
Robert R. Romanofsky
Glenn Research Center, Cleveland, Ohio

Optical Array Versus Monolithic Telescope
Ground Station Cost Assessment

NASA/TM—2019-220216

October 2019



NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated 
to the advancement of aeronautics and space science. 
The NASA Scientifi c and Technical Information (STI) 
Program plays a key part in helping NASA maintain 
this important role.

The NASA STI Program operates under the auspices 
of the Agency Chief Information Offi cer. It collects, 
organizes, provides for archiving, and disseminates 
NASA’s STI. The NASA STI Program provides access 
to the NASA Technical Report Server—Registered 
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS)  thus providing one of the largest 
collections of aeronautical and space science STI in 
the world. Results are published in both non-NASA 
channels and by NASA in the NASA STI Report 
Series, which includes the following report types:
 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major signifi cant phase 
of research that present the results of NASA 
programs and include extensive data or theoretical 
analysis. Includes compilations of signifi cant 
scientifi c and technical data and information 
deemed to be of continuing reference value. 
NASA counter-part of peer-reviewed formal 
professional papers, but has less stringent 
limitations on manuscript length and extent of 
graphic presentations.

 
• TECHNICAL MEMORANDUM. Scientifi c 

and technical fi ndings that are preliminary or of 
specialized interest, e.g., “quick-release” reports, 
working papers, and bibliographies that contain 
minimal annotation. Does not contain extensive 
analysis.

 

• CONTRACTOR REPORT. Scientifi c and 
technical fi ndings by NASA-sponsored 
contractors and grantees.

• CONFERENCE PUBLICATION. Collected 
papers from scientifi c and technical 
conferences, symposia, seminars, or other 
meetings sponsored or co-sponsored by NASA.

 
• SPECIAL PUBLICATION. Scientifi c, 

technical, or historical information from 
NASA programs, projects, and missions, often 
concerned with subjects having substantial 
public interest.

 
• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and 
technical material pertinent to NASA’s mission.

For more information about the NASA STI 
program, see the following:

• Access the NASA STI program home page at 
http://www.sti.nasa.gov

 
• E-mail your question to help@sti.nasa.gov
 
• Fax your question to the NASA STI 

Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658
 
• Write to:

NASA STI Program
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

 



Robert R. Romanofsky
Glenn Research Center, Cleveland, Ohio

Optical Array Versus Monolithic Telescope
Ground Station Cost Assessment

NASA/TM—2019-220216

October 2019

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Prepared for the
Directed Energy Systems Symposium
sponsored by the Directed Energy Professional Society
Norfolk, Virginia, September 12–16, 2016



Acknowledgments

This work was supported by the NASA Space Communications and Navigation Offi ce.

Available from

Level of Review: This material has been technically reviewed by technical management. 

NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Technical Information Service
5285 Port Royal Road
Springfi eld, VA 22161

703-605-6000

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/



NASA/TM—2019-220216 1 

Optical Array Versus Monolithic Telescope 
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Abstract 
The purpose of this study is to outline the design of an optimal array of optical telescopes to emulate 

performance of a monolithic 12 m telescope in support of deep-space communications. In this case, 
optimal means minimizing the initial capital investment and operational cost while maintaining 
performance requirements of the deep-space link. The design is approached from a practical, engineering 
perspective. Pulse position modulation (PPM) signal formatting and photon counting detectors are 
assumed at each telescope in the array. That is, the telescopes function as so-called light buckets, so direct 
detection (as opposed to coherent reception) of the received signals is assumed, and there is no intention 
to consider active compensation for atmospheric turbulence-induced phase fluctuations. A parametric 
analysis among aperture size, detector size, and primary mirror surface quality, in the context of 
field-of-view expansion, is presented to minimize the cost function. 

Introduction 
The purpose of this study is to outline the design of an optimal array of optical telescopes to emulate 

performance of a monolithic 12 m telescope in support of deep-space communications. In this case, 
optimal means minimizing the initial capital investment and operational cost while maintaining 
performance requirements of the deep-space link. The design is approached from a practical, engineering 
perspective. Pulse position modulation (PPM) signal formatting and photon counting detectors are 
assumed at each telescope in the array. That is, the telescopes function as so-called light buckets, so direct 
detection (as opposed to coherent reception) of the received signals is assumed, and there is no intention 
to consider active compensation for atmospheric turbulence-induced phase fluctuations. Turbulence can 
significantly increase the telescope field-of-view over the classic diffraction limit of the primary aperture 
thereby increasing background photon count without necessarily improving signal power. A parametric 
analysis among aperture size, detector size, and primary mirror surface quality, in the context of field-of-
view expansion, is presented to minimize the cost function. The relationship between PPM slot width and 
noise is not considered here (i.e., no attempt is made to optimize PPM modulation order in the context of 
minimizing noise). Besides potentially very substantial cost savings, other advantages of a telescope array 
include: minimal gravitational effects (i.e., primary mirror/sub-reflector structural sag), reliability through 
redundancy, and scalability. A possible drawback of a large telescope array is the complexity associated 
with synchronization of the individual telescope PPM signals. 

