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The upcoming Lunar IceCube (LIC) mission will deliver a 6U CubeSat to a low lunar orbit via a ride-share
opportunity during NASAs Artemis 1 mission. This presents a challenging trajectory design scenario, as
the vast change in energy required to transfer from the initial deployment state to the destination orbit is
compounded by the limitations of the LICs low-thrust engine. This investigation addresses these challenges
by developing a trajectory design framework that utilizes dynamical structures available in the Bicircular
Restricted Four-Body Problem (BCR4BP) along with a robust direct collocation algorithm. Maps are created
that expedite the selection of invariant manifold paths from a periodic staging orbit in the BCR4BP that
offer favorable connections between the LIC transfer phases. Initial guesses assembled from these maps are
passed to a direct collocation algorithm that corrects them in the BCR4BP while including the variable
low-thrust acceleration of the spacecraft engine. Results indicate that the ordered motion provided by the
BCR4BP and the robustness of direct collocation combine to offer an efficient and adaptable framework for
designing a baseline trajectory for the LIC mission.

1. Introduction

Advances in spacecraft technology miniaturization
and an increase in launch opportunities have expo-
nentially increased the number of CubeSats launched
in the two decades since the platform was first pro-
posed. Early success has motivated concept devel-
opment for CubeSat missions beyond the bounds of
low Earth orbit (LEO). In 2018, the two MarCO
Cubesats, as the first to operate beyond Earth or-
bit, were deployed at Mars to monitor the entry, de-
scent, and landing of the Insight lander.1 Soon, thir-
teen CubeSats will utilize a rideshare opportunity on
the Space Launch System (SLS) during the Artemis
1 mission to reach a variety of destinations well be-
yond LEO. Several of these spacecraft will reach he-
liocentric space, including the Near Earth Asteroid
Scout (NEA Scout) and the CubeSat for Solar Par-
ticles (CuSP), with a flyby of a near-Earth asteroid
and to investigate space weather, respectively. Other
CubeSats on this launch which are destined for the
Moon, include Lunar IceCube, Lunar Flashlight, and
LunaH-Map. Together, these far-flung CubeSat mis-
sions indicate that small spacecraft will play an in-
creasingly important role in space exploration.

While the CubeSat revolution has opened exciting
opportunities, it brings new challenges. Despite tech-
nological advancements, ambitious CubeSat missions
often require “doing more with less”. For mission
design, innovative trajectory design approaches are
necessary that fully exploit natural dynamics. The
Lunar IceCube (LIC) concept offers an excellent ex-
ample of the challenges. This mission will deliver a
6U CubeSat to a low lunar orbit (LLO) where LIC
will collect data on water transport throughout the
lunar surface. A challenging trajectory design sce-
nario emerges, as the vast change in energy required
to transfer from the initial deployment state to LLO
is compounded by the limited control authority of
the LIC low-thrust engine. Furthermore, as a sec-
ondary payload, LIC is subject to changes in launch
date and conditions required by the primary mission.
These challenges necessitate a trajectory design strat-
egy that is flexible and incorporates natural forces to
assist with the required energy change.

This investigation proposes a trajectory design
framework that addresses the challenges of the Lu-
nar IceCube mission by utilizing dynamical struc-
tures available in the Bicircular Restricted Four-Body
Problem (BCR4BP) along with a robust direct col-
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location algorithm. Designing in the BCR4BP en-
ables the gravitational force of the Sun to be lever-
aged to achieve part of the required energy change,
while avoiding the additional perturbations of a full
ephemeris model. A key feature of the proposed de-
sign approach is the use of a staging orbit near the
Moon to split the trajectory into two phases: the first
from spacecraft deployment to the staging orbit, and
the second from the staging orbit to the science or-
bit. The focus on two separate arcs allows the two
halves of the LIC trajectory to be designed mostly
independently, thus, simplifying the redesign process
if deployment conditions change. Moreover, a peri-
odic orbit in the BCR4BP is employed as the staging
orbit, to leverage its invariant manifolds for the de-
sign efficient of paths to and from the staging orbit.
Another crucial component of the proposed frame-
work is a direct collocation algorithm to correct initial
guesses developed in the BCR4BP into optimal low-
thrust trajectories. The robust convergence proper-
ties of direct collocation facilitate a wider variety of
initial guesses despite large discontinuities in states or
time. Together, these key design choices produce a
design process that directly addresses the challenges
of the Lunar IceCube mission. After an overview of
the necessary background, the proposed trajectory
design framework is described. Sample Lunar Ice-
Cube trajectories are constructed with the proposed
strategies. While the trajectory design procedure is
applied to the Lunar IceCube mission, it is sufficiently
general for a wide variety of low-thrust missions es-
pecially those with limited control authority.

