Low Boom Flight Demonstrator Project

Life Support System (LSS) Design

Mathew J. Sechler (Vertex Aerospace) NASA Armstrong Flight Research Center, Edwards, CA

Approved for Unlimited Distribution

Operational Challenges Associated with

X-59 and F-15 Chase Aircraft Life Support System (LSS) Design

Mathew J. Sechler (Vertex Aerospace) NASA Armstrong Flight Research Center, Edwards, CA

Unlimited Distribution

Outline

- Goals of Brief
- Background
 - X-59 Project/Mission Summary
 - X-59 Aircraft Overview
 - X-59 LSS Summary
 - Primary OS
 - \circ EOS
 - F-15 Existing LSS Summary
 - \circ Primary OS
 - \circ EOS
- Operational Challenges and Resolution
 - F-15 Challenges
 - X-59 Challenges
 - Other
- Status/Future Plans
 - Test Integration Schedule
- Review of Briefing
- Questions

Goals of Brief

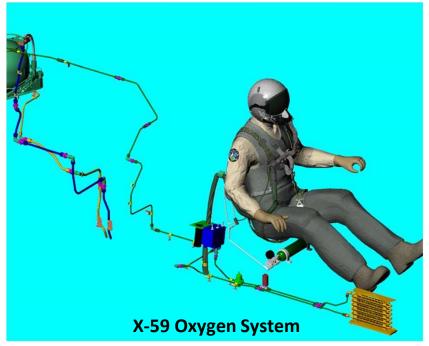
- Review LBFD program
 - X-59 and F-15 chase aircraft
- Help understand how X-59 program goals affected design
- Describe several X-59 and F-15 chase aircraft design decisions
 - Very specific examples, with relevance to other designs
 - Consider Challenges, Tradeoffs and Design Solutions
 - Focus on Life Support System (LSS)
 - Maintenance Perspective

X-59 Project/Mission Background

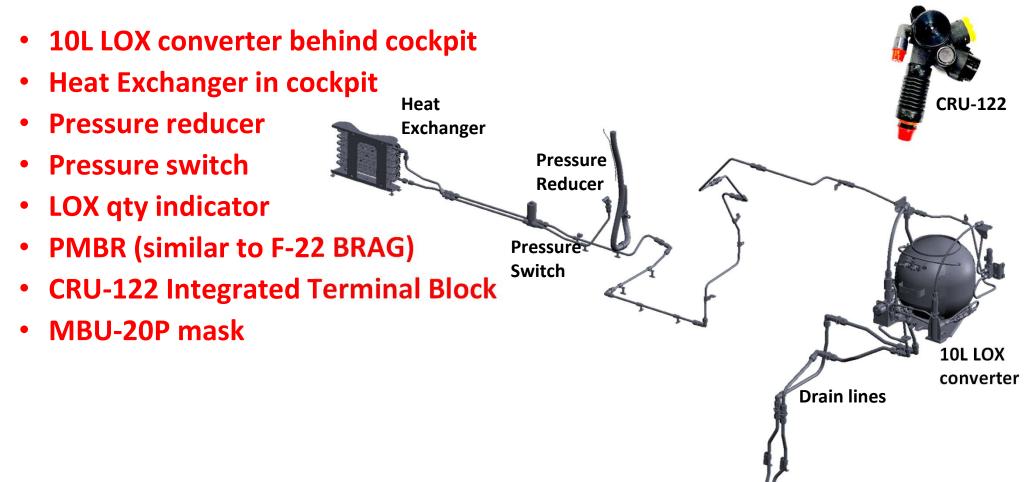
- Design and build a piloted, large-scale supersonic X-plane with technology that reduces the loudness of a sonic boom to that of a gentle thump
- Fly the X-plane over select U.S. communities to gather data on human responses to the low-boom flights and deliver that data set to U.S. and international regulators.