Part I focusses on estimating the aperture size and number of apertures required to emulate the 12 m 
aperture and the ensuing cost based on an established cost model derived from empirical data. The 
analysis does extend that model to include the cryogenic refrigeration initial capital investment and life 
cycle costs. Part II modifies the analysis by addressing more realistic manufacturing issues, especially 
mirror surface quality as a cost tradeoff, and uses a previously developed point spread function approach. 
Specifically, it considers the equivalent telescope aperture, with slight imperfections, that could 
theoretically perform as well as a diffraction limited (flawless) telescope. Finally, Part III merges both 
sections and develops a cost minimization strategy.  
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Part I. Archetype Cost Model 
An estimate of the optimal size of optical apertures and the number of such apertures to rival the 

performance of a single monolithic telescope is provided here. Nonrecurring engineering costs and other 
sunk costs (e.g., real estate/site development) are excluded for the moment but are regarded as constants 
that would not alter the shapes or minima of the cost curves to be presented. As a placeholder, it was 
reported in Reference 15 that an adequate allocation for annual operating costs of an optical observatory 
facility is about 4 percent of the construction cost.  

Cost versus performance models for ground based telescopes have been developed (Refs. 1 and 2). 
Telescope arraying was not included in the analysis given in Reference 1. Extracted from existing data, the 
cost was modeled as: 

 xTC D= α   (1) 

where CT is the cost in millions of dollars, D is the telescope diameter in meters, and x is a parameter that 
varies between 2.4 and 2.8. (Note that in microwave dish models this value is ≈2.8.) This cost includes 
telescope mount and pointing controls. According to Reference 1, the value of α is a function of “blur 
circle diameter” which is essentially resolution in arcseconds, designated as “F.” From Reference 1, 
α = F–0.94/9.15 ≈ 1/(10F). It is important to understand that α is inextricably linked to the figure and 
surface quality of the primary mirror. A 10 m telescope with a surface quality corresponding to a 2 μrad 
field of view might cost about $80M. Since the telescope functions as a light bucket, a larger diameter 
telescope with a wider field of view (degraded surface quality) could cost less than a precision smaller 
telescope. Cost rises sharply as narrower fields of view are required. In Reference 2 it was reported that a 
15 m telescope with a 30 μrad field of view (15 times greater surface error) would provide equivalent 
performance at a cost of about $20M. One can intuitively interpret α in terms of Strehl loss ≈ exp-(2π 
δ/λ)2, where δ is the rms wave-front error averaged over the aperture and λ is the optical wavelength. For 
example, if δ = 0.01λ, the corresponding Strehl loss is negligible. If δ = 0.15λ, the Strehl loss is 
44.1 percent (i.e., intensity is reduced to 44.1 percent of the diffraction limited value). To compensate for 
15 times worse surface error, the aperture area must scale as 1/0.441 = 2.27 ≈ (15/10)2. A more 
meaningful relationship between blur circle diameter and telescope quality, based on point spread 
function, is summarized in Part II. 

It has previously been determined that an array of “small” telescopes of diameter d, each with its own 
focal plane detector system, is a viable alternative to a large, single aperture (Ref. 1). Life cycle cost 
analysis of both approaches has apparently not been performed. In 2001, Jet Propulsion Laboratory (JPL) 
began an investigation to examine the use of a small-telescope array as a replacement for a single large 
telescope. The conclusions of that study are unknown.  

If each telescope has an independent focal plane detector, and that detector is cooled with a closed 
cycled helium refrigerator, the cost model reflected in Equation (1) requires modification. Single stage 
Pulse Tube coolers can achieve 35 K, and Stirling cycle coolers can achieve at least 50 K for small lift 
applications. Gifford-McMahon refrigerators can work under a variety of conditions. For example, the 
same refrigerator can produce 0.5, 2 and 60 W of cooling lift at 4.2, 10 and 80 K, respectively. Reliability 
data on mechanical refrigerators is sparse. Some closed cycle coolers have been reported to operate for as 
long as 6 years (Ref. 3). The cost of a custom 3.3 K refrigerator with 1.5 W of lift is about $100K. A 
recent estimate for a turnkey superconducting nano-wire based single photon detector system, operating 
around ≈1 K, is $800K (Ref. 16). Commercial systems are appearing on the market with associated cost 
around $100K for single channel detectors. 

The cost per unit of many types of equipment, such as electric motors, centrifugal pumps, gasoline 
engines, etc. decreases as production quantity increases. The economy of scale of two-stage (≈1 K class) 
refrigerators is unknown, but some data exists on single stage coolers as shown in Figure 1 (Ref. 3).  
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Figure 1.—Estimated cost of single-stage (60 to 80 K) cryocoolers versus quantity 

derived from (Ref. (3), Figures 8.27). 
 