2. Background

2.1 Previous Work

First proposed in 2015, the Lunar IceCube (LIC)
mission is a collaborative effort led by Morehead
State University and supported by Goddard Space
Flight Center (GSFC), Busek, and Catholic Univer-
sity of America2. During this mission the presence
and movement of water in all its forms across a broad
swath of the lunar surface is to be investigated. To
enable the science collection, the 6U CubeSat will
conduct science operations in a low lunar orbit (LLO)
that covers a range of longitudes on the sunlit side of
the Moon with a perilune altitude of 100 km. The
full set of Keplerian orbital elements that define the
science orbit are provided in Table 1 and are driven
by the science requirements as well as the desire to
maximize spacecraft lifetime while minimizing the
station-keeping cost.3 Station-keeping and the trans-
fer trajectory to the science orbit are achieved via a

Table 1: Lunar IceCube science orbit Keplerian or-
bital elements defined in a Moon-centered iner-
tial frame. Inclination is measured relative to the
Moon’s equator and the right ascension of the as-
cending node (RAAN) is defined with respect to
the vernal equinox vector.

Orbital Element Value
Semi-Major Axis, a 4271.4 km
Eccenctricity, e 0.5697
Inclination, i 89.35◦

RAAN, Ω 65◦

Argument of Periapsis, ω 355◦

BIT-3 Busek ion thruster, which is capable of a max-
imum thrust of 1.24 mN, a specific impulse (Isp) of
2640 seconds, and storing up to 1.5 kg of propellant.4

Given the total 14 kg mass of LIC, these engine char-
acteristics equip it with a maximum acceleration of
8.857 × 10−5 m/s2. This value is compared to the
maximum acceleration values of several other low-
thrust spacecraft in Table 2; the low-thrust capabil-
ity of LIC is clearly of the same order of magnitude
as other recent or proposed low-thrust missions. The

Table 2: Representative low-thrust spacecraft accel-
eration levels.

Spacecraft Max Acceleration (m/s2)
Deep Space 15 1.892× 10−4

Lunar IceCube 8.857× 10−5

Dawn6 7.473× 10−5

Gateway 3× 10−5

mission design challenge for Lunar IceCube is due
less to the small thrust magnitude and more to the
fact that this engine must deliver a massive change in
energy to transfer from the high-energy deployment
state near the Earth to the low-energy LLO. Despite
this challenge, engineers at GSFC have developed a
complete baseline trajectory, plotted in Figure 1, that
utilizes the current launch date of June 25th 2020.
However, this baseline trajectory must be redesigned
when an updated launch date is released in the near
future. Previous experience has demonstrated that
varying the launch date can significantly impact the
geometry of the LIC trajectory.

Faced with a challenging trajectory design sce-
nario and uncertain launch conditions, engineers at
GSFC have been informed by the results of several
investigations on LIC trajectory design. A strategy
that utilizes the high-fidelity General Mission Anal-
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(a) Earth-Centered J2000 Inertial Frame

(b) Earth-Moon Rotating Frame

Fig. 1: Current baseline for Lunar IceCube trajectory
developed assuming a June 25th, 2020 launch date.

ysis Tool (GMAT) to design an LIC trajectory with
a capture orbit at the Moon is offered by Mathur7.
An innovative design approach for LIC is also pre-
sented by Bosanac, Folta, Cox, and Howell which
subdivides the Lunar IceCube trajectory into three
phases: deployment, phasing as well as energy adjust-
ment, and lunar capture. A strategy for linking these
phases that incorporates periapse maps and phasing
arcs generated in the Sun-Earth Circular Restricted
Three-Body Problem (CR3BP) or the BCR4BP is de-
veloped by Bosanac et al.8–10. Particular focus on the
dynamics of the lunar capture phase is delivered sep-
arately by Folta et al.11. The strategy presented by
Bosanac et al. is effective, and the current investiga-
tion expands upon their work by approaching the de-
sign problem with a framework that utilizes BCR4BP

dynamical structures and direct collocation. This ap-
plication may yield a design procedure that requires
less computational time and is more robust with poor
initial guesses.

In addition to work focused on LIC, this investiga-
tion is influenced by a greater body of literature on
leveraging the influence of the Sun to design trans-
fers from the Earth to the Moon. Belbruno and Miller
demonstrate new types of Earth to Moon trajectories
by simultaneously incorporating the gravitational in-
fluence of the Sun in addition to the Earth and Moon.
Strategies for utilizing this acceleration to develop
low-energy trajectories from the Earth to the Moon
are developed by many authors, including Koon et
al.12, Gómez et al.13, as well as Parker and Martin14.
Low-energy trajectory design techniques are also ap-
plied to design low-thrust trajectories to the Moon by
Mingotti et al.15 and Zanottera et al.16. The present
work uses direct collocation to compute low-thrust
transfers building on the work of authors such as En-
right and Conway17 as well as Grebow, Ozimek, and
Howell18 who also employ this algorithm to generate
low-thrust Earth to Moon transfers. Some authors
exploring low-energy trajectory design also demon-
strate transfers from Earth-Moon halo orbits to LLO,
a strategy used in this investigation. Parker and An-
derson19 offer an impulsive transfer, while Mingotti
et al. demonstrate a low-thrust result20. Recently,
Cheng et al.21 and Cao et al.22 have more closely ex-
amined impulsive transfers from halo orbits to LLO
in the CR3BP.

