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Appendix A. Verification Case 1 — Constant Density Descent

A.1 Introduction

A series of exact analytical solutions is developed for a capsule with two parachutes to verify
CAPDYN and FAST results for terminal conditions. The case described herein is for the capsule
and two parachutes acting as a fixed system in terminal descent. In this simplest case, the
density is modeled as a constant defined by the initial release altitude. The analytical solution
predicts the system terminal dynamic pressure, velocity, and altitude for comparison with
CAPDYN and FAST simulation results.

A.1.1 Initial Conditions

The initial conditions are set such that the system descends at a constant velocity with no motion
in the horizontal direction.

A.1.2 Simplifying Assumptions
The following simplifying assumptions are necessary for Verification Case 1:

e Both parachutes have identical physical characteristics, acrodynamic models, and
dimensions.

e Proximity effects are ignored.

e Density is held constant at the 5,000-ft altitude value.

e There is a single riser line attach point on the load.

e The motion is limited to the vertical axis for all three bodies.

e The two parachutes will occupy the same space.

e There is no wind.

e There are no capsule aerodynamic forces or moments.

e All out-of-plane parachute aecrodynamic coefficients are set to zero.

e There is no enclosed air mass included in this simulation.
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A.1.3 Free-body Diagram: Inertial Axis System

The free-body diagram for this case is shown in Figure A-1.

FigureA-1. Free-body Diagram, Case 1

A.1.4 Derivation of Equations
Newton’s Law:
mtotZéZ = Z Fexternal = Wiot + 4z

Wiot = Wiot€z

Az = —qSCz¢,
7= Wiot — qSCy
Mot

Equilibrium:
Z=0= Wy —qSCz
Terminal conditions:

Wiot = QrermSCz

Wior 1
Qterm = ﬁ = EthZerm
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Equation of motion:

Solution:
Z= Vierm
Z=2Zy+ Viermt
A.15 Analytical Solution

The rigid system of the capsule and two parachutes descends in vertical motion at the initial
terminal conditions with no change and no other motion about any axis. The descent velocity
and dynamic pressure will be constant, and the vertical position is a linear function of time.

A.2 Physical Characteristics

For purposes of comparison of the analytical solutions with CAPDYN and FAST results, the
following physical characteristics and initial conditions of the capsule and parachutes are

assumed:

Parachutes (each):
W =328.087 1b
Reference area = 10,562.9 ft?
Drag coefficient, Cz = 0.85

Cx=0
Capsule:

W=20,862.9 1b
Totals:

Wiot = 2(328.087) + 20,862.9 = 21,519.07 Ib
Sref (two parachutes) = 21,125.8 ft?
Cz=0.85
Flight conditions:
Altitude = 5,000 ft
Air density = 2.05x107* slugs/ft* (assume constant)

A.3 Reaults

Terminal dynamic pressure = 1.198 psf
Terminal velocity = 34.19 fps

Altitude versus time is shown in Figure A-2.
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Case 1: Altitude vs Time

5100
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4800
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FigureA-2. Altitude versus Time, Case 1

This simple case assumes the atmospheric density, descent velocity, and dynamic pressure are
constant with no out-of-plane motion. Thus, altitude versus time is a linear relationship. Results
from CAPDYN and FAST are co-plotted with the analytical model in Figure A-3 showing
excellent agreement.

5100 T T T .

Analytical

5000 = = CAPDYN | 7

4900

own,
B
by
o
o

Capsule D
P
(=]}
=
o

4500

4400

4300 . -

4200 ' ' '
0 5 10 15 20 25

Time, sec

Figure A-3. Altitude versus Time Comparisons, Case 1
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Appendix B. Verification Case 2 — Exponential Density Descent

B.1 Introduction

A series of exact analytical solutions is developed for a capsule with two parachutes to verify
CAPDYN and FAST results for descent in an atmosphere where density changes with altitude.
The case described herein is for the capsule and two parachutes acting as a fixed system in
descent with density that varies exponentially. In this variation on Case 1 (Appendix A), the
density is modeled by the 1976 Standard Atmosphere. The analytical solution predicts the
system dynamic pressure, vertical velocity, and altitude as a function of time for comparison
with CAPDYN and FAST simulation results.

B.1.1 Initial Conditions

The initial conditions are set such that the system descends vertically at a constant dynamic
pressure with no motion in the horizontal direction. As the system descends, density slowly
increases and velocity slowly decreases to maintain a constant dynamic pressure.