Estimating the economy of scale from Figure 1 and conservatively taking the cost of a single turnkey 
superconducting detector refrigeration system as ≈$500K, the cost as a function of quantity (q) is given by: 

 0.330.47RC q−=   (2) 

where CR is the cost in millions of dollars. Obviously Equation (2) has to be asymptotic to some value but 
it is assumed to be relevant for the quantities considered herein. It has been estimated that the cost of state 
of the art space mirrors is $6.4M/m2. The estimated cost of the 12 m ground telescope to support the 
Deep-Space Optical Communications system is projected to be around $120M. That includes the 
telescope and detector system, etc. This estimate is consistent with the cost model presented here as will 
be shown below. While the cost of a single refrigeration unit is negligible compared to the cost of 12 m 
optics, in a large array (of relatively small) telescopes, the cumulative cost is not. 

A further assumption of the model is that turbulence parameters are constant over the area occupied by 
the telescope array. According to Reference 2, the performance of an array of small telescopes numbering q 
is equivalent to that of a monolithic aperture with the same collecting area with diameter D if: 

 ( )2orq D≤   (3) 

where ro is the atmospheric coherence length or Fried parameter. The Fried parameter is the area over 
which the rms wave-front aberration is less than one radian. A typical value (at a preferred observatory 
site) is ≤15 cm at a wavelength (λ) of 1 µm but there are diurnal and seasonal changes (Ref. 4). (The 
value of ro scales as λ1.2). Angular resolution is limited by the Fried parameter to λ/ro. The telescope 
diffraction limit is ≈λ/D. Since D>>ro, this explains why adaptive optics are required for imaging ground 
telescopes. For practical deep-space communications ground stations, (D/ro)2 >> 100.  

Since the effective collecting area of the array must equal the area of the monolithic telescope, 
D q d= . We combine Equations (1) and (2), subject to the constraint Equation (3), to estimate total cost 
of a telescope array: 

 ( ) 0.330.47
x

C q D q q− = α + 
 

 (4) 

The exponent “x” is taken as the 2.6 per the reasoning in Reference 1, but this may be conservative. It was 
pointed out in Reference 5 that the exponent has decreased to ≈2.5 for post-1980 manufactured 
telescopes. Equation (4) does not account for an economy of scale that might naturally occur for 
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“mass produced” optics and articulation systems. If the mirrors have to be ground and polished to 
perfection, there may be little reduction in cost per unit. If the mirrors can be cast with minimal post 
polishing or replicated, there will certainly be value added. For now, it is assumed that this supposed 
economy of scale is negligible for the quantities under practical consideration here. Figure 2 contains 
plots of Equation (4) corresponding to three different monolithic telescope sizes, and Figure 3 defines the 
associated number of telescopes in the array. 

The present purpose is to investigate replacing the nominal 12 m telescope proposed to support the 
Deep Space Optical Communications (DSOC) program. From Figure 2, the minimum cost of $41.9M 
occurs for a telescope quantity of 141. From Figure 3, the required telescope diameter is 1.01 m.  
 

 
Figure 2.—Estimated telescope array cost as a function of the 

number of telescopes to emulate a single monolithic 15 m (red), 
12 m (blue) and 10 m (black) monolithic telescope. In all cases an 
α = 0.2 is assumed. This corresponds to a 0.5 arcsecond spot 
size. (α ≈ 0.2 corresponds to the estimated DSOC 12 m cost). 

 
 
 

 
Figure 3.—Corresponding array telescope diameter (m) as a 

function of telescope quantity for the three different monolithic 
telescope cases.  
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An element of cost that has been avoided to this point is the telescope dome, or some protective 
environmental housing. It has been suggested that for very large telescopes, as the aperture grows, the 
dome grows as roughly (f# D)3 (Ref. 5). It turns out that high quality domes are commercially available 
for ≈2 m class telescopes because of the growing institutional demand for observatories. These come 
equipped with an electric shutter and motorized dome rotation system (Ref. 6). The standard shutter opening 
is ≈1.3 m. Weather control is provided by overlapping flanges and temperature regulation is facilitated by 
the gel coat white exterior. The cost per unit is ≈$19K. For want of a better model, the dome cost, Cdome, is 
derived from curve fitting data available from Reference 6, as shown in Figure 4. In practice, a high-
precision window (e.g., CaF) and a temperature controlled dome would probably be necessary.  

As a minimum, the dome diameter must be at least equal to the telescope focal length, assuming the 
telescope is centered on the pedestal or yoke. Based on the example dome described above, it is assumed 
that for fast, relatively small telescopes (≤ 2 m) the required dome diameter is 4.6 D q . Now including 
telescope housing cost, Equation (4) becomes: 

 ( ) ( )( )0.33C 0.47 34.6 0.026 0.012
x

q D q q D q D q− ≈ α + + − + 
 

 (5) 

A rough estimate of life cycle costs addressing only refrigerator replacement can be approached by 
assuming half the coolers need to be completely replaced every 5 years. The cost of field maintenance is 
not included. Using the 12 m aperture requirement, every 5 years 70.5 refrigerators have to be replaced at 
a cost of $92K each (from Equation (2) assuming no economy of scale benefit from the prior production 
run). The results is shown in Figure 5. Once again, the array wins out even for a very long economic life. 

The life cycle cost may actually be somewhat greater or less, depending on actual refrigerator 
reliability, and there may be other maintenance and operating costs not addressed here.  