2.2 Bicircular Restricted Four-Body Problem

The BCR4BP builds on the assumptions of the
CR3BP. The CR3BP models the path of a third body,
P3, under the influence of two more massive primary
bodies, P1 and P2. These bodies are assumed to
follow circular Keplerian orbits about their mutual
barycenter, B1. Additionally, the third body is as-
sumed to possess negligible mass in comparison to
the primary bodies, and this assumption is reason-
able when the mass of the third body is quite small,
e.g., a spacecraft. Finally, the mass ratio of P1 and P2

is denoted, µ = m2

m1+m2
, and is used to characterize

the CR3BP system.

The BCR4BP assumes the addition of a fourth
body, P4; both P4 and the P1-P2 barycenter, B1,
move in circular orbits about their mutual barycen-
ter, B2. In this investigation, P4 is always the Sun,
thus the mass of P4 equals the mass of the Sun, mS .
The circular orbits of P1 and P2 are not affected by
the gravitational force of the Sun. As a result of this
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assumption, the BCR4BP is not coherent because the
motion of P1 and P2 are not influenced by the Sun,
i.e., the indirect effects of the Sun are not incorpo-
rated. Additionally, as in the CR3BP, the mass of P3

is assumed to be negligible relative to the other three
bodies, i.e., m3 � m2 < m1 < mS . In general, the
BCR4BP does not require that the Sun-B1 orbit be
coplanar with the P1-P2 orbit; however, in this inves-
tigation a coplanar model is employed. This model
as well as a non-coplanar formulation are presented
by Boudad23.

It is insightful to examine motion in the BCR4BP
from the perspective of two different rotating refer-
ence frames. The first is a reference frame rotating
with P1 and P2, whose axes are defined by three or-
thogonal unit vectors. By convention, the x̂ unit vec-
tor of this frame points from P1 to P2, while the ẑ unit
vector is parallel to the angular momentum vector of
P2 about P1. Finally, the ŷ unit vector is defined
to complete the orthonormal set. A similar second
rotating reference frame is defined for the Sun and
B1, but the x̂′ unit vector is instead in the direc-
tion of B1 from the Sun. Quantities expressed in the
Sun-B1 rotating frame are generally denoted with an
apostrophe, e.g., x′ is the x position coordinate of
P3 in the Sun-B1 rotating frame. When the coplanar
assumption is made, the orbit of the Sun as viewed
from the P1-P2 rotating frame is modeled as illus-
trated in Figure 2. The position of the Sun in the

x̂

ŷ

B1

P1 P2

θS

aS

SunB2

Fig. 2: Definition of the Sun angle in the Bicircular
Restricted Four-Body Problem.

P1-P2 rotating frame is determined by the Sun angle,
θS , and the distance from B1 to the Sun is defined by
the constant value aS . Viewed from this frame, the
Sun rotates clockwise about B1, thus the value of θS
decreases with time.

Motion in the BCR4BP is described by a set of
differential equations similar to those of the CR3BP,

but modified to accomodate the perturbing accelera-
tion of the Sun. The P1-P2 rotating frame together
with the Sun-B1 rotating frame are commonly em-
ployed for analysis in the BCR4BP, and the equations
of motion for P3 may be expressed in either of these
frames. The equations of motion for P3, expressed
in the P1-P2 frame and including a low-thrust force,
are,

ẍ = 2ẏ +
∂Ψ

∂x
+
Tx
m

(1)

ÿ = −2ẋ+
∂Ψ

∂y
+
Ty
m

(2)

z̈ =
∂Ψ

∂z
+
Tz
m

(3)

ṁ =
T

ve
(4)

where the low-thrust force is represented by the three
components of the thrust vector T = {Tx Ty Tz},
and ||T || = T . The magnitude of the thrust vector
appears in Equation 4, along with the exhaust veloc-
ity, ve. Together these parameters define the mass
flow rate of the spacecraft, ṁ. Additionally, Ψ is the
system pseudo-potential written in terms of P1-P2 ro-
tating frames coordinates. This pseudo-potential and
the pseudo-potential as expressed in Sun-B1 coordi-
nates, Ψ′, are,

Ψ =
1− µ
r13

+
µ

r23
+

1

2
(x2 + y2) +

mS

rS3
−

mS

a3S
(xSx+ ySy + zSz)

(5)

Ψ′ =
1

2
(x′2 + y′2) +

1− µSB1

r′S3

+

µSB1(1− µP1P2)

r′13
+
µSB1µP1P2

r′23

(6)

where the distance from the Sun to P3 is represented
by rS3, and µSB1 is the mass ratio of the Sun-B1

system. Together these equations govern motion in
the BCR4BP.