• X-59 (and chase!) Aircraft Design Limits

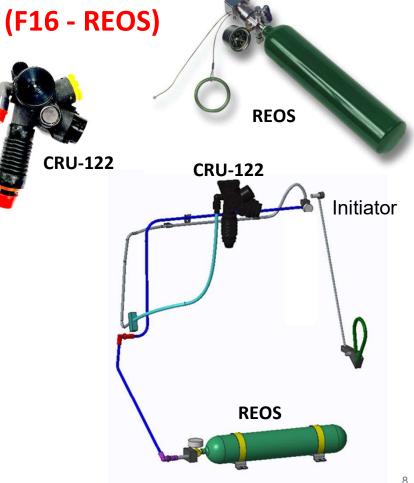
- 60,000 ft
- 450 KEAS / 1.7 Mach
- Typical Mission Flight Profile
 - Two runs at Mach 1.4
 - 20 minutes at 50K-55K ft
 - Standard 5 psi differential cabin pressure schedule
- Routine Operations (X-59 plus F-15 chase)
 - Up to 3 flights per day
 - 100% oxygen to pilot during all ops
 - 30 minute pre-breathe (to reduce DCS risk)
- Immediate Descent if:
 - Cabin depressurization
 - Oxygen System Malfunction



Summary of LBFD Program Aircraft LSS Oxygen Systems


- Next four pages show the four systems discussed in this brief
 - X-59 Primary Oxygen System
 - LOX-based
 - \circ No OBOGS
 - X-59 Emergency Oxygen System (EOS)
 - $_{\odot}$ 50 cu in compressed oxygen gas
 - F-15 Primary Oxygen System
 - $\circ~\text{LOX-based}$
 - \circ No OBOGS
 - F-15 Emergency Oxygen System (EOS)
 - $_{\odot}$ 50 cu in compressed oxygen gas

X-59 Primary Oxygen System



X-59 Emergency Oxygen System

- 50 cubic inch bottle and regulator head (F16 REOS)
 - Beneath SSK
 - Pressure gage
- T-38 shear pin initiator in seat back •
 - Removed pressure reducer from head
 - Wire pull actuation
 - pressure gage
- **CRU-122 Integrated Terminal Block**
- **MBU-20P** mask

F-15 Primary Oxygen System Modifications

Current System

- 10 Liter Lox Bottle
- CRU-93 Panel Mounted Regulator
- CRU-60P Integrated Terminal Block

System Modified for X-59 Program

- 10 Liter Lox Bottle
- PMBR Panel-Mounted Regulator
- CRU-122 Integrated Terminal Block
- Pressure Reducer

Lox Bottle

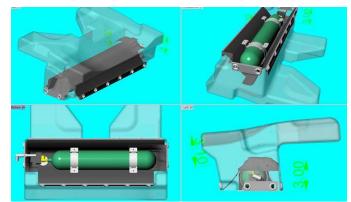
F-15 Emergency Oxygen System Modifications

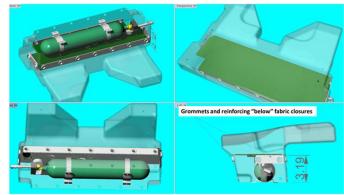
Current System

- 22 cubic inch bottle, xxx regulator head
- CRU-60P Integrated Terminal Block

- 50 cubic inch bottle and regulator head (F16 REOS)
- CRU-122 Integrated Terminal Block

Summary of LBFD LSS Oxygen System Operational Challenges


- Next pages outline several LSS challenges from maintenance standpoint
 - X-59
 - 1. X-59 EOS tank fit within SSK
 - 2. LOX converter fit and maintenance
 - 3. EOS LOX Qty daily checks
 - F-15
 - 1. Installing Panel Mounted Breathing Regulator (PMBR)
 - Both
 - 1. Incorporating a New Demand Regulation Head to EOS Oxygen Supply
 - 2. Reducing pressure to PMBR


X-59 LSS Operational Challenge #1: EOS oxygen tank fit within SSK

- Goals:
 - Ensure X-59 can carry sufficient emergency O₂
- Challenges:
 - 50 in³ O₂ volume required
 - Provide >25 lpm for ejection and fly down from 60K ft
 - T-38 seat back insufficient to fit flight rated hardware
 - Need to use space beneath seat for oxygen
 - Infringes on SSK contents, esp life raft
- Resolution:
 - Redo SSK to accommodate oxygen bottle
 - Employ space saving life raft and fewer rations