 
 
 
 
 

 
Figure 4.—Estimated cost of telescope enclosure based on commercial grade 

domes ( )>D q 1 . 
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Figure 5.—Estimated life-cycle cost, in today’s dollars, of a monolithic 12 m 

aperture telescope and a 141 element array of 1.01 m telescopes.  

Part II. Noise, Turbulence and Imperfect Aperture Considerations 
In the case of a microwave receiver, noise coupled in through the antenna is independent of the 

field-of-view if the observed background has uniform brightness. In general, antenna noise temperature 
(TA) is determined by weighting the spatial distribution of background noise temperature with the antenna 
pattern. 

 
( )

( )

2
B0 0

A 2

0 0

T , sin d d
T

, sin d dD

π π

π π

θ φ θ θ φ
=

θ φ θ θ φ

∫ ∫
∫ ∫

 (6) 

where TB(θ,ϕ) is sky brightness temperature distribution and D(θ,ϕ) is the antenna directivity pattern. At 
radio frequencies, brightness temperature is expressed in terms of background spectral energy density 
(Bv(T)) as TB = λ2 Bv(T)/(2k) where k is Boltzmann’s constant. Bv(T) is measured in units of W m–2 Hz–1 
Steradian–1. If the sun is in view, for example, TA can be affected dramatically - depending on antenna 
beamwidth. Similarly, if a significant side-lobe observes a hot object (e.g., a building) TA can increase 
over the main beam contribution to noise. The noise temperature is referred to the antenna terminals and 
must also include antenna ohmic loss. Actual noise power is proportional to receiver filter bandwidth (B). 
Index of refraction changes due to atmospheric turbulence have little effect on detected amplitude at 
microwave frequencies. The main difference between an optical receiver and a microwave receiver is that 
in a photon starved link, performance is determined by Poisson statistics. But operation of an optical 
receiver is essentially similar - background noise collected by a diffraction limited telescope (i.e., no 
atmospheric turbulence) is independent of aperture size. That is, the noise power is equal to the product of 
background spectral radiance, filter bandwidth, telescope aperture, and the solid angle (ΩT) subtended by 
the telescope field-of-view (FoV). Since ΩT is inversely proportional to aperture size, noise power is 
independent of aperture size. This approximation is invalid in the presence of atmospheric turbulence. 
The magnitude of the turbulence is determined by the atmospheric coherence length, or Fried parameter, 
ro. The Fried parameter represents the spatial extent over which the phase of a propagating optical beam is 
essentially preserved. 
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Figure 6.—Geometry of basic telescope system. Note the 

relationship among beam divergence angle θd, detector 
size dA, and telescope focal length f. 

 
For a pulse-position modulation scheme using direct detection of single photons at the receiver, 
field-of-view depends on the focal plane detector size. The field-of-view can be calculated as: 

 ( ) ( )FoV= number of pixels pixelsize focallength×  (7) 

Referring to Figure 6, the FoV can be increased by using a larger detector chip. In the case of a diffraction 
limited telescope, the detector element (pixel) size corresponds to the minimum spot size and is generally 
set to the extent of the Airy disk.  

Angular resolution of a diffraction limited circular aperture is: 

 d 1.22 Dθ = λ  (8) 

where the factor 1.22 is derived from the location of the first dark ring of the Airy disk. (1.22 is the first 
zero of the Bessel function of the first kind, of order one, divided by π.) It is straightforward to convert 
angular resolution to spatial resolution. From the diagram,  

 ( ) ( )d Atan 2 d 2 fθ =  (9) 

or combining Equations (8) and (9) 

 Ad 1.22 f 1.22 f #D≈ λ = λ  (10) 

An estimate of resolution is generally taken as 2.44 λ f# (the Airy disk is the central bright spot of the 
Airy pattern and contains 84 percent of the energy and will be discussed more in the subsequent section). 
From the diagram, an optical system with a small f# (i.e., f/D) produces a lower beam intensity 
(W/steradian) than a system with a larger f# (i.e., suggesting advantages to a long focal length). This is 
because the beam divergence increases faster than the beam flux (W) as focal length is reduced. Note that 
“image” brightness scales as D2 and while a 1 m f/4 telescope has the same focal length as a 2 m f / 2 
telescope, the latter is four times “faster.” Long focal lengths may present primary and subreflector lateral 
alignment challenges because of mechanical vibrations and thermal distortion.  

Atmospheric turbulence can cause the actual FoV (i.e., telescope beam solid angle) to be many times 
the theoretical diffraction limit – essentially increasing background stray light (e.g., scattered sunlight). 
The actual spot size or blur circle diameter is greater than the diffraction limited focus because the 
turbulence induces angle-of-arrival fluctuations causing spot displacement. The turbulence is really 
random inhomogeneities in the atmosphere’s refractive index. It induces an angular beam spread with a 
radius of approximately λ/ro (Figure 7).  
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Figure 7.—Geometry of basic telescope system 

illustrating effect of turbulence on point spread 
function. Turbulence is regarded as distributing 
the signal into (D/ro)2 random spatial modes at 
the detector plane (Ref. 7). 

