters listed in Table 6.1.1 and used in system identification. The FAST 
simulations used a slightly larger enclosed mass scale factor, 0.75, in the axial direction and a 
slightly smaller payload-to-parachute nominal line length of 230 ft. Also, the system 
identification focused on CDT-3-11, which has a different payload mass than CDT-3-12  
(20,340 lbm). The criteria given for an acceptable model have been met with good comparisons 
in both descent rate and swing angle. Similar trajectory reconstruction quality was also obtained 
for the four other one-main-out drop tests. 
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Figure 7.5.1-1.  CDT-3-12 BET Sea-level Equivalent Descent Rate Comparison with  

Orion Model in FAST 
 

 
Figure 7.5.1-2.  BET Swing-angle Comparison with Orion Model in FAST 
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7.5.2 System ID Model in CAPDYN Simulation versus Flight 3-11 

The identified nonlinear aero model based on the simplified planar dynamics as described in 
Section 7.1 was implemented into CAPDYN to predict the pendulum motion portion of the 3-11 
flight. The parachutes were assumed to be on top of one another due to the lack of proximity 
aerodynamics. Figure 7.5.2-1 shows the flight winds during the pendulum period of the 3-11 
flight. Figure 7.5.2-2 compares the swing-angle time history from CAPDYN and flight. The 
discontinuities in the CAPDYN swing-angle time history are an artifact of the manner in which it 
is computed in CADPYN. Generally, the discontinuities appear when the swing angle crosses 
zero. Figures 7.5.2-3 through 7.5.2-5 compare the North, East, and Down air relative velocities 
of one of the parachutes. Figure 7.5.2-6 compares the North and East positions of the capsule. 
The system is translating toward the Northeast due to the winds while undergoing pendulum 
motion. 

It is important to note that while CAPDYN with the simple aero model does a reasonable job of 
matching certain key outputs from flight during the pendulum motion, it does not match well 
with the rest of the flight or with flights with no pendulum motion (e.g., 3-02 and 3-08). This is 
inherently the limitation of the planar dynamics used to generate the simplified aero model. 
Furthermore, the simplified aero model cannot predict when the pendulum mode will occur. 
Based on observations of the four sets of flight data, it appears the pendulum motion triggers due 
to a combination of a sudden change in the wind direction while the magnitude exceeds a certain 
threshold. It is a highly complex and nonplanar event and is beyond the capability of the planar 
dynamics model. 

As discussed previously, it was hoped that the system identification methods described in 
Sections 7.3 and 7.4 would have been successful in identifying a global nonlinear parachute 
model that would predict when the pendulum mode would occur and capture all the modes of 
motion. 

 
Figure 7.5.2-1.  Flight Winds during Pendulum Motion 3-11 
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Figure 7.5.2-2.  Swing Angle  

 
Figure 7.5.2-3.  Parachute Air Relative Velocity North 

 



 

 
 

NESC Document #: NESC-RP-15-01037, Vol. I Page #:  92 of 101 

 
Figure 7.5.2-4.  Parachute Air Relative Velocity East 

 
Figure 7.5.2-5.  Parachute Air Relative Velocity Down 
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Figure 7.5.2-6.  Capsule North East Position 

8.0 Findings, Observations, and NESC Recommendations 

8.1 Findings 
The following findings were identified and are based on the analyses conducted during this 
assessment and on prior experience with system identification: 

F-1. Based on modal analysis, pendulum motion can be mitigated by decreasing the parachute 
drag coefficient (by increasing its porosity), which improves the static stability 
characteristics of the parachute. However, this benefit comes at the expense of increasing 
the steady-state descent rate, which may not be desirable.  

F-2. The overall stability of the pendulum motion is dependent on both static and dynamic 
stability of the parachutes. It was determined that the Orion parachutes are dynamically 
unstable through system identification of the flight data using the planar pendulum 
model. 

F-3. Increasing the payload mass (the largest contributor to Wtot) improves the stability of the 
system.3 However, this benefit comes at the expense of increasing the steady-state 
descent rate, which may not be desirable. 

                                                 
3 While this observation seems consistent with reference 7, experience from the CPAS drop tests suggests the 
opposite may be true. Half of the nominal two-parachute CPAS development drop tests experienced pendulum 
motion, but there were no observations of pendulum motion for the CPSS, which used the same parachute 
configuration numerous times but with a payload that weighed about half as much. There may have been other 
contributing factors, and the number of tests is insufficient to draw a conclusion with high confidence; however, it is 
worth noting this discrepancy as it directly applies to the parachute system analyzed in this study. 
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F-4. Based on modal analysis, pendulum motion is exacerbated with increasing atmospheric 
density because the mass of the air entrapped inside the canopy increases as the system 
descends in altitude. 