B.1.2 Simplifying Assumptions
The following simplifying assumptions are necessary for Verification Case 2:

e Both parachutes have identical physical characteristics, acrodynamic models, and
dimensions.

e Proximity effects are ignored.
e There is a single riser line attach point on the load.
e Density is modeled as an exponential curve fit to the 1976 Standard Atmosphere.

e For a small time interval, A¢, density is assumed to be constant and vertical acceleration is
assumed to be zero.

e The motion is limited to the vertical axis for all three bodies.

e The two parachutes will occupy the same space.

e There is no wind.

e There are no capsule aerodynamic forces or moments.

e All out-of-plane parachute aerodynamic coefficients are set to zero.

e There is no enclosed air mass included in this simulation.
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B.1.3 Free-body Diagram: Inertial Axis System

The free-body diagram for this case is shown in Figure B-1.

Figure B-1. Free-body Diagram, Case 2
B.1.4 Derivation of Equations
Newton’s Law:
mtotZéZ = X Fexternal = Wior + Az

Wiot = Wiotéz

Az = —qSCz¢;
- Wiot —qSC;
Myot

Equilibrium: Per the assumption, the very small acceleration is assumed to be zero during each
small time interval. Thus,
Z =0 =Wyt — qSCy
Terminal conditions during a small time interval:
Wiot = GtermSCz

Wioe 1
Qterm = é = Ethzerm
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2 erm —
Vierm = ’ Qtp ; p=p(H) = Ae BH

H = altitude (1)
A=0.002377 slugs/ft®
B =0.0000299 (ft )

At the beginning of each small time interval, density is evaluated at the current altitude and held
constant during the interval.

where

Equation of motion:
Z=0
Solution:
Z= Vierm
Z =Zy+ ViermAt
B.1.5 Analytical Solution

During each small time interval, the rigid system of the capsule and two parachutes descends in
vertical motion at constant dynamic pressure, there is no other motion about any axis, and the
vertical position is a linear function of time. At the beginning of each new interval, the density
increases slightly and the descent velocity decreases slightly compared with the previous
interval. In the results that follow, At =5 s.

B.2 Physical Characteristics

For purposes of comparison of the analytical solutions with the CAPDYN and FAST results, the
following physical characteristics and initial conditions of the capsule and parachutes are
assumed:
Parachutes (two):

W =328.087 Ib

Reference area = 10,562.9 ft?

Drag coefficient, Cz = 0.85

Cx=0
Capsule:

W=20,862.9 Ib
Totals:

Wiot = 2(328.087) +20,862.9 = 21,519.07 1b
Sref (two parachutes) = 21,125.8 ft?
Cz=0.85

Flight initial conditions:
Initial altitude = 5,000 ft
Air density = 2.05x107 slugs/ft* at 5,000 ft
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B.3 Resaults

Terminal dynamic pressure = 1.198 psf
Terminal velocity =34.19 fps at 5,000 ft

The altitude versus time is shown in Figure B-2.

Case 2: Altitude vs Time

6,000
5,000
4,000

3,000

Altitude, feet

2,000

1,000

0 20 40 60 80 100 120 140 160

Time, secs

Figure B-2. Altitude versus Time Case’2

Case 2 is similar to Case 1, except the atmospheric density varies with altitude. As a result of the
density change, the velocity slowly decreases as the system approaches sea level. The small,
slow density change has an almost linear effect on the altitude versus time. Results from
CAPDYN and FAST are co-plotted with the analytical model in Figure B-3, showing excellent
agreement between the three approaches.

6000 T T

Analytical

= = CAPDYN

5000

ft
N
o
o
=]

3000

Capsule Down,

2000

1000

O 1 1
0 50 100 150
Time, sec

Figure B-3. Altitude versus Time Comparisons, Case’2
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Appendix C. Verification Case 3 - Vertical Wind Shear, Constant
Density

C.1 Introduction

A series of exact analytical solutions is developed for a capsule with two parachutes to verify
vertical wind shear effects in CAPDYN simulated results. The case described herein is for the
capsule and two parachutes acting as a fixed system starting and ending in terminal descent. A
vertical updraft wind shear is simulated, and the parachute system deceleration response is
calculated. The analytical solution predicts the shear effect on the system deceleration and
velocity.

C.1.1 Initial Conditions

The initial conditions are set such that the system descends vertically at a constant dynamic
pressure with no motion in the horizontal direction.