 
The focused spot size becomes dS ≈ 2 f λ/ro. A larger detector is necessary to encircle the signal energy, 
which increases the FoV. Since dS must be smaller than the detector diameter dA, this implies 

 A of d r 2≤ λ  (11) 

From a manufacturing point of view, the f# needs to be greater than about 1. (Low f# implies a highly 
curved parabolic surface which is difficult to manufacture.) This leads to the conclusion: 

 ( )A of d r 2D ≤ ≤ λ  (12) 

which can also be expressed as  

 A od f 2 r≥ λ  (13) 

This is near the cusp for a ≈1 m telescope for a 20 cm ro. That’s an important conclusion that may drive 
the f# slightly below 1. Note that larger detector size will also eventually be an issue due to capacitance. 

Equivalent Aperture Sizing 

This section analyzes the relationship between aperture size, aperture surface quality and photon 
collection efficiency. It is based on a surface error model and the corresponding optical point spread 
function which determines the fraction of signal energy captured by the detector FoV. The model is based 
on the analysis of Ruze as applied to microwave parabolic reflector antennas, and the work of Sandusky 
et al. (Refs. 8 and 9). As a practical example, silicon carbide mirrors can be manufactured up to at least 
1.5 m in diameters with λ/10 peak-to-valley figure accuracy and 10 Å rms surface roughness using post 
polishing techniques. But finishing processes (lapping, polishing) for SiC “blanks” are labor intensive, 
require highly skilled optical technicians, and highly specialized machinery because of the extreme 
hardness of SiC. Trading surface quality (polishing cost) and aperture size is an important consideration 
of this study. 

The point spread function for a “perfect” optical system is the famous Airy pattern – which is derived 
from Fraunhofer diffraction theory. The intensity of the Fraunhofer diffraction pattern, I(θ), is given by 
the squared modulus of the Fourier transform of the aperture, where θ is the observation angle from the 
optical axis. For a circular aperture with a central circular blockage: 
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 ( )

( )( )
( )

( )( )
( )

( )

2

22

J1 k a sin J1 k a sin
2 2

k a sin k a sin
I

1

 ⋅ ⋅ θ ⋅ ⋅ ε ⋅ θ
 ⋅ − ⋅ ε ⋅ 
 ⋅ ⋅ θ ⋅ ⋅ θ θ =

− ε
 

(14) 

I(0) is the normalized maximum intensity, J1 is the Bessel function of the first kind of order one, k is the 
wavenumber (2π/λ), the radius of the aperture is a, and ε is the fractional radius of the central obscuration 
of the primary (e.g., the ratio of the sub-reflector radius to the primary mirror radius). For photometric 
measurements, the encircled energy is used to represent the integrated flux contained within the detector 
radius rA = dA/2. The total power contained in the diffraction pattern is obtained by integrating 
Equation (14). A “real” optical surface has random surface errors which result in scattering and 
modification of the point spread function (i.e., some of the light scatters at random angles). The Ruze 
equation is generally used to quantify reflector gain degradation due to randomly distributed surface 
imperfections (Ref. 8). The mirror is assumed to contain normally distributed surface errors having zero 
mean and standard deviation σ (i.e., σ is the RMS roughness in terms of λ). It should be pointed out that 
the Ruze model does not apply to reflectors with very smooth surfaces (i.e., σ/ λ << 1) and large shape 
errors (e.g., membrane modes involving large spherical aberrations near the vertex and flaring of the 
parabola near the rim due to boundary loading) (Ref. 10). The signal degradation is proportional to the 
exponential of the square of the RMS surface errors (i.e., e–(4πσ)2). The scattered field also depends on the 
surface autocorrelation function and the characteristic correlation length τ – also assumed to be normally 
distributed. Correlation length is basically the horizontal scale of surface imperfections and is material 
and process dependent. For a perfectly smooth surface, the correlation length approaches infinity. Short 
correlation lengths imply more rapid vertical variations as a function of horizontal position. The two 
waveforms (i.e., generated surface roughness patterns with normal distribution) shown in Figure 8 have 
the same RMS error. But the bottom pattern seems rougher because of the frequency of vertical variations. 

As an example, Figure 9 is a profilometer scan of a prototype composite mirror. The scan length is 
30 mm, and the vertical positions of the left and right cursor are –5395 and 897 Å, respectively. Hence the 
peak-to-valley ratio (P-V) is about 0.6 μm (a little over 1/3 λ at 1550 nm). There is no true relationship 
between P-V and RMS for random surface errors. Diamond turning, for example, results in high 
frequency components, and certain fabrication processes may result is drastic differences between 
P-V and RMS numbers. From the horizontal scale, we can infer a correlation length of about 6 mm. These 
surface imperfections introduce corresponding phase-front deformations (σϕ) of approximately 2βσ 
where β = 2π/λ and the factor of 2 arises because the path length is roughly twice the feature size. 
Correlation length is normalized to λ/FoV. The fraction of optical energy, PE, focused onto the detector is 
determined by integrating the modified point spread function over the detector area (Ref. 9). It is assumed 
that point spread function is centered on the detector array. 

 

 
Figure 8.—Two different rough surfaces with zero mean and the same RMS value 

(σ = 1) but different correlation lengths.   