To facilitate numerical computation, the depen-
dent variables in this dynamical model are nondimen-
sionalized via a set of characteristic quantities. The
values of the characteristic quantities are determined
by the frame that the states are expressed in. When
states are expressed in the P1-P2 rotating frame the
characteristic length, l∗, is defined as the distance
between P1 and P2; the characteristic mass, m∗, is
equal to the combined mass of P1 and P2; and the
characteristic time is determined such that the nondi-
mensional angular velocity of P1 and P2 is equal to
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one. The characteristic quantities are defined sim-
ilarly when states are expressed in the Sun-B1 ro-
tating frame, except that the parameters of the Sun
and B1 replace those of P1 and P2 in the previous
case. In this investigation, numerical propagation is
performed using the equations of motion expressed in
the P1-P2 rotating frame.

In contrast to the CR3BP, the BCR4BP is not an
autonomous system, i.e., motion in this model is time
dependent. As a consequence, this system possesses
no integral of the motion. However, the Hamiltonian,
serves as a useful metric for analyzing the motion of
P3 in the BCR4BP. The Hamiltonian defined in this
investigation does not include the low-thrust force,
thus it represents only the total ballistic energy of
the system. The Hamiltonian may be computed using
coordinates expressed in either the P1-P2 or Sun-B1

rotating frames.

H = 2Ψ− (ẋ2 + ẏ2 + ż2)− σ (7)

H ′ = 2Ψ′ − (ẋ′2 + ẏ′2 + ż′2) (8)

If P1 and P2 are the Earth and Moon, respectively,
the resulting Hamiltonian values are adjusted to be
similar in magnitude to the Jacobi constant values in
either the Earth-Moon or Sun-Earth CR3BP models.
The value of H is scaled by a constant parameter σ
that is incorporated to offset the high value terms in-
troduced by the Sun and ensure that H is of a similar
magnitude to the Jacobi constant value of the Earth-
Moon CR3BP. Throughout this analysis, σ = 1690
nondimensional units.

The Hamiltonians defined in Equations 7 and 8
represent the total ballistic energy of the system be-
cause they do

The same types of dynamical structures that are
available in the CR3BP also emerge in the BCR4BP,
namely, periodic and quasi-periodic orbits as well as
their invariant manifolds. Because the BCR4BP is
non-autonomous, these structures are not only de-
fined by position and velocity states, but also by spe-
cific epochs, i.e., Sun angles. A periodic orbit in the
BCR4BP requires a repetition of the same position
and velocity states at the same Sun angle. This an-
gle requirement implies that all periodic orbits in the
Sun-Earth-Moon BCR4BP possess a resonance with
the synodic period of the Sun, approximately 29.5
days. The Sun angle, θS , completes a full revolu-
tion once every synodic period. For example, a peri-
odic halo orbit in the Sun-Earth-Moon BCR4BP, and
computed about the Earth-Moon L2 libration point,
is displayed in Figure 3. This orbit possesses a 2:1
synodic resonance, that is, two revolutions along the

Fig. 3: 2:1 synodic resonance halo orbit in the Sun-
Earth-Moon BCR4BP computed about the Earth-
Moon L2 libration point. This orbit is used as a
staging orbit in the proposed design framework.
Projected in the xy-plane of the Earth-Moon ro-
tating frame.

halo orbit are completed for every one synodic pe-
riod. Similarly, the individual trajectories along the
invariant manifold associated with a periodic orbit
in the BCR4BP are associated with unique Sun an-
gles. Every path along a stable or unstable manifold
arrives at or departs from the periodic orbit at a spe-
cific Sun angle. Structures available in the BCR4BP
can appear similar to those in the CR3BP, but the
dependency on Sun angle is critical.

2.3 Direct Collocation

Low-thrust trajectory design is frequently posed
as a continuous optimal control problem; at each in-
stant in time a thrust vector is selected that mini-
mizes a cost, typically propellant consumption, time
of flight, or some combination. A multitude of strate-
gies for solving continuous optimal control problems
are available, and the best strategy is dependent on
the characteristics of the problem. In this investi-
gation, a direct optimization technique is employed
because these methods are generally more robust to
poor initial guesses than indirect optimization for-
mulations and require less computational time than
global optimization approaches. This balance of ro-
bustness and efficiency is critical for the proposed de-
sign framework which aims to rapidly explore a large
search space of potential LIC trajectory solutions.

The process of discretizing a continuous optimal
control problem to allow a numerical solution is de-
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noted transcription, and collocation offers one ap-
proach to this procedure. A collocation scheme uses
polynomials to approximate a solution to the set of
differential equations that govern a dynamical model,
for example, Equations (1)-(3). A collocation prob-
lem is discretized into n segments where the dynamics
along each segment are approximated by a polyno-
mial of degree N . Many options are available, how-
ever this investigation employs 7th degree Legendre
Gauss polynomials. The polynomial for each seg-
ment is constructed from (N + 1)/2 variable nodes,
xi,j , where i = 1, . . . , n, and j = 1, . . . , N . Each
segment also contains (N − 1)/2 defect nodes where
the error between the equations of motion and the
polynomial approximation is calculated. This error
is iteratively reduced by manipulating the states cor-
responding to the variable nodes in an update process
informed by the gradient of the problem constraints
with respect to the states. Collocation is the tran-
scription method of choice in this investigation due to
its wide basin of convergence and amenability to the
addition of constraints. Collocation often exhibits a
wider basin of convergence than other approaches for
solving a system of differential equations, i.e., it will
converge upon a solution despite a poor initial guess,
even when other methods fail. Since this investiga-
tion utilizes direct optimization, the overall optimiza-
tion approach employed here is termed direct colloca-
tion.