C.1.2 Simplifying Assumptions
The following simplifying assumptions are necessary for Verification Case 3:

e Both parachutes have identical physical characteristics, acrodynamic models, and
dimensions.

e Proximity effects are ignored.

e There is a single riser line attach point on the load.

e Density is held constant at the 5,000-ft altitude value.

e The motion is limited to the vertical axis for all three bodies.

e The two parachutes will occupy the same space.

e The simulated vertical wind shear is held constant.

e There are no capsule aecrodynamic forces or moments.

e All out-of-plane parachute aerodynamic coefficients are set to zero.

e There is no enclosed air mass included in this simulation.
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C.1.3 Free-body Diagram: Inertial Axis System

The free-body diagram is shown in Figure C-1.

;1. B -
Z
Z VW
————— & s B s T
w w

I

I

I

+e, +e,

(a) Before Shear and After (b) During Shear Updraft

Shear Transients

Figure C-1. Free-body Diagram, Case 3
C.1.4 Derivation of Equations

Newton’s Law:

2 Fexternal = Myot@ = W + Az

—_

W = WéZ
I‘TZ = —qSCz¢;
. W — qgSC
5= qolz

Mot

Note that my,; does not include enclosed or apparent air mass.
Equilibrium conditions:
Before shear and after equilibrium with shear:

Mot = 0 =W — qSC,
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At vertical wind shear initial conditions:

1 2 1 2
q= Ep(Vterm +Vw)* = (E”) |4
Az = qSC;
mtotZ = mtotZterm = Az — Zterm
Ay Z SC,
— erm — ( _ )
mtot mtot q qterm
SC; (1
= = V2 —V2 =k(V? - V2
Mot (2 P) ( term) ( term)
where
SC,
k= ()
2Myor

Descent velocity post shear transients:

Vtermwind = Vierm + Vw

C.1.5 Analytical Solution

Before and after the shear transient effects, the rigid system of capsule and two parachutes
descend in vertical motion at the terminal dynamic pressure with no change and no other motion
about any axis. A constant vertical updraft wind shear is simulated, causing the system to
decelerate. The shear results in the system initial inertial terminal velocity eventually decreasing

by the magnitude of the wind shear.
C.2 Physical Characteristics

For purposes of comparison of the analytical solutions with CAPDYN results, the following
physical characteristics and initial conditions of the capsule and parachutes are assumed:

Parachutes (each):
W =328.087 1b
Reference area = 10,562.9 ft?
Drag coefficient, Cz = 0.85

Capsule:
W=20,862.9 1b

Totals:
Wiot = 2(328.087) +20,862.9 = 21,519.07 1b
Sref (two parachutes) = 21,125.8 ft?
Cz=0.85
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Flight initial conditions:
Initial altitude = 5,000 ft
Air density = 2.05x1073 slugs/ft* at 5,000 ft (assume constant)
Wind shear = 10 fps, vertically up

C.3 Results

Terminal dynamic pressure = 1.198 psf
Terminal wind relative velocity = 34.19 fps at 5,000 ft
Final terminal inertial velocity = 24.19 fps

Deceleration versus velocity is shown in Figure C-2.

Case 3: System Deceleration due to Wind Shear Updraft
Wind Shear Velocity = Constant 10 fps

25.0
20.0
15.0

10.0

Decelleration, fps™2

5.0

0.0
30 32 34 36 38 40 42 44 46

Capsule Wind Relative Velocity, fps

Figure C-2. System Deceleration Due to Wind Shear Upadraft, Case 3

Initially, the system is in terminal equilibrium descent with a 34.2-fps velocity. The 10-fps wind
updraft causes the relative velocity at the parachute to go immediately to 44.2 fps, which creates
excess drag and the deceleration of 22 fps®. As time goes on, the wind relative velocity at the
parachute decreases, and the acceleration approaches zero. The wind relative system velocity
becomes 34.2 fps, while the inertial velocity is 24.2 fps. Results from CAPDYN are co-plotted
with the analytical model in Figure C-3 with excellent agreement.
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Figure C-3. Capsule Air Réelative Velocity Down Comparison, Case 3
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Appendix D. Verification Case 4 — Steady-state Glide

D.1 Introduction

A series of exact analytical solutions is developed for a capsule with two parachutes to verify
CAPDYN and FAST results. The case described herein is for the capsule and two parachutes
acting as a fixed system starting and ending in a steady-state glide. Initial conditions are chosen
such that equilibrium is obtained in both the vertical and horizontal directions. The analytical
solution predicts the glide path for the simulated L/D.

D.1.1 Initial Conditions

The initial conditions are set such that the system descends at a constant flight path and constant
dynamic pressure. Density is set at the 5,000-ft level and held constant.