NASA/TM—2019-220216 10 

 
Figure 9.—Profilometer scan of a 7.5 cm composite mirror “coupon”. The 

coupon consists of a 1.8 cm thick aluminum honeycomb core and 0.5 mm 
thick MJ55 carbon fiber reinforced polymer face-skins. The concave 
mirror surface (f = 150 cm) has a thin evaporated aluminum coating. The 
apparent correlation length is about 6 mm (≈300 λ/FoV >> 1 in the 
example below) (Ref. 11).  

 
For practical purposes, the FoV is large compared to the diffraction limit of the primary aperture as 

discussed above (i.e., FoV>>λ/D). For example, assuming D = 1.3 m, λ = 1550 nm, and ro = 10 cm, 
dA = 40 μm. Then, the FoV = 40 µm/1.3 m = 31 µRad. The resolving power of the 1.3 m primary is 
λ/D = 1.2 µRad. 

It can be shown that for situations under consideration here (FoV>>λ/D)  

 ( ) ( )
2

2
12 m

4 m 2E
m 1

4
P 1 e e

m!

τ⋅    ∞ − ⋅ π⋅   − ⋅π⋅σ    

=

⋅ π ⋅σ
= − ⋅ ⋅∑  (15) 

Now the diameter D of a real mirror, required to emulate the performance of a smaller perfect mirror (Dp) 
in terms of light gathering capacity can be expressed as: 

 P

EP
DD =  (16) 

Figure 10 shows tradeoff between scaled primary mirror size and RMS surface roughness with correlation 
length as a parameter. As an example, consider the composite mirror data provided above. While there is 
no exact relationship between P-V and RMS for such surfaces, a rule of thumb is that P-V is about four 
times the RMS error. 1500 Å is actually very close to the average RMS error that was measured for the 
composite coupons. Using this number and assuming the same FoV (31 µRad) as in the earlier example, 
the required mirror diameter is essentially equal to that of an ideal mirror. In this case there is no need to 
compensate for surface aberrations because they have small RMS amplitude (≈λ/10) and the correlation 
length is >>1. According to the formulation, for long correlation length (τ>1) there is virtually no mirror 
diameter increase necessary for surfaces with up to a λ/10 RMS error. For relatively smooth surfaces 
(say σ/λ<0.1), the diameter scaling is essentially independent of correlation length for τ<0.1 λ/FoV. 
Figure 11 simply expands the region near the knee of the curves. 
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Figure 10.—Manufacturable telescope scale factor relative to a perfect mirror 

as a function of RMS surface roughness, with correlation length expressed in 
terms of λ/FoV (i.e., ≈ λf/dA) as a parameter, and RMS surface roughness 
ranging up to 1/4 λ. 

 

 
Figure 11.—Manufacturable telescope scale factor relative to a perfect mirror 

as a function of RMS surface roughness, with correlation length expressed in 
terms of λ/FoV as a parameter. Expanded view of Figure 10 concentrating on 
small surface roughness. 
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Part III. Cost Minimization 
Figure 10 and Figure 11 highlight the importance of understanding the spatial frequency content of 

the imperfect mirror surface. Three distinct regimes exist. Low frequency errors are associated with 
conventional wavefront aberrations (e.g., spherical aberration). Surface roughness (micro-roughness) 
introduces wide-angle scattering and reduces signal-to-noise ratio. The so-called “midspatial” 
irregularities result in small angle scatter and smear the point spread function. Harvey et al. (Ref. 14) 
describe an effective roughness based on the spatial frequency band limits of the surface. That work also 
introduces an alternative to a normally distributed surface autocorrelation function. Their conclusions are 
most applicable to situations involving short correlation lengths (<λ) and large incidence angles (which 
would generally not apply to a single photon detecting telescope scenario).  

Polishing SiC generally requires a diamond based slurry, and material removal rates are small in 
comparison to conventional optical materials (Ref. 12). The material removal rate for SiC is less than 
5 percent that of conventional materials like fused silica. It can take several months of precision polishing 
to achieve λ/10 P-V surface figures and ≈10 Å RMS roughness for even modest size mirrors. Alternatives 
to direct polishing, such as Xinetics’ nanolaminate face-sheet bonding (Ref. 13) or Zygo’s magneto-
rheological polishing may reduce costs significantly (Ref. 12). 

Basis of Cost Estimate 

The next step is to relate mirror surface quality to cost, or more precisely to correlate labor and 
machining intensive post-polishing and cost. Equation (1) was derived from empirical data representing a 
broad class of telescope types and sizes. As a sanity check to estimate relatively small SiC mirror cost 
versus aperture size and quality, the cost of modest size glass mirrors is used along with the 5 percent 
scaling factor (i.e., 20X) for SiC. Pricing for high quality glass mirrors is available from R.F. Royce - 
Precision Optical Components, for example. The raw material of SiC is significantly more expensive than 
conventional glass blanks (≈35$/kg vs. ≈$1/kg) but this is negligible compared to the fabrication cost. 
Figure 12 compares Equation (1) with a power law curve fit to small glass mirror cost scaled to reflect 
SiC post-processing. The small mirror power law curve indicates a roughly 25 percent higher cost in the 
region of interest. The power law curve is not valid for large mirrors (≈> 3 m). 
 