The specific tool to implement direct collocation
for this investigation is labelled COLT (Collocation
with Optimization for Low-Thrust) and was devel-
oped in collaboration with Daniel Grebow at the
Jet Propulsion Laboratory24,25. The direct colloca-
tion framework in COLT generally follows the scheme
developed by Grebow and Pavlak and implemented
in their MColl software26. The variables and con-
straints generated by the collocation problem, as well
as those unique to low-thrust trajectory optimiza-
tion, are based on a design variable and constraint
scheme.27 The design variable vector, X, is arranged
in COLT such that the variables corresponding to
each segment are grouped together, i.e.,

X =
[
u1 m0,1 mf,1 x1,1 x1,3

x1,5 x1,7 . . . un m0,n

mf,n xn,1 xn,3 xn,5 xn,7

]T (9)

Equation (9) offers a sample design variable vector
when the polynomial degree is N = 7, leading to
four variable nodes, xi,j , per segment. Furthermore,
the variable node states are vectors of position and

velocity states, i.e., xi,j = [ri,j , ṙi,j ]
T . The vec-

tor ui contains control variables for the ith segment,
while m0,i and mf,i are the initial and final mass
for each segment. Numerous options are available
for parameterizing the control in a low-thrust trajec-
tory optimization problem, and some schemes possess
favorable numerical properties. In COLT, the con-
trol variables are the three components of the thrust
unit vector, ui = [T̂1, T̂2, T̂3]T . These variables are
then constrained such that ||u|| = 1. The magni-
tude of the thrust vector, T , is computed using the
initial and final mass along each segment. The maxi-
mum magnitude of the thrust vector is Tmax, and this
quantity along with the Isp define the maximum mass
flow rate, ṁmax. Initial and final mass, ṁmax, and a
timespan, ∆ti, are employed to compute a throttling
value, si, for each segment that is constrained to the
range 0 ≤ si ≤ 1,

si =
m0,i −mf,i

ṁmax,i∆ti
(10)

The throttling value evaluated with Equation (10) de-
livers the thrust magnitude, Ti = siTmax,i, and the
mass flow rate, ṁi = siṁmax,i, for a given segment.
The maximum mass flow rate, ṁmax,i, and maxi-
mum thrust magnitude, Tmax,i, correspond to the se-
lected low-thrust engine model, thus, these variables
are either constant values or functions of an expres-
sion that incorporates additional parameters, such as
power and distance from the Sun. The elements of
the design variable vector are updated throughout
the optimization process and, at each iteration, these
variables are employed to evaluate the problem con-
straints.

A variety of problem constraints are available in
COLT. While some must be enforced to obtain a so-
lution to the low-thrust trajectory optimization prob-
lem, others are only included for specific scenarios.
Within the COLT algorithm, these constraints are
arranged into equality constraints, Feq, and inequal-
ity constraints, Fineq.

Feq =
[
gdefect gcontinuity gT̂ ψ0 ψf

]T
(11)

Fineq =
[
gs grad

]T
(12)

Equations (11) and (12) illustrate the organization
of common constraints utilized within COLT. A col-
location scheme always enforces defect constraints,
gdefect, to produce a valid solution. Because of the
selected node spacing scheme, COLT also requires the
enforcement of continuity constraints between seg-
ments, gcontinuity, as do some other collocation im-
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plementations. Additionally, constraints on the con-
trols are included to ensure that, for each segment,
the control variable vector possesses unit magnitude,
gT̂ , and the throttle value is between 0 and 1, gs. All
other constraints are optional and problem specific.
For example, it is frequently beneficial to include min-
imum radius constraints with respect to gravitational
bodies, grad. This constraint enforces a “keep-out”
zone around these bodies such that the trajectory re-
mains beyond the zone. Other useful constraints in-
clude constraining the states, energy, and/or orbital
elements for the initial, ψ0, and final, ψf , bound-
ary points along a trajectory arc. Specific low-thrust
trajectory design scenarios may require other con-
straints, and these are straightforward to incorporate
in a collocation framework.

