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Intfroduction

* Biomass burning smoke has numerous  fih.as
detrimental environmental and ecological =-XEa
impacts

- Respiratory and cardiovascular illnesses

- Radiation budget
- Nutrient availability

 Impacts realized both near source and
potentially thousands of kilometers
downwind depending on
- Fire duration

- Amount and type of biomass burned
- Meteorological and fuel conditions
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Intfroduction

« Current methods present challenges for continuous smoke

detection and monitoring

- In-situ monitoring
- Temporal, spatial, and tracer limitations
- Remote sensing
« Polar orbiting, once-daily overpass
« Manual or computational intensive multispectral analysis
- Large data volumes
« Multiple class multispectral classification



Objectives

» Deploy a smoke detection model using machine learning on

satellite remote sensing observations
* Leverage observations from the new generation of geostationary

satellite
« High spatial and temporal resolutions over large domains

. Alternative to multispectral analysis
- Eliminate time consuming, subjective manual analysis



Truth Dataset

« Geostationary Operational Environmental

Satellite 16 shortwave reflectance data
- Bands 1-6 (0.47, 0.64, 0.86, 1.37, 1.6 and 2.2 ym)
. Access L1B radiance data from AWS
. Convert to reflectance
- Spatially resample to 1km

« National Oceanic and Atmospheric
Administration (NOAA) Hazard Mapping
System (HMS) smoke analysis P

« Satellite based operational daily analysis of SMOKEe “5ocs 16 band 1 radiance with nearest in fime Hms
extent over the US and surrounding areas shapefiles (magenta and purple)

« Manual quality controlled by subject matter expert
to correctly match smoke extent in GOES 16
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Truth Dataset

« Geostationary Operational Environmental

Satellite 16 shortwave reflectance data
- Bands 1-6 (0.47, 0.64, 0.86, 1.37, 1.6 and 2.2 um)
. Access L1B radiance data from AWS
. Convert to reflectance
- Spatially resample to 1km

« National Oceanic and Atmospheric
Administration (NOAA) Hazard Mapping

System (HMS) smoke analysis ! >.
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extent over the US and surrounding areas S oy Perple) with subject mater

« Manual quality controlled by subject matter expert
to correctly match smoke extent in GOES 16
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Truth Dataset

* Analyze 122 scenes containing smoke

- 962,691 smoke pixels
« Over low and high background reflectances (land and ocean)
« Low and high optical thicknesses
« Full range of sun angles
- Contain relevant classes to discriminate smoke from including
« Snow and ice
« Clouds
« Dust
- 60% - 20% - 20% distribution of smoke pixels between training,

validation and testing datasets



Model Architecture
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* Apply a pixel based Convolutional Neural Network (CNN)

- Input (N*2)*(N*2) neighborhood of reflectance values surrounding a
center pixel (sample)




Model Architecture
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* Apply a pixel based Convolutional Neural Network (CNN)
- Input (N*2)*(N*2) neighborhood of reflectance values surrounding a

center pixel (sample)
- 3 convolutional layers




Model Architecture
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Model Architecture
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Model Architecture
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Model Architecture

1

40 55 10

. Apply a pixel based Convolutional Neural Network (CNN)

- Input (N*2)*(N*2) neighborhood of reflectance values surrounding a

center pixel (sample)
- 3 convolutional layers
- Each followed by max-pooling layer
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Model Architecture

1

40 55 10

1024

. Apply a pixel based Convolutional Neural Network (CNN)
- Input (N*2)*(N*2) neighborhood of reflectance values surrounding a
center pixel (sample)
- 3 convolutional layers
- Each followed by max-pooling layer
- Convolutional outputs are flattened into vectors




Model Architecture
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* Apply a pixel based Convolutional Neural Network (CNN)
- 4 fully connected layers with activation function calculation g(Wx + b)
- X Is the flattened input vector
- W is the weight matrix
- b is the bias vector




Model Architecture

40
25 10 Is 1

1024

* Apply a pixel based Convolutional Neural Network (CNN)
- 4 fully connected layers with activation function calculation g(Wx + b)
- X Is the flattened input vector
- W is the weight matrix
- b is the bias vector
- Dropout randomly for each fully connected layer
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Model Architecture
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* The model outputs the probability, ranging from 0 to 1, that a

pixel Is smoke determined by a sigmoid function

1
p(x) = 1+e™*

* p > 0.5 threshold applied to define smoke




Neighborhood Selection

* Best neighborhood size (N)

determined by iterating model -0.920
development and testing for 0.16/ o1
Increasing N
- All other parameters including o 0-141 0,910 §
data, learning rate and model ks 3
hyper-parameters are held 0.121 -0.905 <
constant
« Best model selected when 0107 0900
validation loss did not improve T T T
for 20 epochs Number of Neighbors



Development Testing

TP

N Precision Recall F1-Score Accuracy Precision =

TP + FP
1 0.654 0.328 0.437 0.897 P 1l TP

ecall =
3 0.650 0.384 0.483 0.900 TP+ FN
5 0.724 0.449 0.554 0.912 Accuracy = P +TN
TP+ TN +TP + FN