 

 
Figure 12.—Mirror cost based on Equation (1) (solid line) compared to data 

extrapolated from small glass mirrors and scaled to reflect the added complexity 
of SiC processing (dashed line) in $K. The curves cross at D≈3.3 m. 
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The following relationship between surface quality and cost is hypothetical. It requires substantiation 
from mirror manufacturers. Nevertheless the results will be used with the preceding model to generate a 
final cost estimate. The relationship between surface quality and manufacturing cost can be changed 
without affecting the approach to the optical array cost minimization problem.  

Because of crystal dislocations, porosity, etc. cast (i.e., “off-the-mandrel” so to speak) SiC RMS 
surface errors can be around 15 µm. Polishing is a process that involves pressure, speed and time. Also, 
polishing a parabolic surface is much more difficult than polishing a spherical surface. The rate of 
departure of a parabolic surface from a spherical surface is proportional to D4/f 3 – suggesting further 
advantage to smaller mirrors. From the analysis presented in Part II. Noise, Turbulence and Imperfect 
Aperture Considerations and Figure 10, it can be inferred that a mirror with an RMS error less than λ/100 
is essentially indistinguishable from a perfect mirror. This equals 155 Å at a wavelength of 1550 nm. The 
cost of the primary mirror is assumed to be inversely proportional to the surface error. The RMS surface 
error is assumed to be constrained from 15 µm or about 10λ (unpolished) to 0.0155 µm (extreme polishing). 

Based on the initial conclusion that an array of 141, 1.01 m diameter mirrors is nearly optimal, the 
cost of the array should be bounded by: 

 ( )
2.03

0.33HC q 0.397 0.47 q 0.035 0.026 0.012
q q q

D D D−
      = ⋅ ⋅ + ⋅ + ⋅ ⋅ − +              

 (17) 

on the high side. Using this equation, the projected total array cost is $73M, with $57M, $13M and $3M 
attributed to the telescopes, refrigerators and domes, respectively. Equations (15) and (16) or Figure 11 
can be used to trade cost of the highly polished SiC mirror with a less perfect but somewhat larger mirror. 
For example, instead of polishing to a micro-roughness of λ/100, a 1.92 m mirror with a λ/10 micro-
roughness could be used (assuming a correlation of 0.25 is feasible), enabling a ≈3X reduction in post-
polishing costs. That is, starting with an as-cast 15 µm rms roughness and polishing to 0.15 µm rms 
roughness instead of 0.015 cuts the time by 1/3 – assuming a linear relationship. This implies an initial 
investment of about $55M for the optical ground array, and a 25 year life-cycle cost of about $85M. If a 
2.5 m SiC mirror scaled from a 1.3 m prototype is feasible from a manufacturing perspective and 
turbulence considerations allow it, the upper cost is slightly lower – about $51M. In this case, $38.4M, 
$9.2M and $3.2M are attributed to the telescopes, refrigerators and domes, respectively. And, only 85 
telescopes are required. These costs can be further reduced by dedicating one refrigerator to multiple 
channels (detectors). There is precedent to suggest that at least eight single photon detector channels can 
be accommodated by a single refrigerator. 

The cost curve minima is also very broad – that is over a certain range the cost is largely insensitive 
to quantity suggesting a further trade between aperture size and quantity. 

Other Important Considerations 

The correlation between scattered light coupled onto the detector and primary mirror surface 
roughness also needs to be considered. In particular, the compromise made above may impose restriction 
on minimum Sun-Earth-Probe angle. Also, since atmosphere turbulence affects even direct detection 
systems since detector size is affected, cost optimization will be influenced by site location and detector 
size needs to be chosen based on the specific nominal link condition. 
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Appendix A.—Manufacturing Technology 
Manufacturing alternatives, which will affect the exponent in Equation (1), need to be very carefully 

considered. Traditional mirror fabrication involves grinding a low CTE glass, the legacy material, or a 
beryllium blank to spherical shape and coating it with a reflective film. Aerial density ranges from 15 to 
25 kg/m2. The process is limited by the minimum thickness required for grinding. Stiffness is proportional 
to thickness2/D. The drive to reduce telescope mirror weight is also directly linked to the fact that the 
weight of the optics determines the type and weight of the support structure. The focal ratio is also an 
important economic consideration. Faster mirrors are more expensive to manufacture – longer focal 
lengths are easier to make because there is less departure from a spherical surface. Traditionally, the ratio 
of diameter to thickness is about 6:1.  

SiC is an excellent candidate material for an array of telescopes: SiC is has 6 to 7 times the stiffness 
of ULE glass, and also has excellent thermal properties. The process starts with a carbon fiber reinforced 
plastic blank. The blank is heated (>1000 °C) to create a rigid “green” state. This structure can be 
relatively easily machined to the required shape – to an accuracy of perhaps 0.1 mm. Once machined, the 
green structure is heated under vacuum at a temperature allowing silicon to be in a liquid state 
(T > 1400 °C). The liquid silicon interacts with the carbon to form a Silicon Carbide matrix. SiC attributes 
include extremely high specific stiffness, high thermal conductivity and superior dimensional stability. 
The aerial density is 10 to 15 kg/m2. Because the surface is rough and porous, it is generally re-fired after 
filing the pores with pure Si. The mirror blank can then be ground (polished) and coated. Modifications to 
this process include using chemical vapor depositing to coat the surface with SiC to form a very dense 
encapsulation layer and ion beam polishing to improve the RMS roughness (Ref. 17). 