Several additional features of COLT are available
in the current version of the algorithm. The design
variable and constraint framework for implementing
collocation is paired with the optimizer IPOPT28 to
compute mass optimal low-thrust trajectories. For
a more tractable optimization problem, the design
variables are frequently bounded within a desired
range. Some design variables possess obvious upper
and lower bounds; for example, necessary constraints
on the control and mass variables are enforced sim-
ply by applying bounds. Bounds on other variables,
such as the position and velocity states, are defined
relative to their initial values and are defined as user
inputs. Convergence to an optimal solution is also
aided by the ability to scale the design variables and
constraints. Finally, collocation is typically paired
with a mesh refinement scheme to generate a suffi-
ciently accurate solution. Mesh refinement schemes
adjust the spacing of boundary points along a solu-
tion to evenly distribute and ultimately reduce error.
The mesh refinement strategies leveraged in this in-
vestigation, developed by Grebow and Pavlak, are la-
belled Control Explicit Propagation (CEP) and Hy-
brid CEP.26 Bounding the design variables, scaling
the problem, and conducting mesh refinement ensure
that COLT is a robust and efficient direct collocation
algorithm.

2.4 Nearest Neighbor Search

The proposed trajectory design framework em-
ploys maps to aid the construction of initial guesses
that are passed to the direct collocation algorithm.
Maps capture the returns of trajectory segments to a
particular hyperplane, Σ. Frequently, maps are used
to facilitate the identification of close connections be-
tween two sections of a spacecraft trajectory, e.g.,

one propagated forwards in time and the other back-
wards. Points along these two trajectory segments
that intersect the selected hyperplane are displayed
on the map. Example hyperplanes include, a plane
in configuration space, e.g., the xy-plane, or the oc-
currence of a specific epoch. In this investigation the
Sun angle, θS , is used to define hyperplanes for two
different maps. Parameters such as position, veloc-
ity, or energy at the hyperplane intersections may be
displayed on the map. The maps in this analysis in-
clude points, i.e., hyperplane crossings, from many
trajectories, and each trajectory can possess multiple
returns to the hyperplane. Due to the large num-
ber of points and multiple dimensions of each point
plotted on the map it can be challenging to visually
identify the best connections between trajectory seg-
ments. Therefore, a nearest neighbor search algo-
rithm aids the identification of points on maps that
share similar characteristics.

Nearest neighbor (NN) algorithms are employed
in many fields of computer science under a variety of
names.29 Fundamentally, the nearest neighbor prob-
lem involves locating the point p in a set of points P
with the shortest distance to a given point q, assum-
ing all points occupy a space of dimension d.30 In the
present application, events along the forward propa-
gated group of trajectories provide one set of points,
while events on the backwards propagated trajecto-
ries comprise the other set. Thus, an NN search is
ideally suited for identifying close connections be-
tween events recorded on maps. The tool Poincare,
developed at JPL, employs NN algorithms for this
purpose.31 In this investigation, Matlab’s knnsearch
algorithm is employed for the NN search. Further-
more, a standardized Euclidean distance metric is
used to compute the distances between points. The
scaling for the standardization of the distance met-
ric as well as the exact parameters passed to the NN
search routine are defined in the formulation of the
design framework. The NN search algorithm is a use-
ful tool that complements visual inspection of maps
to identify close connections between trajectory seg-
ments.

3. Trajectory Design Framework

The proposed trajectory design framework is dis-
tinguished by three key features: modeling in the
BCR4BP, employing a staging orbit, and comput-
ing low-thrust transfers with direct collocation. To-
gether these design choices deliver a flexible and ro-
bust procedure for constructing the Lunar IceCube
trajectory. A staging orbit near the Moon is used to
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divide the mission design challenge into two phases,
as illustrated in Figure 4. Phase 1 occurs from de-

Fig. 4: Schematic of trajectory design framework.

ployment to the staging orbit and Phase 2 passes from
the staging orbit to the low lunar altitude science
orbit. These two phases are solved nearly indepen-
dently where the spacecraft mass is the only param-
eter, aside from the selected staging orbit, carried
over between phases. In the BCR4BP, any discrep-
ancies in epoch between the two phases are overcome
simply by waiting in the staging orbit until the de-
sired departure epoch is reached. Initial guesses for
both phases of the trajectory design framework are
assembled with the aid of two different maps. These
maps display intersections with the hyperplanes Σ1

and Σ2 which are defined by the Sun angles θS1 and
θS2 , respectively. The first map captures intersec-
tions of Σ1 by forward propagated deployment tra-
jectory arcs, D, and backward propagated paths on
the stable manifold of the staging orbit, WS . Simi-
larly, the second map captures intersections of Σ2 by
forward propagated trajectories on the unstable man-
ifold of the staging orbit, WU , and backward propa-
gated capture trajectory arcs, C. Close matches be-
tween hyperplane intersections of forward and back-
ward propagated trajectories segments are identified
and their corresponding trajectory segments are as-
sembled into an initial guess for the direct collocation
tool COLT.

3.1 Phase 1: Deployment to Staging Orbit

Design of Phase 1 of the Lunar IceCube trajec-
tory is facilitated by the creation of maps that display
events along trajectories propagated forward from de-
ployment and backward on the stable invariant mani-
fold of the staging orbit. To expand the options avail-
able on these maps a range of forward and backward
propagated trajectories are generated. Different tra-
jectories on the staging orbit’s stable manifold, WS ,
are obtained by changing the state and epoch of the
departure point from the periodic orbit. In contrast,

because the deployment state and epoch cannot be
changed, a span of forward propagated trajectories
is generated by varying thrust direction prior to the
first Lunar flyby. The deployment state and epoch
used in this investigation are the same as those used
to generate the baseline trajectory displayed in Fig-
ure 1.