D.1.2 Simplifying Assumptions
The following simplifying assumptions are necessary for Verification Case 4:

e Both parachutes have identical physical characteristics, acrodynamic models, and
dimensions.

e Proximity effects are ignored.

e There is a single riser line attach point on the load.

e Density is held constant at the 5,000-ft altitude value.

e The motion is limited to the vertical and horizontal plane for all three bodies.

e The two parachutes will occupy the same space.

e There is no wind.

e The small effect of the horizontal velocity on dynamic pressure is assumed to be negligible.
e There are no capsule aerodynamic forces or moments.

e All out-of-plane parachute aerodynamic coefficients are set to zero.

e There is no enclosed air mass included in this simulation.
D.1.3 Free-body Diagram: Inertial Axis System

Figure D-1 shows the free-body diagram of the system, with the external forces, the angles, and
the axis system.
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Notes:

1. Body axis comncident oA

with nertial axis \ V’
2. 0=0 N @
3. a=y

Figure D-1. Free-body Diagram, Case 4
D.1.4 Derivation of Equations

Newton’s Law:

Y. Fexternal = Motd = Wior + R
Equilibrium glide constraints:
MeotX = Lcosa —Dsina =0

MeotZ = —(D cosa + Lsina) + Wiy, = 0

Horizontal motion in equilibrium:

.. ) L sina
MiotX = Lcosa — D sina = 0, D cosa
L _ (L
B—tana, a = tan (5)
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Vertical motion in equilibrium:
MeotZ = —(D cosa + Lsina) + Wiy, = 0
D cosa+ Lsina = W,

LetDcosa + Lsina =R = Wiy

R = GrermSCr
L = GrermSCy
D = GermSCp
CR = CLZ + CDZ
L
D
q Wtot
term
SCr
’2
Vierm = % = Ve
Solution for equilibrium glide:
Horizontal Component Vertical Component
X=0 Z=0
X = Vierm Sin @ Z = Viorm COS @
X=X, +Xt Z=2Zy+17t

D.1.5 Analytical Solution

For the entire simulation, the rigid system of the capsule and two parachutes descends with a
constant glide path at a constant terminal dynamic pressure with no change and no other motion
about any axis. Acceleration is zero in both the vertical and horizontal directions. The constant
glide path angle is as predicted for the simulated L/D.

D.2 Physical Characteristics

For comparison of the analytical solutions with CAPDYN and FAST results, the following
physical characteristics and initial conditions of the capsule and parachutes are assumed:

Parachutes (each):
W=328.087 Ib
Reference area = 10,562.9 ft?

The aerodynamic model is shown in Figure D-2.
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Parachute Aero Model Coefficients vs Alpha

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Aero Coefficients nd

0 1 2 3 4 5 6 7 8
Angle of Attack, Alpha in deg

= CL CcD CR L/D

Figure D-2. Parachute Aerodynamic Model, Case 4

Capsule:
wW=20,862.9 1b

Totals:
Wiot = 2(328.087) + 20,862.9 = 21,519.07 Ib
Sret (two parachutes) = 21,125.8 ft?

Flight initial conditions:
Altitude = 5,000 ft
Air density = 2.05x107 slugs/ft®> (constant)
Terminal velocity = 34.19 fps
o=y =15 degrees
6 =0 degrees
L/D=0.0875

D.3 Reaults

Figure D-3 describes the lateral versus vertical motion for equilibrium glide. Figure D-4
describes horizontal and vertical distances versus time.

Page#: 21 of 48



Case 4 Trajectory Profile: Delta X Lateral vs Delta
Z Vertical (from 5000')
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>
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Delta Z, feet
Figure D-3. Case4 Trajectory Profile
Case 4: Distance Components vs Time
500
450
400
+ 350
1]
© 300
Y 250
c
® 200
8 150
100
50
0
0 2 4 6 8 10 12 14

Time in secs

Vertical Distance Horizontal Distance

Figure D-4. Distarnce Components versus Time Case4

The initial conditions are selected such that the system is in equilibrium both vertically and
horizontally. The accelerations are zero, and the velocity components are constant—thus, the
linear distance versus time. The terminal dynamic pressure is a constant 1.198 psf. Capsule
Down and East positions from CAPDYN and FAST are co-plotted with the analytical model in
Figures D-5 and D-6. Results from the three approaches are nearly identical.
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Figure D-5. Capsule Altitude (ft) versus Time Comparison, Case 4
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Figure D-6. Capsule East Position (ft) versus Time Comparisons, Case4
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Appendix E. Verification Case 5—Horizontal Wind Shear,
Constant Density

E.1 Introduction

A series of exact analytical solutions are developed for a capsule with two parachutes to verify
CAPDYN results. The case described herein is for the capsule and two parachutes acting as a
fixed system impacted by a horizontal wind shear. Initial conditions are chosen such that
equilibrium is obtained before the shear occurs. The analytical solution predicts the effect of the
shear on the system horizontal motion.