Carbon Fiber Reinforced Polymer (CFRP) composite mirror replication promises aerial density 
around 2 kg/m2, and the replication process is inherently intended for mass production. The first step in 
the optical replication process is to grind and polish a glass mandrel to the inverse of the desired shape 
(i.e., a convex mandrel is required for a concave mirror). Then, successive plies of graphite-fiber-
composite pre-impregnated polymer materials are applied on the mandrel. The resulting laminate is then 
cured under heat and pressure, released from the mandrel, and vacuum-coated with a reflective coating. 
Issues with CFRP include shrinkage due to thermal strain and chemical conversion volumetric shrinkage 
of the adhesives and fiber print-through. NASA GRC is developing a process that eliminates print-
through and has demonstrated a surface finish ≈50 Å rms on 7.5 cm composite coupons.  

There are also tradeoffs between a monolithic mirror and a segmented mirror. Segmented mirror 
technology is less expensive, but a monolithic mirror produces a more stable point spread function. 
Segmented mirrors also have peculiar errors since there will be a correlation length associated with the 
panel size, as well as local errors on the individual panels. Nevertheless, segmented mirror technology 
needs to be contrasted with monolithic mirrors. 
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Appendix B.—Atmospheric Refraction Considerations for 
Beaconless Pointing 

Atmospheric refraction depends on ground station elevation, pointing angle, wavelength, temperature 
and pressure (and therefor is a function of altitude). The atmospheric model used here (Figure 13) consists 
of m concentric shells, with shells characterized by a refractive index n0 to nm. Here, n0 corresponds to the 
index of refraction associated with the ground station (Refs. 18 to 20). The atmosphere (troposphere) is 
assumed to be 20 km thick (i.e., the index of refraction is unity past 20 km). Index of refraction depends 
on air density, and air density is a strong function of altitude. So the lengths of the division intervals 
increase with altitude. Air density is not a strong function of the horizontal direction, so only the vertical 
structure of the atmosphere is accounted for. 

The index of refraction depends on temperature, pressure, and humidity, and the refraction error 
accuracy depends on the models assumed for those parameters which are a function of altitude. It is 
generally assumed that the vertical temperature profile rate is –6.5 K/km up to 11 km and constant beyond 
as shown in Figure 14.  

The pressure depends on the assumed temperature lapse rate (from Figure 14). The molar mass of dry 
air was taken as 0.02896 kg/mol. At very low altitudes the pressure decrease at a rate of about 1.2 kPa per 
100 m. The modeled pressure versus altitude shown in Figure 15 ignores this rapid change since the 
ground terminal is several hundred meters above sea level. 

The index of refraction derived from the above models is shown in Figure 16. The absolute accuracy 
of the models is not the point here. The resulting magnitude of the refractive error is. The numerical 
procedure for determining the refracted path was implemented in MathCAD. 

 

 
Figure 13.—Atmospheric refraction model. The radius of the Earth is RE and the elevation of the ground 

station is Z0 and n0 > n1 >…nm. The apparent laser path is the tangent line to the final actual laser path 
refraction angle.  
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Figure 14.—Modeled vertical temperature profile. 

 

 
Figure 15.—Modeled pressure profile. 

 

 
Figure 16.—Calculated index of refraction as a function of altitude. The results 

correspond to a Cleveland, Ohio observation point (elevation = 241 m), a 
wavelength of 1550 nm, a humidity of 10 percent up to 2 km and 0 percent 
humidity beyond.  
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The final results are shown in Table 1 for two very “extreme” pointing angles: 10° and 80° above the 
horizon. Two cases were run for each angle: a static case (no atmospheric refractive index fluctuations) 
and a dynamic case (where the index was allowed to fluctuate by 0.01 percent). The second and third 
columns should be identical and it is presumed they would be if a sufficient number of runs occurred. The 
shell slant range (Figure 13) was 100 m. 

In principle, this predictable error could be built into a calibration table for pointing. The result would 
have to be verified via experiment to lend credibility to the table. Then, only the variance would be of 
concern. The atmospheric refraction error for several ground station locations is shown in Figure 17.  
 
 

TABLE 1.—REFRACTIVE POINTING ERROR AS A FUNCTION OF POINTING ANGLE 
Pointing angle, 

degrees 
Static refractive error, 

arcseconds 
Average dynamic refractive error, 

arcseconds 
Standard deviation, 

arcseconds 

80.0 5.27 5.34 0.13 

60.0 16.41 15.79 0.80 
30.0 38.54 37.94 1.41 

10.0 70.46 68.63 6.87 
 
 

 
Figure 17.—Atmospheric refraction error for several ground station locations as a 

function of pointing angle. 
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