Trajectories propagated forward in time from the
deployment condition are divided into three parts, an
initial coast period, a thrust segment, and a second
coast period. An example of this subdivision is dis-
played in Figure 5. The duration of the first coast

Fig. 5: Sample range for deployment trajectories in
the creation of a Phase 1 map, plotted in the
Earth-Moon rotating frame. The first coast pe-
riod is 0.8 days, the thrust segment is 3 days, and
the second coast section is 4 days. Thrust vec-
tors span a range of α angle vales from 0 to 3π/2
in the VNB frame. Trajectories that impact the
Moon are omitted.

segment is set to 0.8 days and is dictated by the time
required to perform initial spacecraft systems check-
outs and obtain tracking data. Following this coast-
ing period, a multi-day thrust segment is introduced.
A thrust segment of three days is used in this investi-
gation; however, this value can be altered to change
the post-flyby behavior of the deployment trajectory.
The direction of the thrust vector along this segment
is varied over a user-defined span of angles to gen-
erate a range of deployment trajectories. The angle,
α, used to determine the thrust vector direction is
defined relative to the v̂ unit vector in the velocity-
normal-binormal (VNB) frame. This frame is defined
such that the v̂ unit vector is in the direction of the
velocity vector of the spacecraft expressed in the ro-
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tating frame. Additionally, the n̂ unit vector is in
the direction of the spacecraft’s angular momentum
vector relative to B1, and the b̂ unit vector is de-
fined to complete the orthonormal set. The angle α
determines the direction of the thrust vector in the
vb-plane, and no out-of-plane, i.e., n̂ component of
the thrust vector, is introduced. By varying α from
αmin to αmax many different post-flyby trajectories
are generated, as seen in Figure 5. In this investi-
gation, αmin = 0 and αmax = 270◦. Following the
thrust segment a second coast segment is propagated
for a user-defined number of days. Intersections of
this section of trajectory with the hyperplane Σ1 are
recorded and used to generate the map.

Trajectories propagated backward in time along
the stable manifold of the staging orbit are linked to
the forward propagated deployment trajectory. The
stable invariant manifolds of periodic orbits offer effi-
cient paths onto the orbits. Thus, using these trajec-
tories to guide LIC to the staging orbit should lead
to a solution that requires less propellant than other
potential insertion paths. Figure 6 displays trajec-
tories along the stable manifold. The initial trend

Fig. 6: Stable (blue) and unstable (magenta) mani-
fold trajectories of 2:1 resonant L2 halo orbit in
the BCR4BP plotted in the Earth-Moon rotating
frame. Solid lines indicate a positive stepoff di-
rection and dashed lines correspond to a negative
stepoff direction.

of these manifold paths is either in the positive or
negative x direction. In the former case, trajecto-
ries on the manifold tend to escape the Earth-Moon
system, and these paths offer more useful connec-
tion points with the trajectories propagated forward
from deployment. Stepping off the periodic orbit

and onto the stable manifold at different states and
epochs around the orbit generates a variety of mani-
fold paths.

A map is created to join the two halves of the
Phase 1 LIC trajectory by recording intersections of
the deployment trajectories and the paths on the sta-
ble manifold with Σ1. Trajectories are propagated
until either a maximum time limit or a maximum dis-
tance from the Earth is reached. In this case, a maxi-
mum time of 100 days and a maximum Earth distance
of 3× 106 km are used for both the deployment and
manifold propagation. An example map is displayed
in Figure 7 where the Sun angle at which events are
recorded is θS = 135◦. The events that occur along

Fig. 7: Map of Σ1 intersections of the deployment
trajectory and paths along the stable manifold of
the staging orbit in the BCR4BP. Intersections are
projected in the xy-plane of the Earth-Moon ro-
tating frame, and the Sun angle selected for Σ1 is
135◦.

the deployment trajectory are plotted as diamonds
while the events on the stable manifold are marked
as asterisks. All events are plotted in the Earth-Moon
rotating frame, and each marker is colored according
to the Hamiltonian, H, of the spacecraft at the time
of the event. Additionally, the spacecraft’s xy-plane
velocity direction is plotted as an arrow centered at
the marker. Adding this extra information to each
plot aids the identification of close matches between
deployment and manifold trajectories. By selecting
events that match closely in position space along with
energy and velocity direction useful initial guesses for
the direct collocation algorithm can be obtained. A
close match, identified by the nearest neighbor algo-
rithm, is highlighted in Figure 7. The deployment
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and manifold trajectories are propagated to the se-
lected event times and used as an initial guess for the
direct collocation algorithm in the Sample Trajectory
Design section.