F-5. A parachute aerodynamic model based on planar pendulum dynamics provided nonlinear 
CN and CA models that are consistent with the current MPCV aerodynamic database. ܥேఈሶ  
is consistent in sign (dynamically unstable) but more unstable compared with the current 
MPCV aerodynamic database. 

F-6. Based on observations from flight data, it appears the pendulum motion for the two-
parachute/payload system can be triggered by a sudden change in wind direction when 
the magnitude exceeds a certain threshold. Due to the passive nature of the system and 
the unstable damping, once the pendulum motion occurs there is little chance of exiting 
the limit cycle. 

F-7. Based on modal analysis, the flyout and maypole modes are dominated by proximity 
aerodynamics. 

F-8. Based on modal analysis, the orbital period of maypole motion is seen to be inversely 
proportional to (ܥே)୲୭୲.4 

F-9. Analytical check cases verified the accuracy of the JSC FAST simulation and the 
MATLAB-based CAPDYN simulation. 

F-10. Successful equation-error modeling was achieved relatively easily and quickly. Identified 
models predicted data from other flights with accuracy comparable to that observed in the 
modeling process, which is indicative of a good model. 

F-11. Aerodynamic normal force models identified using the equation-error technique did not 
capture the strong restoring normal force generated by parachutes at large angles of 
attack. This was because the flight tests were passive tests (i.e., not actively controlled 
over a desired range of angle of attack), and the flight data included few data points at 
high total angle of attack, which meant that the strong restoring force at high total angle 
of attack was not identifiable from the flight data. This limitation in the flight data did not 
hinder equation-error modeling, which does not involve integrating the equations of 
motion. 

F-12. The limited range of total angle of attack in the flight data was an important limitation for 
output-error modeling. Without a model term implementing strong restoring normal force 
at high total angle of attack (a model term not identifiable using equation error, because 
of few flight data points at high total angle of attack), integration of the equations of 
motion in the nonlinear simulation diverged quickly. Therefore, output-error modeling 
required introducing a stabilizing term in the normal force aerodynamic model at high 
total angle of attack.  

F-13. For parachute cluster dynamic modeling, the line tension dynamics and interaction with 
the parachute aerodynamics at the start dominated the dynamic motion computed by the 
nonlinear simulation. Consequently, it was necessary to use flight data from the capsule 

                                                 
4 This conclusion appears to contradict the findings in reference 12, which suggests that the orbital period increases 
with ܥே. However, the authors of reference 12 state that those results are applicable only to a narrow range of initial 
conditions, which may explain the discrepancy. 
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payload to estimate line tension forces and use that information in the nonlinear 
simulation as known information, so that the modeling problem could be focused on the 
parachute aerodynamics. If this was not done, the output-error optimization included 
complex nonlinear three-body dynamics involving the parachute aerodynamics and the 
line tension dynamics simultaneously. 

F-14. Output-error modeling for a multi-body dynamic system requires a simulation that can be 
readily modified with different aerodynamic models and back-driven by various flight 
data (e.g., flight accelerations).  

F-15. To use the identified aerodynamic models in a nonlinear simulation for a parachute 
cluster, there must be a model for the line tension forces, probably dependent on tension 
line lengths and rate of change of the tension line lengths. Identifying a line tension 
model from flight data would require accurate measurement of the parachute position 
relative to the payload attachment point.  

F-16. Although there were no faults found with the output-error modeling approach per se, the 
application of output-error modeling to a parachute cluster gave rise to important 
practical problems. Because of the manner in which the parachute axis system was 
defined in the nonlinear simulation, there were often high-amplitude, non-physical values 
for the aerodynamic azimuth angular rate due to the parachute axis system flipping 
orientation to keep the parachute z-axis pointing into the air-relative velocity vector, 
which was necessary for the correct aerodynamic force polarity from the identified 
aerodynamic model. This caused problems because the aerodynamic azimuth angular rate 
was used as an explanatory variable in the aerodynamic model.  

F-17. Error and time lag were introduced in the computation of time derivatives inside the 
nonlinear simulation because the time derivatives had to be computed from only present 
and past values. The total angle of attack and aerodynamic azimuth angle time derivatives 
were important explanatory variables in the identified aerodynamic model, which made 
this issue important. 

