

Materials and Processes for New Propulsion Systems with Reduced Environmental Impact

Joseph Grady, Craig Robinson, Gary Roberts, Sandi Miller, Michael Halbig, Michael Pereira & Charles Ruggeri NASA Glenn Research Center Cleveland, Ohio

Lee Kohlman

NASA Ames Research Center Mountain View, California

for presentation at

the 24th conference of the International Society for Air Breathing Engines in Canberra, Australia on September 22 - 27, 2019

NASA Glenn Core Competencies

Air-Breathing Propulsion

In-Space Propulsion and Cryogenic Fluids Management

Physical Sciences and Biomedical Technologies in Space

Communications Technology and Development

Power, Energy Storage and Conversion

www.nasa.gov

Presentation Topics

- Ceramic Matrix Composites
 - CMC development & characterization
 - Environmental Barrier Coatings

• Polymer Matrix Composites

- Toughening for fan blade application
- Lightweight hybrid Composite/Metal gear

Additive Manufacturing Applications

- Ceramic Matrix Composites
- High Power Density Electric Motors

NASA 2700°F CMC combines three technology advancements

 Creep-resistant Sylramic-iBN SiC fiber

• Advanced 3D fiber architecture

Hybrid CVI-PIP
SiC matrix

Creep and fatigue tests demonstrated durability of 3D hybrid-matrix CMC at 2700°F (1482°C)

30

Challenge

Durable 2700°F Ceramic Matrix Composites will reduce cooling air required for turbine engine components, increasing engine efficiency and reducing fuel burn and emissions

Approach

Characterize mechanical properties and durability of TTT-developed CMC at 2700°F

Creep Rupture

CMC shows 1000 hours durability at 2700°F and 20 ksi (138 MPa) in creep and fatigue

Contact: Ramakrishna.T.Bhatt@nasa.gov

Environmental Barrier Coatings are needed

Higher temperature capability

- Mechanical properties (creep rupture, fatigue)
- Oxidation resistance
- Reduced cooling and/or higher turbine inlet temperature

Lightweight

• 1/3 of Ni-based superalloys

Performance Benefits

- Reduced fuel Consumption
- Higher Thrust
- Reduced Nox and CO emissions

SiC materials limited by water vapor attack

- SiO₂ scale reacts w/ H₂O to form hydroxide species
- Results in severe recession of component

Without EBC, SiC matrix material reacts with H₂O to cause recession and failure of SiC-based CMC

Progress toward a durable 2700°F CMC / EBC system

PS-PVD & Slurry Coat Process for Turbine Airfoils

Slurry provides economical, non*line of sight, and chemistry* friendliness. PS-PVD is a hybrid process (plasma and/or vapor) that provides variable microstructure along with non-LOS.

APS Yb₂Si₂O₇ EBC Modified for Long Life

- TGO is life-limiting failure mechanism for SOA 2400 F EBC $H_2O(g)$
 - Gen 2 Si/YbDi
- GO (SiO₂) Si BC
- H₂O primary Ox TGO from Si BC
- Al₂O₃/TiO₂ known to reduce diffusivity in SiO₂
- Investigate effect of modifier oxides on TGO growth rates in Yb₂Si₂O₇

- Modified EBCs reduced TGO by 80%
 - ~20x life to reach TGO t_{fail}
- Hypothesis: modifiers dissolve in SiO₂ TGO, modify structure, decrease Ox
 - Patents & more studies ongoing

Durable CMC / EBC demonstrated in 2700°F turbine environment

Cooled CMC / EBC Airfoils Evaluated in Turbine Rig Tests

- Synergy of failure mechanisms
- (3) Test Articles, 45 hours total
- Compared in-house against commercial EBCs

Fundamental Durability Tests Characterize EBC Failure Modes

damage mechanisms are incorporated into life prediction models

NASA

Polymer Matrix Composites: Fan Blade Application

Challenge: reduce impact damage without sacrificing in-plane properties or manufacturability

Thermoplastic Veil Interleave

- Melt-spun thermoplastic polyurethane veil was procured from Hills Inc, of Melbourne, FL.
- Veil areal weight: 15 gsm
- Average diameter on the submicron scale. (70 – 150 nm)
- Benefit to veil approach: Reinforcement is placed where it provides the most benefit.

Toughened Fan Blade Has Reduced Impact Damage

Baseline IM7/8551-7 test article leading edge damage after impact Test article **toughened** with thermoplastic polyurethane veil between plies

Post-impact thermography

Thermoplastic veil interleave distributes impact energy more effectively in toughened composite (right side)

Toughness vs. strength tradeoff

200 Tensile Strength 180 (ksi) 160 Compressive 140 Strength Peak Stress 120 100 80 60 40 20 0 Baseline Carbon 15 gsm 45 gsm TPU TPU

Noveon TPU interleave resulted in a 7- fold increase in Mode II fracture toughness. Tension and Compression Data shows a drop of in-plane performance with increasing areal weight of veil

Hybrid Composite-Steel Gear for Rotorcraft

Objective: Replace steel web helicopter gear with composite to reduce weight and noise due to vibration.

Challenge: Hybridization of dissimilar materials without sacrificing performance

"hybrid" gear (15% weight reduction)

Challenges:

- Processing considerations at the flange in particular- low void, low wrinkling.
- Ensure high quality laminates in complex architectures
- Reduce processing time and cost while maintaining aerospace grade performance.

Additive Manufacturing: GRC Composites Research

ExOne M-Flex Binder Jet machine:

Powder bed process with *tailored binders* and *chopped fibers* for CMC fabrication

n-Scrypt direct printing machine:

- Multi-material systems
- Ceramic pastes, electronic pastes, adhesives, solders, plastics

Multi-material stator for high power density electric motor

The first CMC turbine engine components by additive manufacturing

contact: michael.c.halbig @nasa.gov

cooled doublet nozzle sections

SiC/SiC CMCs have 20% chopped SiC fiber

Densification of Binder Jet Fabricated SiC

Binder Jet Machine

Density of Green Printed SiC

Contact: Craig.E.Smith@nasa.gov

Additive Manufacturing for Electric Motor Fabrication

Objective: Use additive manufacturing methods to fabricate electric motors with higher efficiency and power density

Approach:

- Use Direct Printing and Electron Beam Freeform processes to build lightweight and compact rotor, stator & motor housings for advanced motors
- Measure improvements in motor efficiency and power density compared to baseline SOA motor

Urban Air Mobility Application

Baseline Motor: 7.5-inch diam and 4 lbs

Advanced Motor Design with AM components AM motor design enables a 2x increase in power density (8 kW/kg)

Motor components optimized for power density using Additive Manufacturing methods

Baseline motor: power density = 4 kW/kg

reduced weight of structural housing 67%

optimized fabrication process for wire-embedded stator

integrated airfoil-shaped cooling fins into motor housing

power density doubled to 8 kW/kg using Additive Mfg methods to fabricate motor components

Summary

NASA Glenn Research Center has recently demonstrated a range of new high temperature and lightweight materials technologies to enable reduced emissions and fuel burn in aircraft engines, including:

- Ceramic Matrix Composites and Environmental Barrier Coatings for 2700°F turbine operation, reducing the need for cooling air and increasing engine efficiency
- A toughened Polymer Matrix Composite that significantly reduces impact damage in fan and nacelle structures
- A hybrid composite/steel gear concept that reduces gear weight by 15%, demonstrating feasibility of multi-speed drive systems for power transmission in rotorcraft
- New Additive Manufacturing processes to fabricate components that double the SOA power density (to 10 kW/kg) of UAV electric motors