E.1.1 Initial Conditions

The initial conditions are set such that the system is descending vertically at a constant dynamic
pressure and velocity. Density is set at the 5,000-ft level and held constant. A horizontal
constant wind shear is simulated at the initiation of the simulation.

E.1.2 Simplifying Assumptions
The following simplifying assumptions are necessary for Verification Case 5:

e Both parachutes have identical physical characteristics, acrodynamic models, and
dimensions.

e Proximity effects are ignored.

e There is a single riser line attach point on the load.

e Density is held constant at the 5,000-ft altitude value.

e Horizontal velocity component is assumed to have a negligible impact on dynamic pressure.
e The motion is limited to the vertical and horizontal plane for all three bodies.

e The two parachutes will occupy the same space.

e The wind shear starts and continues at a constant horizontal velocity magnitude.

e There are no capsule aerodynamic forces or moments.

e All out-of-plane parachute aerodynamic coefficients are set to zero.

e There is no enclosed air mass included in this simulation.
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E.1.3 Free-body Diagram: Inertial Axis System

Figure E-1 shows the free-body diagram of the system, with the external forces and the axis

system.

l}
. 7 4 WC
Notes: w
1. Pre Wind Shear: y ] 5
i Ay +ey
VW = 0 —_— —%— —————— >
Ay =0 %
2. During Wind Shear Transient: 4
Vi ==Vyey
_ non-zero
Ay =-4 Xé v
3. Post Transient:
Vi == WéX
x =0 }

+e,

Figure E-1. Free-body Diagram, Case 5
E.1.4 Derivation of Equations
E.1.4.1 PreWind Shear: Vertical Descent
Newton’s Law:

Zﬁexternal =ma = VT/C + VT/L + 5 = mZéZ

Wiot = We + W), = Wiy

D = —qSC,e,
Equilibrium conditions:
7 =
X=X=X=
Wtot
Qterm E
2Qterm
Vierm = P)
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E.1.4.2 Post Transient: Final Steady-state Conditions

Newton’s Law:

zﬁexternal=ma=W(;+VT/L+5=mZ=6=mX=6

Equilibrium conditions:

Z=0
X=0
Vertical:
Wiot 2qy . .
Gterm = < CO ; Vierm = / perm (wind relative)
Horizontal:

X=-Vy, X=-Vyt+ X,
E.1.4.3 During Wind-shear Transient
Initial conditions at shear initiation:
t=0
Xo=0, X,=0, X= _ &
m
Zy = Zjc, ZIC = Vierm» Zo =0
Newton’s Law, horizontal:
mX = —Ay = —qSCy
Aerodynamic model:
X+
Cx = Cx, @ = Cx,— v
7 ~ constant = Vigpny
%= ( ;qS CXa) (X +Vy)

term

where
qS

k =
MVierm

Xa
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E.1.4.4 Equation of Motion

X+ kX =—kVy,
E.1.4.5 Solution from Calculus

X =Ae %t -y,
Using the boundary conditions:

1
X =V, E(l—e"‘t)—t

X =Vy(e7* —1)
X == _kVWe_kt
E.1.5 Analytical Solution

For the entire simulation, the system is acted upon by a horizontal wind shear. The vertical
motion is near constant, while the horizontal motion reacts to the shear. The horizontal inertial
velocity starts at zero and exponentially approaches the wind speed.

E.2 Physical Characteristics

For purposes of comparison of the analytical solutions with CAPDYN results, the following
physical characteristics and initial conditions of the capsule and parachutes are assumed:
Parachutes (each):

W =328.087 Ib

Reference area = 10,562.9 ft?

Cz=0.85

Cx = Cx, a

Cx, = 0.573 perrad

Capsule:
W=20,862.9 1b

Totals:
Wiot = 2(328.087) + 20,862.9 = 21,519.07 Ib
Sref (two parachutes) = 21,125.8 ft?