F-18. Relatively long data records had to be used for the output-error modeling to capture data 
information for various modal responses that occurred throughout a flight. This was 
problematic for output-error analysis, which involves repeated time integrations for 
different variations in the aerodynamic model parameters to find an optimized solution, 
because that led to lengthy and time-consuming computations for the output-error 
optimization. The long data records were also necessary because of the large time 
constants for the parachute cluster dynamic motion, making the use of shorter data record 
lengths within a flight an ineffective strategy. A long time integration effectively adds the 
aerodynamic modeling errors cumulatively over time, which makes convergence of the 
output-error solution more difficult. Specifically, a drift or inaccuracy in the attitude of 
the parachutes will adversely affect nearly every important explanatory variable (e.g., 
total angle of attack, proximity distance and proximity relative velocity, and both total 
angle of attack rate and aerodynamic azimuth angle rates).  

F-19. When a dynamic system is inherently stable, output-error modeling is usually a simple 
and straightforward follow-on analysis, starting from equation-error results. However, in 
the case of an unstable system, the output-error solution becomes more difficult. The 
parachute aerodynamic modeling problem in this assessment could be called a brittle 
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output-error optimization because there were both stable and unstable terms in the CN 
aerodynamic model, which caused difficulty in the output-error optimization.  

8.2 Observations 

The following observations were identified: 

O-1. Flight data for the parachute motion were obtained from videogrammetry implemented 
on the capsule payload, not from sensors on the parachute. Only position could be 
measured in this manner, which means that the velocities and accelerations were obtained 
from smooth numerical differentiation. One important consequence, in terms of 
modeling, was that the accelerations obtained for the parachutes were actual accelerations 
and not specific applied forces, as would be measured by accelerometer sensors. 

O-2. Aerodynamic models identified using multivariate orthogonal functions included angular 
rate terms (e.g., total angle of attack rate and aerodynamic azimuth angle rate). When 
these terms are included in a nonlinear simulation, there are difficulties associated with 
initializing the quantities to match flight data and with computing these values accurately 
and without time lag inside the nonlinear simulation. 

O-3. In the nonlinear simulation, the two parachutes were connected to the capsule payload by 
elastic riser lines, which were modeled with a fixed spring constant and damping 
coefficient. This caused difficulty with initializing the nonlinear simulation to match the 
flight data because of line tension transients, which need to die out before the nonlinear 
simulation run can begin properly. 

O-4. Practical expertise on parachute aerodynamics was critical to the effort because parachute 
aerodynamics are complex and made more complex by the interaction effects between 
multiple parachutes. Investigations such as these will benefit from co-locating parachute 
and system identification experts.  

8.3 NESC Recommendations 
The following NESC recommendations are directed toward the analysts of current and future 
vehicles that want to further develop the application of system identification methods for 
extracting high-fidelity parachute simulation models from flight data: 

R-1. Consider the application of check cases presented in Section 6.3.4 and Volume II to help 
validate new parachute simulations.  (F-9) 

R-2. Install miniature IMU instrumentation at the top center of each flight-test parachute 
canopy, attached as rigidly as possible to the canopy, to provide data for line tension 
modeling and for improved time synchronization and accuracy of the photogrammetry.  
(F-13, F-15, O-1) 

R-3. Install reliable and accurate instrumentation for direct measurement of the line tension to 
improve both the line tension model and the parachute aerodynamic model. This could be 
done with a calibrated load cell near the attachment point on the capsule payload.  
(F-13, F-15, O-3) 

R-4. Install video cameras in the capsule to individually record each parachute’s canopy to 
provide direct evidence of the canopy shape versus time, particularly to support 
identification of parachute aerodynamic proximity effects.  (F-7) 
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R-5. Obtain accurate measurements or estimates of winds aloft to directly improve the 
parachute aerodynamic modeling. Any reduction in the time and distance differences 
between the flight test and winds aloft measurements will improve modeling results.   
(F-6, F-10, F-18, F-19) 

R-6. Conduct flight tests for parachute aerodynamic modeling on days and at times and 
locations where significant wind shears are expected because primarily wind shears 
excite the dynamic motion of the parachutes.  (F-6, F-10 through F-12, F-18, F-19) 

R-7. Investigate a new formulation for the parachute cluster nonlinear simulation, with the 
objective of avoiding large, non-physical values of aerodynamic azimuth angular rate 
resulting from changes in the air-relative velocity orientation relative to each parachute. 
Another solution would be to identify aerodynamic models that use only past values of 
explanatory variables rather than their time derivatives, which would address the 
difficulty in computing accurate real-time derivatives inside the nonlinear simulation.  
(F-16 through F-19, O-2) 

R-8. Investigate the use of alternatives to time-domain output-error modeling for the parachute 
aerodynamic modeling problem (e.g., frequency-domain output-error modeling and filter-
error modeling).  (F-11 through F-13, F-15 through F-19, O-1 through O-3) 

9.0 Alternative Viewpoint(s) 

There were no alternative viewpoints identified during the course of this assessment by the 
NESC team or the NRB quorum. 