7 0.835 0.419 0.558 0.919

Precision * Recall

9 0.639 0.498 0.560 0.905 F1 Score = 2 * —
Precision + Recall

 The F1 Scores, or the harmonic mean of Precision and Recall,
for N=5,7,9 Is comparable
Trade-off between quality and quantity of smoke predictions
« Best model has low false positive detection rate which drives
high precision
Prefer conservative identification over incorrect classification
« Accuracy artifact of large number of True Negatives



* Model updated to account for variation in solar zenith angle
The training and testing datasets for the updated model differ from
that used for the initial development
Results are comparable between the initial and updated models

« Better predictive capability of smoke over water
Compared to land, the relative decrease in true negatives over water
drives a slight decrease in accuracy

N=7 Precision Recall F1-Score Accuracy
Dev. 0.835 0.419 0.558 0.919
All 0.736 0.453 0.561 0.923
Land 0.631 0.383 0.476 0.928
Water 0.923 0.585 0.717 0.900



2 May 2018 - Southern Florida

« Smoke identified over both

land and ocean
- Model identifies well defined
plumes for scenes with
absence of complex features
- Probabillities resemble
visually observed optical
thickness

* Predictions closer
resemblance to quality
controlled shapefiles

GOES 16 pseudo-RGB with contoured model predictions (shading), HMS shapefiles
(magenta and purple), and subject matter quality controlled shapefile (blue).



24 March 2018 - Southern Florida

* Distinguishable from
chlorophyll commonly found
IN coastal settings

 Discriminate smoke from fair
weather cumulus cloud

« Spectral information for other
classes not provided to the .
model
Precision Recall F1-Score Accuracy
All 0.744 0.604 0.666 0.948
Land 0.847 0.244 0.379 0.976 GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).
Water 0.742 0.623 0.677 0.943



11 June 2017 - Southern Rocky Mts. United States

» Successfully discriminates
land surface snow/ice from

smoke
- Over snow capped mountains
for this case

 Detection challenges for
optically thin smoke over arid

regions
Precision Recall F1-Score Accuracy
All 0.848 0.318 0.462 0.977
Land 0.848 0.319 0.463 0.977 GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).
Water N/A N/A N/A 0.984




9 October 2017 - Central California

 Large and small plumes

 |dentification over both land
and ocean

» Coastal stratus clouds

Precision Recall F1-Score Accuracy
All 0.970 0.919 0.944 0.961
Land 0.904 0.754 0.823 0.920
Water 0.986 0.965 0.975 0.980

GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).
Y, ATEETEEEEEEEEEEEEEEEEEEE———————v



20 May 2018 - Southern Arizona

« Smoke not detected at very

low sun angles
* Compounded by low optical
thickness over relatively high
reflective surface
* Probability of being smoke is
low for few pixels that are

Identified
Precision Recall F1-Score Accuracy
All 0.995 0.093 0.171 0.823 GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).
Land 0.995 0.093 0.171 0.822
Water 0.923 0.585 0.717 1.000



14 April 2018 - Southern Rocky Mts. United States

» Overprediction of plume

extent

- Artifact of large (N=7)

neighborhood size
- Non-zero floor to number of

false positives

Precision Recall F1-Score Accuracy
All 0.830 0.738 0.781 0.981
Land 0.830 0.738 0.781 0.981
Water N/A N/A N/A 0.993

GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).



17 April 2018 - Southern Rocky Mts. United States

« Other atmospheric aerosols
not classified as smoke

 Large dust storm case
- Represents a major source of
aerosols in the atmosphere
- Expected over regions where
smoke Is also common

Precision Recall F1-Score Accuracy
All N/A N/A N/A 0.996
Land N/A N/A N/A 0.996
Water N/A N/A N/A N/A GOES 16 pseudo-RGB (left) with shaded contoured model predictions (right).




Operational Capabilities

 Currently testing new deployment in operational environment
- Anticipate operational October 2019

 Fully deployed in the cloud using Amazon S3 and Cloud
Computing Services

* End-to-end prediction and visualization pipeline

- Model prediction available ~15 min after data availability
« Preprocessing ~10 min
 Prediction and Postprocessing ~5min

- Full disk GOES observation available ~10 min intervals






Operational Capabilities - Postprocessing

 Spatial grouping of predicted
pixels to define plumes

- Convert predicted pixels to
bitmap image

- Blurring to smoothen edges

- Contour blurred image to group
smoke pixels into plumes

- Plumes visualized and geojson
representation of plume extents
available for download in the
Phenomena Portal
(http://phenomena.surge.sh)



http://phenomena.surge.sh

* Developed end-to-end machine learning smoke detection

pipeline for next-generation of geostationary satellites
- Well curated smoke extent dataset
- Scalable smoke detection deep learning model, requiring only smoke

iInformation, and capable of detecting smoke with:
« Varying optical thicknesses
« Over low and high reflectance background surfaces
« Discriminates from features with spectral similarities
- Fully automated operational deployment of model in development
« Plume visualization and extent data accessible in online platform



« Expand the training data to account for identified weaknesses
- Low sun angles
- Thin smoke over arid regions
- Thin clouds

* Refinement of the machine learning model

- Confirmation of N=7 as best performing model

« EXxplore trade-off between neighborhood size and prediction capabilities
. Stepwise band selection considering all 16 GOES bands
- Robust model validation

« Band exclusion to identify contribution to feature learning

* Performance assessment for operational improvements



Thank you!

MrO051@uah.edu

aaron.kaulfus@nssic.uah.edu