Flight initial conditions:
Initial altitude = 5,000 ft
Air density = 2.05x107 (constant) slugs/ft’
Terminal velocity = 34.19 fps
Terminal dynamic pressure = 1.198 psf
Wind shear velocity = -5 fps
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E.3 Resaults

The horizontal motion is shown in Figure E-2.

Horizontal Motion due to Negative 5 fps Cross
Wind, Case 5

Xddot, fps*2; Xdot. fps; X, ft
)

Time in secs

—X Displacement  —— X Velocity X Acceleration

Figure E-2. Horizontal Motion from 5-fps Crosswind, Case 5

The initial conditions are selected assuming the system is in equilibrium, terminal vertical
velocity with zero horizontal motion. A 5-fps horizontal wind shear is simulated at time # = 0,
causing a horizontal acceleration that results in the system horizontal velocity increasing with
time. The system exponentially approaches the wind magnitude as the horizontal acceleration
approaches zero. The vertical motion is only marginally affected. Similar to Case 3, FAST was
unable to participate in this case due to certain limitations. Results from CAPDYN are co-
plotted with the analytical model in Figure E-3 showing excellent agreement.

1 T T T T T T T T

Analytical
— = CAPDYN

Capsule Vnorth, ft/s

0 0.5 1 1.5 2 2.5 3 35 4 4.5
Time, sec

Figure E-3. Capsule Velocity North (ft/s) Comparison
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Appendix F. Verification Case 6 — Pendulum Motion

Solutions to Equations (6.3.1-5) and (6.3.1-7) are provided in this section. The system is
undergoing pendulum motion while translating toward the East and falling. Time histories of the
horizontal (East component) velocities of the payload and parachutes, along with swing angle,
are shown. The assumed values for Cy_, Cy4, and q, are 0.85, 0.85, and 1.20 psf, respectively.
The trim angle of attack is 10 degrees. The simulations conducted for this check case involve no
wind disturbance and no aerodynamic force applied to the capsule. Results from CAPDYN and
FAST are co-plotted with the analytical model. The initial values of the swing angle and its time

derivatives are 6, = 0 and 6, = 0.02 rad/s.
F.1 Undamped Pendulum Motion (Cy, = 0)

This section shows the results for the undamped pendulum motion. The parachute and load East
velocity components are shown in Figures F-1 and F-2. The pendulum swing angle is shown in
Figure F-3. The CAPDYN and FAST results show excellent agreement with the analytical
solution. The slight discrepancies are likely due to numerical integration schemes.

9
=—— Analytical
= = CAPDYN
arN——"T——F7# —§ T |rm FAST
w ? |
£
B
3
> 6
z
5
G
5 L
4t
3 I I L !
0 5 10 15 20 25

Time, sec

Figure F-1. Parachute Vélocity East (Cy, = 0)
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F.2 Damped Pendulum Motion (Cy, = 0.304)

This section shows the results for the damped pendulum motion. The parachute and load East
velocity components are shown in Figures F-4 and F-5. The pendulum swing angle is shown in
Figure F-6. The CAPDYN and FAST results show excellent agreement with the analytical
solution. The slight discrepancies are likely due to numerical integration schemes.

8.5 T T T T

Analytical
— —CAPDYN

8t

Chute Veast, ft/s
(23]

0 5 10 15 20 25
Time, sec

Figure F-4. Parachute Velocity East (Cy, = 0.304)

Analytical
= = CAPDYN |

Load Veast, ft/s

0 5 10 15 20 25
Time, sec

Figure F-5. L oad Velocity East (Cy, = 0.304)
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Figure F-6. Swing Angle (Cy, = 0.304)
F.3 Divergent Pendulum Motion (Cy, = —0.160)

This section shows the results for the damped pendulum motion. The parachute and load East
velocity components are shown in Figures F-7 and F-8. The pendulum swing angle is shown in
Figure F-9. The CAPDYN and FAST results show excellent agreement with the analytical
solution. The slight discrepancies are likely due to numerical integration schemes.
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Figure F-7. Parachute Velocity East (Cy, = —0.160)
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Figure F-9. Swing Angle (Cy, = —0.160)
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Appendix G. Verification Case 7 — Flyout Motion

Solutions to the coupled equations of motion in Equation (6.3.2-1) are provided in this section.
The system is undergoing the symmetric scissors motion while falling at the same time. Time
histories of the flyout angle and Down velocity are shown. The assumed values for Cy_, (4, and
qw are 0.225, 0.85, and 1.24 psf, respectively. The trim angle of attack is 13.33 degrees. The
simulations conducted for this check case involve no wind disturbance and no aerodynamic force
applied to the capsule. Results from CAPDYN and FAST are co-plotted with the analytical
model. Figure G-1 shows the flyout of one of the parachutes. Velocity of the capsule in the
Down direction is shown in Figure G-2. Note that the transient in the CAPDYN Vdown solution is
due to line tension initialization and can be mitigated by carefully selecting the initial conditions.
The results from the three approaches are otherwise identical.