Initial SSK/EOS cylinder fit: CAD model

Final SSK/EOS cylinder fit: CAD model

X-59 LSS Operational Challenge #2: LOX Converter Fit and Maintenance

- Goals:
 - Ensure LOX converter can support mission parameters
- Challenges:
 - Timely oxygen servicing: (turnaround times)
 - AFRC procedures: no oxygen filling on acft converter removal
 - Many fittings to secure oxygen compartment cover
 - Small mounting space: possible obstructions on sides and front
- Resolution:
 - Adopt elbow capacitance fittings
 - LL: Work with LM team to ensure adequate clearance

aran

bartmen

Large number of

closure fittings

on compartment

LOX converter/compartment fit: CAD model 13

X-59 LSS Operational Challenge #3: EOS Oxygen Quantity Daily Checks

- Goals:
 - Ensure EOS parameters (leaks, pressure, etc...) can be checked easily
- Challenges:
 - Oxygen cylinder beneath seat precludes easy optical access
 - Existing gages have coarse resolution
 - Prefer NOT to remove SSK to simply view cylinder pressure (CAD?)
 - Need to check pressure in tubing also at initiation head
- Resolution:
 - Finer resolution gage installed at initiator valve easier to see through pilot seat back
 - Small inspection port added to port side of seat frame and SSK
 - Allows crew chief to inspect pressure with mirror

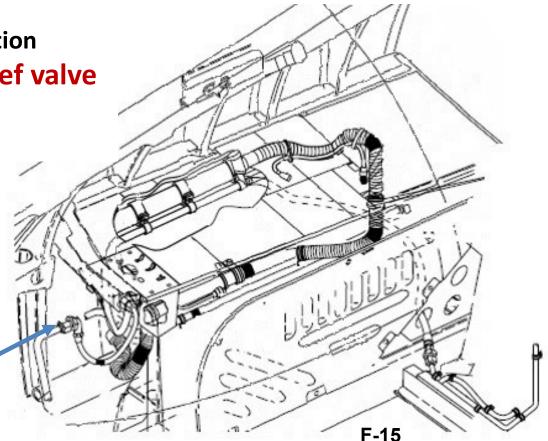
F-15 LSS Operational Challenge #1: Installing Panel Mounted Breathing Regulator (PMBR)

- Goals:
 - Have a regulator capable of going to 60000 ft altitude
 - Use currently flight approved equipment
- Challenges:
 - Current F-15 regulator CRU-93 ceiling: 50000 ft altitude
 - Flight ceiling 60000 ft
 - BRAG Valve exclusively F-22 acft
 - BRAG requires ECS air for G-control (Following slide)
 - Currently other side (left) of acft
 - Currently ECS inlet pressure is too high for PMBR
- Resolution:
 - Boeing, Honeywell agreed to sell NASA BRAG-like valve
 - Removing switches not required with LOX and renaming regulator
 - Panel Mounted Breathing Regulator (PMBR)

"Combat Edge" Oxygen Regulator CRU-93

F-15 LSS Operational Challenge #1: Installing PMBR (Cont.)

