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FIBER OPTIC BRAGG GRATING SENSORS @
FOR HIGH TEMPERATURE APPLICATIONS

Why Optical? Why Fiber Optics?

Immunity to electromagnetic interference
Chemical stability

Less weight and mass for signal harnesses
Can be imbedded into structures

No fire threats

No explosive threats

Multiplexing capabilities

High bandwidth
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Ability to work at the distance



Fiber Bragg Gratings
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EFFECTS OF HIGH TEMPERATURES ON FBGs

» Thermal Expansion:
The cladding, core, and buffer coating each have different thermal expansion coefficients. As
a result, the thermal stability of an FBG at high temperatures fiber may be compromised.

» Migration of Dopants :

Diffusion and migration of dopants between the core and cladding; distortion of the light paths
through the fiber (turning a step-index fiber into a distorted graded-index fiber); frustration of
the total internal reflection.

» Silica Devitrification:
Crystallization of silica glass at high temperatures. Eventually the material becomes opaque.

» Thermal Optic Decay:

The index of refraction of fiber changes under high temperatures, which could change the
numerical aperture of the fiber and ruin or weaken the FBG structural integrity and signal
strength.
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FBGs FOR HIGH TEMPERATURE OPERATIONS (>600 °C)

» Type I Regenerated Gratings

Hydrogen loading

In case of fluoride presence: formation of Chemical
Composition Gratings

Utilization of special optical setups

Exposure to UV radiation (usually 244 or 193 nm)
Pulsed laser operation

Characteristic variations in grating reflectivity during
annealing

Decrease in reflectivity after annealing

» Type Il Gratings

Near Damage Levels of Optical Radiation

Pulsed Mode of Operation (femtoseconds)
Various Wavelengths Used(from UV to IR)
Simpler Optical Setups

The Grating Reflectivity Stays High

May employ some features of Type I Regenerated
Gratings



High Temperature Fiber Optic Sensor (HTFOS)
Manufacturing Process
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HTFOS Performance Evaluation

Wavelength Variations 20 Cycles; 400-800 °C; Wavelength Variations

500 Hours at 1000 °C 2 °C/ min Heating Rate; 1000 Hours at 1000°C
2 Hrs Hold @ 800 oC
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HTFOS with Signal Processing System
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Remotely L.ocated Trailer

Sensor
Inside |
the Tip |
I
Ceramic l -
Tube | PC with LabVIEW
| Optical
|Distribution Sessl
| f
I
| OSA
Cermas/ | opuca b=
e Connector : 1120(27
/ SLED Source
! \ —————
Optical
v

Fibers




Schematics of HTFOS Installation in ESS
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HTFOS Design Considerations:

* The fiber optic connector attached directly to the ceramic tubes is outside of the hot zone (max. operating T~250°C)
e The HTFOS tip protrudes above the ESS mast by 0.5” and withstand the effects of engine exhaust gases



@

FIBER-BASED OPTICAL SYSTEMS FOR SENSING

AND IMAGING IN HARSH ENVIRONMENTS



IMAGING

SENSING

Optical Systems for Imaging and Sensing in Harsh Environments
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IMAGING THROUGH MULTI-FIBER RODS

Multi-fiber rod is an optical waveguide consisting of
thousands high refractive index cores fibers packed and
fused together with lower refractive index cladding to
form one large diameter multi-core optical fiber
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Imaging Through a Multi- Fiber Optical Rod
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Configurations of Imaging System with External Illumination
(Active Imaging)

Direct Coupling of Light through the
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Imaging of 1/64” Scale through 1 Meter Long

Imaging System with External Illumination:
Experimental Demonstration

Imaging Rod with Laser Side llluminator Camera
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Scale Visualization Through a Rod
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Lensed Fiber Optic Imaging Rod for Harsh Environments

Single Lens Configuration
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Images of a Target under External lHlumination and Various Thermal Conditions

Initial Image under In the Furnace In the Furnace, In the Furnace,
Microscope Room Temperature After 2.5 hours @ 500 °C After 3 cycles to 500 °C
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* A0.5m long fiber optic conduit was used, 0.24 m of the conduit was exposed to 500 °C

» The illumination was injected through the conduit from an LED source

« The target was a gold circuit on an alumina substrate. The thickness of the traces on the circuit is 213 pm

« The image became slightly brighter after each cycle presumably because the FO conduit was annealed. Similar annealing
effect of high temperature on light transmission through optical fibers have previously observed 17



SENSING THROUGH MULTI-FIBER OPTICAL RODS
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Intensity (counts)

Sensing Through Fiber Optic Conduit
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Combined Spectroscopic & Imaging Systems

Combined Spectroscopic & Imaging System Combined Spectroscopic & Imaging System
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Conclusions @f
Advantages of HT FBGs Advantages of Fiber Optic Conduits

Survivability in Harsh Environments

_ « Withstands high temperature and pressure
* Chemically stable « Exhibits chemical stability

* Insensitive to light intensity variations

« Have small weight & are easily embeddable

In-Situ measurements and sensing
« Eliminates optical windows
« Permits external illumination of targets for imaging
« Permits implementation of active optical sensing

« Depending on manufacturing process,
have operability range up to 1000 C and above

* Provide repeatable results

Modular Design
« Permits attachment of different lens systems to accommodate
application requirements

NEEDS
» Optical fibers with flexible unexpansive protective coatings to withstand higher temperatures (up to 500 C and above)
» Optical fiber for extreme temperatures (perhaps, sapphire-based)
» Small factor signal processing hardware to process optical signals (wavelength-to-frequency converters, fast spectral
readers, etc.)
» High temperature optical epoxies