24 T T T T T T

Analytical
22 — = CAPDYN

20

Flyout Angle, # (deg)
E > 0 »

-
3]

10

6 1 1 1 1 1 1
0 10 20 30 40 50 60 70

time, sec

Figure G-1. Flyout Motion. Parachute 1 Flyout Angle
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Figure G-2. Flyout Motion: Capsule Vaown

Page#: 35 of 48



Appendix H. Verification Case 8 — Maypole

The analytical development in Section 6.3.2 indicates that the normal force coefficient is
dependent on the orbiting radius and angular velocity, Q. For this check case, the team settled
on an orbiting radius of 40 ft and a value of 5 deg/s for Q. Using Equation (6.3.2-22), Cy was
determined to be 0.01. The simulations conducted for this check case involve no wind
disturbance and no aerodynamic force applied to the capsule. The azimuth angle, ¥, is computed
as follows:

X = atan2(Areast, ATnortn) (H-1a)
Areast = Tchute,east — Tcapsule,east (H'lb)
Arnorth = Tchute,north — Tcapsule,north (H'IC)

Time histories for the parachute azimuth angles are shown in Figures H-1 and H-2. Velocities of
Parachute 1 in the East and North are shown in Figures H-3 and H-4. The analytical approach
was used to prescribe the aerodynamics required to maintain the maypole motion, which was
subsequently implemented into CAPDYN and FAST. The results from the two simulations are
nearly identical.

200 T T T T T T T
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Figure H-1. Maypole Motion: Parachute 1 Azimuth
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Appendix |. Verification Case 9 —Nonplanar Pendulum Motion

To assess the full capability of CAPDYN, the system is prescribed to undergo a nonplanar
pendulum motion. Similar to the planar case, the parachutes are treated as a single particle. The
system undergoes undamped pendulum motion (Cy, = 0) in the North-Down plane while
translating and falling in the East-Down plane with velocities of 5.94 and 34.17 ft/s at the center
of mass, respectively. Time histories of the North and East velocity components of the
parachutes, with swing angles, are shown. The assumed values for Cy_, 4, and q, are 0.85,
0.85, and 1.20 psf, respectively. The simulations conducted for this check case involve no wind
disturbance and no aerodynamic force applied to the capsule. The initial values of the swing
angle and its time derivatives are 8, = 0 and 8, = 0.08726 rad/s. Due to the complexity of the
motion, only CAPDYN and FAST results are available. See Appendix K for the treatment of the
aerodynamics model in CAPDYN to produce this motion. The parachute velocities in the North
and East directions are shown in Figures I-1 and I-2. The capsule North and East velocity
components are shown in Figures -3 and I-4. Due to numerical issues in CAPDYN, there
appears to be a small (but steady) drift in the Veast for the parachutes and the capsule. The swing-
angle time history is shown in Figure I-5. Otherwise, the comparisons show excellent
agreement.
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o

Figurel-1. Nonplanar Pendulum Motion. Parachute Velocity East
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Figurel-3. Nonplanar Pendulum Motion: L oad Veocity East
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Appendix J. Verification Case 10 — Nonplanar Flyout Motion

To further assess the full capability of CAPDYN and the computation of proximity variables
(€.8-, Dprox and ¢pyrox), the system is prescribed to undergo a nonplanar scissors motion. Similar
to the planar case, the system undergoes undamped scissors motion in the North-Down plane
while translating and falling in the East-Down plane with velocities of 5.94 and 34 ft/s,
respectively. Time histories of the NED velocities of the payload and parachutes with ¢y, are
shown. The assumed values for Cy_, (4, and g, are 0.225, 0.85, and 1.24 psf, respectively. The
trim angle of attack is 13.33 degrees. The simulations conducted for this check case involve no
wind disturbance and no aerodynamic force applied to the capsule. Due to the complexity of the
motion, only CAPDYN and FAST results are available. A similar procedure (as the nonplanar
pendulum motion) is used in CAPDYN in determining the special aerodynamics model required
for this prescribed motion. The proximity aero angles, ¢rox1 and Gprox2, are

Dprox1 = atan2<<Ar(2)ﬂ> ,(Ar(S)p_1> )
P2/ p1 P2/ p1
Pproxz = atan2<<Ar(2)E> ,(AT(3)E> )
P/ p2 P/ p2

where (47, /p1)p2 and (47,1 /p2)p1 are the relative position vectors between the parachutes in
the NED frame, computed as

(Arpz/pl)NED = T20ep ~ TPingp

(Arpl/pZ)NED = rplNED - rpzNED
converted to the wind axes of p2 and p1, respectively.

