

Sublimation Protection Coatings for Thermoelectric Materials for Space Power Applications

Kang Lee, Bernadette Puleo NASA Glenn Research Center, Cleveland OH

> John Setlock University of Toledo, OH

MS&T2019, Portland OR October 2, 2019

This work was supported by NASA NextGen Technology Maturation program

Radioisotope Power Systems

- Enable and enhance missions by providing electrical power to explore remote and challenging environments where solar power is unavailable
 - Spacecraft operation
 - Instrumentation
- Converts heat from a Radioisotope into electricity
 - Heat is the product of the natural decay process of the isotope

RTG (Radioisotope Thermoelectric Generator)

- An electrical generator that uses an array of thermocouples to convert the heat released by the decay of a radioactive material into electricity.
- Radioactive decay of the fuel produces heat. The temperature difference between the fuel and the heat sink allows the thermocouples to generate electricity.
- Si-Ge is current state-of-the-art thermoelectric material in current RTGs
- The compound Yb₁₄MnSb₁₁ is a thermoelectric material of interest to NASA as a candidate replacement for Si-Ge.
- Yb₁₄MnSb₁₁, however, suffers from a high sublimation rate at elevated temperatures (up to 1000°C)
 - Requires a sublimation protection in order to survive the required RTG lifetime of 14 years.

RTG: Thermoelectric Technology Nomenclature

Heat source

1961

197

2021

Sublimation of Yb₁₄MnSb₁₁ (1000°C, 4 - 6 x 10⁻⁶ Torr)

2 µm

Micrographs

J. Nesbitt, J. Electronic Materials, 43(9) 3128-3137 (2014)

- ٠ Sublimation rates: $0.3 \times 10^{-3} \text{ g/cm}^2 - 3 \times 10^{-3} \text{ g/cm}^2$
 - Three orders of magnitude higher than the target rates $(1 \times 10^{-6} \text{ g/cm}^2)$
- White, powdery oxide on the surface, which was identified by XRD as Yb_2O_3 •

- In Ar-5% H₂, there was sufficient oxygen present in the furnace system to form thin, transparent, adherent scale
- After 168h at 1000°C in vacuum, the scale became opaque, friable, and detached
 - Not effective as sublimation barriers

Rare Earth Oxide and Rare Earth Silicates are Thermodynamically Compatible with Yb₁₄MnSb₁₁

- Most oxides are reduced by Yb₂O₃ because of its very low free energy of formation
- Yb₂SiO₅ is thermodynamically stable in contact with Yb₂O₃
- Other rare earth oxides should be stable in contact with Yb₂O₃ as long as they do not form a solid solution

Objective

- NASA
- Develop a sublimation protection coating for Yb₁₄MnSb₁₁ via slurry process
 - Derived from our experience with slurry-based EBCs (environmental barrier coatings)
 - Candidate coating material: Y₂O₃, Yb₂SiO₅, 7YSZ (ZrO₂ + 7wt% Y₂O₃)
 - Sintering temperature < 1000°C
 - Sintering aids: AI , AI + Zn (50 wt% + 50 wt%)
 - Sintering: 2-3 hr @ <1000°C, vacuum
 - Durability Test: 100 hr @ 1000°C, vacuum

Y₂SiO₅ + Al Slurry Coating on Stainless Steel

NASA

Sintered at 700°C for 3 hr in vacuum ($10^{-6} \sim 10^{-7}$ Torr)

• Excess Al (Al = 5 wt% & 10 wt%) leads to coating debonding and spallation

• No excess Al visible with 2 wt% Al, however coating is not well bonded

Y₂SiO₅ + (AI + Zn) Slurry Coating on Stainless Steel

Sintered at 500°C for 3 hr in vacuum (10⁻⁶ ~ 10⁻⁷ Torr)

$Y_2SiO_5 + 2 wt\% AI + 2 wt\% Zn$ $Y_2SiO_5 + 5 wt\% AI + 5 wt\% Zn$ $Y_2SiO_5 + 5 wt\% AI + 5 wt\% Zn$