10.0 Other Deliverables 

No unique hardware, software, or data packages, outside those contained in this report, were 
disseminated to other parties outside this assessment. 

11.0 Lessons Learned 

No lessons learned were identified for inclusion in the NASA Lessons Learned Information 
System (LLIS). 

12.0 Recommendations for NASA Standards and Specifications 

No recommendations for NASA standards and specifications were identified as a result of this 
assessment. 

13.0 Definition of Terms 

Finding A relevant factual conclusion and/or issue that is within the assessment 
scope and that the team has rigorously based on data from their 
independent analyses, tests, inspections, and/or reviews of technical 
documentation. 

Lessons Learned Knowledge, understanding, or conclusive insight gained by experience 
that may benefit other current or future NASA programs and projects. The 
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experience may be positive, as in a successful test or mission, or negative, 
as in a mishap or failure. 

Observation A noteworthy fact, issue, and/or risk, which may not be directly within the 
assessment scope, but could generate a separate issue or concern if not 
addressed. Alternatively, an observation can be a positive 
acknowledgement of a Center/Program/Project/Organization’s operational 
structure, tools, and/or support provided. 

Problem The subject of the independent technical assessment. 

Recommendation A proposed measurable stakeholder action directly supported by specific 
Finding(s) and/or Observation(s) that will correct or mitigate an identified 
issue or risk. 

14.0 Acronyms and Nomenclature List 

14.1 Nomenclature 
ax, ay, az body-axis translational acceleration components, ft/s2 
Cl, Cm, Cn nondimensional rolling, pitching, and yawing moment coefficients 
CX, CY, CZ nondimensional x, y, z body-axes aerodynamic force coefficients 
CA nondimensional axial aerodynamic force coefficient 
CN nondimensional normal aerodynamic force coefficient 
g Earth gravitational acceleration = 32.174 ft/s2 
h altitude above mean sea level, ft 
Ix, Iy, Iz body-axis moments of inertia, slug-ft2 
Ixz x-z body-axis product of inertia, slug-ft2 
l reference length, parachute canopy nominal diameter, ft 
m parachute mass, slug 
N number of data points [ࡾ,࢓]ࡺ Gaussian vector random process with mean ࢓ and covariance ࡾ 
p, q, r body-axis roll, pitch, and yaw angular velocity components, deg/s or rad/s ݍത dynamic pressure, lbf/ft2 
rms root mean square 
S parachute reference area, ft2 
T line tension, lbf 
u, v, w body-axes air-relative velocity components, ft/s 
V airspeed, ft/s 
α angle of attack, deg or rad 
αT total angle of attack, deg or rad 
β angle of sideslip, deg or rad 
Δt sampling interval, s ߶௔ aerodynamic azimuth angle, deg or rad ߶௣௥௢௫ proximity angle, deg or rad ߶, ,ߠ ߰ Euler roll, pitch, and yaw angles, deg or rad 
θ parameter vector 
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Superscripts 
 ̂  estimate or nondimensional 
−1 matrix inverse 
   time derivative 
T transpose 

Subscripts 
a attachment point on the capsule 
b body axes 
E Earth axes 
f flyout 
o reference value or bias term 
p1 parachute 1 
p2 parachute 2 
prox proximity effect 
s swing 

14.2 Acronyms 
ARC  Aerodynamic Reference Center 
BET  Best Estimated Trajectory 
CAPDYN  Capsule Dynamics  
CDT  Cluster Development Test 
CM  Center of Mass 
CP2  Capsule and Two Parachutes 
CPAS  Capsule Parachute Assembly System 
CPSS  Capsule Pallet Separation System 
DCM  Direction Cosine Matrix 
deg  degree 
DOF  Degrees of Freedom 
FAST  Flight Analysis and Simulation Tool 
FFT  Fast Fourier Transform 
ft  feet 
ft/s  feet per second 
IMU  Inertial Measurement Unit 
JSC  Johnson Space Center 
LaRC  Langley Research Center 
lbm  pound mass 
lbf  pound force 
L/D  Lift to Drag Ratio 
MPCV  Multi-Purpose Crew Vehicle 
m/s2  meters per second squared 
NED  North-East-Down 
NESC  NASA Engineering and Safety Center 
psf  pounds per square foot 
PCDTV  Parachute Compartment Drop Test Vehicle 
PSE  Predicted Squared Error 
PTV  Parachute Test Vehicle 
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s  second 
SIDPAC  System IDentification Programs for AirCraft 
SNR  Signal-to-Noise Ratio 
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