East and North velocity components for parachute 1 are shown in Figures J-1 and J-2. The
proximity angles are shown in Figures J-3 and J-4. The flyout angles are shown in Figures J-5
and J-6. The simulations show excellent agreement. The small amplitude and phase
discrepancies in some of the outputs may be due to slight parameter differences and/or numerical
integration schemes.
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Appendix K. Prescribed Aerodynamics Required for Nonplanar
Pendulum Motion in CAPDYN

Due to the time-varying nature of the wind axis system in CAPDYN, described in Section 6.3.3,
a prescribed aerodynamics model (in the CAPDYN wind axis system) is required for the system
to maintain pendulum motion in the North-Down plane while translating in the East-Down plane.
Equations K-1 through K-14 derive the required aerodynamics model to produce the nonplanar
pendulum motion in CAPDYN. Note that the same procedures can be followed to produce the
nonplanar flyout motion in CAPDYN as described in Appendix J.

The following derivations describe the aerodynamics required in CAPDYN’s aero axis to
maintain the pendulum motion in the i; and N3 planes while translating in fi, and N3 with
constant velocities. The parachutes are assumed to be on top of one another. Figure K-1 is a
schematic of the nonplanar pendulum motion.

Ps

Figure K-1. Nonplanar Pendulum Motion

Table K-1 shows the direction cosine matrix between the inertial (NED) frame to the parachute
body frame. Figure K-2 illustrates a top view. Table K-2 shows the direction cosine matrix
between a frame that the aerodynamics coefficients are prescribed with the parachute body
frame.

TableK-1. Direction Cosine Matrix (body frameto inertial frame)

b, b, b,
n,; —sin 0 0 cos 0
n, 0 -1 0
n; cos 6 0 sin 0
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Unit vector from Pz (parachute particle) to Pz (load particle), 1:
i= —sinfn; + cos6n,
Desired velocity of the parachute particle in NED, where V2 is a constant:
NyPB = LcOcosOR, + Vo, + (V5 + LcOsin0)f;,
Construct the j axis as per CAPDYN:
 —1 xNyPs
)= |-1 x NvPB|

V5 cos On; — (Lcé + V3 sin H)ﬁz + V, sin 6n;

j=

JVZZ + (Lef + Vysing)’

Construct the k axis:

~

k=1x]j

k=

(K-1)

(K-2)

(K-3)

(K-4)

(K-5)

(LcOcosO + Vysinfcos@)fiy + Vofi, + (LcOsind + Vs sin? 6)fi;

\/V} + (Lef + Vysing)’
Aerodynamic coefficient as defined in the CAPDYN aero frame, ¢ (note that
¢, =1¢, =j,6 =Kk):
Cr = —Cacl + Cyj — Cyck
To maintain constant velocity in 1i,:
Cr -0, =0

0 - Cyc(LcO + Vssin®) + Cy .V,

\/VZZ + (LeB + Vysing)’

Solve for Cy. in terms of Cn:
v,
CN.C . .
LcO + V3sin6

CY,C = -

Desired aerodynamics in the b frame:
CF - _CA,bi)l + OBZ - CN‘bhbg
The b frame to the CAPDYN aero frame, c, is a rotation about b, by ¢.

(K-6)

(K-7)

(K-8)

(K-9)

(K-10)

(K-11)
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Figure K-2. Nonplanar Pendulum Motion (top view)

TableK-2. Direction Cosine Matrix (aero frame to body frame)

¢ ¢, €3
b, 1 0 0
b, 0 cos ¢ —sin ¢
b, 0 sin ¢ cos ¢

Cn,b can be expressed in terms of Cy,c and Chc:

Cyp = —Cycsing + Cy.cosp (K-12)
Use Equations (K-10) and (K-12) to arrive at Equation (K-13) to express Cn.c in terms of Cn,:
Cnp(Vasind + L)

Cye = : K-13
e V, sin¢ + (V3 sin@ + LCH) cos ¢ ( )
For check case 9, assume a linear aero model with no damping:
CN,b = CNaH (K'14)
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