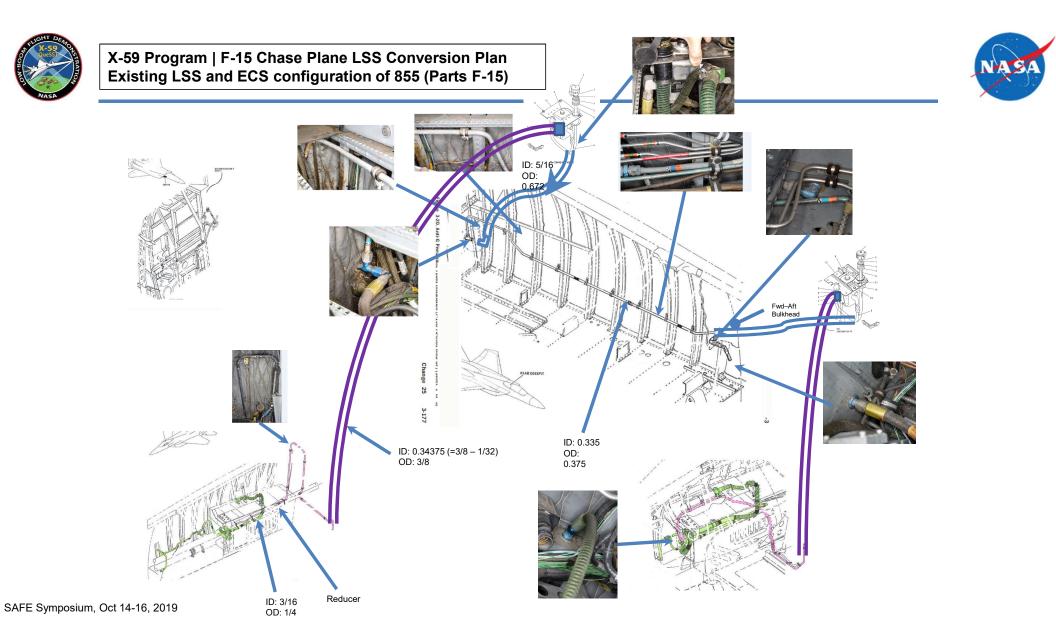
Use current oxygen lines in acft


• Easy to return to original configuration

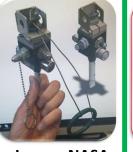
Install pressure regulator and relief valve

- F-15 LOX supplies 80-120 psig
- PMBR requires 20-75 psig

• Pressure regulator and a 75 psig relief valve


F-15 LSS Operational Challenge #1: Installing PMBR: ECS Air to PMBR (cont)

- Goals:
 - Supply ECS air from left hand side of the F-15 to the right to connect to the PMBR
 - Possibly use current ECS air line from Anti-G valve to CRU-93/8 to supply pressure to right hand side of acft (Following slide)
- Challenges:
 - Possible supply pressure from ECS is too high for PMBR (30 +/- 3 PSI)
 - Acquiring flight certified ECS regulator
 - Acquiring Anti-G supply pressure and line pressure ratings from SPO
- Resolution:
 - Route new lines to right hand side of acft
 - Run tests to determine supply pressure, to decide if regulator is required
 - Work with companies to acquire regulator


F-15 Anti-G Valve

F-15 and X-59 LSS Operational Challenge #1: Incorporating a New Demand Regulation Head to EOS Oxygen Supply

- Goals:
 - Desire F-15 chase aircraft EOS supply compatibility w/CRU-122
 - Desire commonality with X-59 EOS
- Challenges:
 - Legacy NASA F-15 EOS regulator heads are currently being evaluated for rebuild and compatibility check (CRU-122)
 - REOS heads are newer, CRU-122 compatible, more pressure protection
 - Periodic maintenance requirements for REOS heads
 - Require removal from acft every 180 days for inspections
 - Possible adverse impact on post-flight turnaround
 - May require larger lot size to ensure availability of flight-ready units
- Resolution:
 - Backup plan to use unsupported NASA F-15 heads (program risk vs in hand)
 - Choose REOS regulator units for BOTH X-59 and F-15 (commonality)
 - REOS units tested at KBR worked well for all conditions
- Purchase sufficient REOS units to have ready spares at all times SAFE Symposium, Oct 14-16, 2019

Legacy NASA F-15 Head

REOS Head

REOS Head Being Tested at KBR

F-15 and X-59 LSS Operational Challenge #2: Reducing Pressure to PMBR

- Ensure PMBR has proper input pressures
- Challenges:
 - LOX converter outputs 70-110 psi during routine ops
 - PMBR requires 40-70 psi for optimal performance
 - Pressure reducer required to optimize input pressure
 - Flight qualified pressure reducer minimize dev costs!
- Resolution:
 - Adopt flight-qualified pressure reducer (mfr recc)
 - Test reducer at KBR to ensure adequate performance
 - Test reducer on F-15 prior to X-59 flights

Status/Future Plans

- Development and Integration Test Schedule:
 - Benchtop tests: present
 - KBR Final Testing: Tentatively February 2020
 - Install and test system in F-15: early 2021
 - F-15s currently going though heavy mod to prepare for chase activities
 - Install system in X-59: Early 2021
 - X-59 First flight: Summer 2021

Summary/Goals of Brief

- Review LBFD program
 - X-59 and F-15 chase aircraft
- Help understand how X-59 program goals affected design
- Describe several X-59 and F-15 chase aircraft design decisions
 - Very specific examples, with relevance to other designs
 - Consider Challenges, Tradeoffs and Design Solutions
 - Focus on Life Support System (LSS)
 - Maintenance Perspective

Please visit the

NASA Armstrong Flight Research Center Exhibit in the Exhibit Hall Booth #201