• Excess Al + Zn (Al + Zn = 5 + 5 wt% & 10 + 10 wt%) leads to coating debonding and spallation

• No excess Al visible with 2 wt% + 2 wt% Zn, however coating is completely debonded

Slurry Coatings on Yb₁₄MnSb₁₁ (Sintering Aid = 2 wt% AI + 2 wt% Zn)

Y₂O₃

Yb₂SiO₅

Sintering in vacuum (10⁻⁶ ~ 10⁻⁷ Torr)

- Ramp to 500°C (4°C/min)
- Dwell at 500°C for 3 hr
- Cool down to RT (5°C/min)

Oxidation in vacuum ($10^{-6} \sim 10^{-7}$ Torr)

 $ZrO_2 + 7 w\% Y_2O_3$

- Ramp to 1000°C (4°C/min)
- Dwell at 1000°C for 100 hr
- Cool down to RT (5°C/min)
- Y₂O₃ was powdery: Crumbled on handling (darker gray edges are spalled areas)
- Yb₂SiO₅ looked best: Edges damaged by tweezers, indicating the coating is friable
- 7YSZ spalled: Black is remaining coating and gray is exposed substrate after spall

Y₂**O**₃ + 2 wt% Al + 2 wt% Zn

• An outer layer separated from the substrate by cloud of particles

- The outer layer appears to be a $Y_2O_3 + Yb_2O_3$ solid solution
 - No Al and Zn detected in the coating by EDS presumably dissolved in the substrate
- Cloud of particles is Yb₂O₃ due to the oxidation of substrate
 - Yb₂O₃ is thermodynamically more stable than Sb₂O₃ and MnO

Yb₂SiO₅ + 2 wt% Al + 2 wt% Zn

Coated Side

Uncoated side has cloud of particles only

- No Si in the outer layer, but Si in the cloud of particles
 - Need further investigation to understand this
- No Al and Zn detected in the coating by EDS presumably dissolved in the substrate

Particles on the Uncoated Side

2.5µm

 $Yb_2O_3 = 87.8 \text{ wt\% } Y + 12.2 \text{ wt\% } O$

• Particles are likely Yb₂O₃

Spectrum 2, 3, 4, 5, 9

YSZ (ZrO₂ + 7 w% Y₂O₃) + 2 wt% Al + 2 wt% Zn

• YSZ coating is buried in the cloud of particles

- Yb₂O₃ layer grew on YSZ layer
- Cloud particles is Yb₂O₃

Yb₂SiO₅ + 2 wt% Al

Sintering in vacuum (10⁻⁶ ~ 10⁻⁷ Torr)

- Ramp to 700°C (4°C/min)
- Dwell at 700°C for 3 hr
- Cool down to RT (5°C/min)

Oxidation in vacuum ($10^{-6} \sim 10^{-7}$ Torr)

- Ramp to 1000°C (4°C/min)
- Dwell at 1000°C for 100 hr
- Cool down to RT (5°C/min)

• Coating stayed on after 100h / 1000°C exposure, however, it was friable

Yb₂SiO₅ + 2 wt% Al after Oxidation

Similar microstructure to Yb₂SiO₅ coating with Al + Zn sintering aid

250µm

•

•

Conclusion

- Yb₁₄MnSb₁₁ requires sublimation protection coating to be useful as a thermoelectric material for next gen Radioisotope Thermoelectric Generator (RTG)
- Rare oxides, rare earth silicate, and ZrO₂ + 7 Y₂O₃ (YSZ) are promising coating candidates because they are chemically compatible with the substrate
 - Yb₂O₃ is very stable, due to its very low free energy of formation, however, is friable, causing the coating to debond
 - Debonded coating was weak and friable, presumably because AI and AI + Zn are not effective sintering aids as they dissolve into the substrate
- Alternative sintering aids that do not react with the substrate required
- Even with a better sintering aid, debonding may be unavoidable due to the weak and friable nature of Yb₂O₃ oxide
 - Alternative strategy is to develop a coating with strong cohesive strength that can be physically harnessed to the substrate to mitigate sublimation

Acknowledgements

• Wayne Jennings (NASA Glenn) – SEM analysis