3.2 Phase 2: Staging Orbit to Science Orbit

Phase 2 of the LIC trajectory consists of the trans-
fer from the staging orbit to the science orbit. An
initial guess for this phase is assembled in a simi-
lar manner to Phase 1; events along a range of for-
ward and backward propagated trajectories are plot-
ted on a map used to select the initial guess. In this
case, paths along the unstable manifold, WU , of the
staging orbit make up the forward propagated trajec-
tory segments. The backwards propagated segments
consist of trajectories propagated with low-thrust, in
reverse time, from different true anomaly values on
the science orbit. The map used to link the forward
and backward propagated trajectories again consists
of Sun angle events along each trajectory segment
plotted in the xy-plane.

Trajectories along the unstable manifold of the
staging orbit offer energy efficient paths for departing
the orbit and beginning the spiral down to the science
orbit. Apart from their inverse direction these trajec-
tories behave similarly to those on the stable manifold
and are displayed in Figure 6. Paths on the unsta-
ble manifold offer a variety of locations and epochs
at which to depart the staging orbit, and Sun angle
events along these trajectories populate the Phase 2
map.

To generate a variety of trajectories that insert
onto the final orbit, backwards propagation is initi-
ated from true anomaly values on the orbit that span
the full 360◦ range. The backwards propagation as-
sumes a maximum thrust anti-velocity control law -
that is, the thrust vector is always oriented along the
−v̂ direction of the VNB frame and has a magnitude
equal to the maximum thrust of LIC. Recall that the
VNB frame is defined relative to the rotating frame
velocity vector. Application of this control law pro-
duces a trajectory that, in forward time, gradually
spirals down to the final science orbit, as shown in
Figure 8(a). The backwards propagated trajectories
must assume an epoch for insertion onto the science
orbit as well as a spacecraft mass at insertion. Rea-
sonable inferences for these values made during initial
guess formulation are later adjusted by the direct col-
location algorithm to ensure a continuous final result.
Previous analyses have indicated that the total dura-
tion of the LIC transfer is approximately one year,
thus a date of June 1st, 2021 is used to obtain a Sun

(a) Single backwards propagated trajectory in the Moon-
centered J2000 inertial frame.

(b) Multiple backwards propagated trajectories in the Earth-
Moon rotating frame generated by initiating propagation at
different true anomaly values on the science orbit.

Fig. 8: Backwards propagation from the science or-
bit with a constant maximum thrust anti-velocity
thrust vector.

angle at science orbit insertion (SOI) of 105.7◦. Sim-
ilarly, earlier investigations indicate that, at most,
LIC consumes half of the available propellant mass to
execute the transfer from deployment to science orbit,
therefore a final mass at SOI of 13.25 kg is assumed.
Even if intuition for the epoch and mass at SOI is not
available, the robustness of the direct collocation al-
gorithm increases the likelihood that poor estimates
for these values can still produce useful initial guesses.
While these two quantities are constant for all back-
wards propagated trajectories, using a range of true
anomaly values to initialize propagation ensures that
each trajectory evolves differently, as seen in Figure
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8(b). Trajectories are propagated until either a max-
imum time limit or a maximum distance from the
Earth is reached. In this case, manifold trajectories
are propagated for a maximum time of 100 days while
the backward propagated low-thrust spiral is propa-
gated for a maximum time of 200 days. Both types
of trajectories are propagated to a maximum distance
from the Earth of 6×105 km. Sun angle events along
each propagated trajectory are recorded and added
to the Phase 2 map.

Events along the forward and backward propa-
gated trajectory segments generated for Phase 2 are
projected on the xy-plane and colored according to
their H value. These three parameters along with the
angle of the velocity vector with respect to the x-axis
in the xy-plane are used to identify close matches be-
tween trajectory segments. The event used in this
case is once again the occurrence of a desired Sun
angle. An example map is displayed in Figure 9(a)
where the Sun angle at which events are recorded
is 75◦. The events that occur along the backward
propagated trajectory are plotted as diamonds while
the events on the unstable manifold are displayed as
stars. By selecting events that match closely in posi-
tion space along with energy and velocity direction,
suitable initial guesses for the direct collocation al-
gorithm are obtained. A close match, identified by
the nearest neighbor algorithm, is highlighted in Fig-
ure 9(b). The deployment and manifold trajectories
propagated to the selected event times are used as
an initial guess for the direct collocation algorithm in
Section 4.

Modifications are made to COLT’s nominal collo-
cation scheme to enable design of a continuous low-
thrust transfer from the staging orbit to the final sci-
ence orbit for LIC. The low-thrust spiral required to
transfer between these two orbits is long and includes
many revolutions. This type of trajectory is challeng-
ing to optimize using the collocation framework im-
plemented in COLT, which employs Cartesian coor-
dinates. Other collocation schemes that utilize modi-
fied equinoctial elements (MEE) have successfully op-
timized low-thrust spiral trajectories.32,33 However,
rather than implement a complex multi-phase collo-
cation scheme that uses Cartesian and MEE coordi-
nates, a simplified approach is used. This strategy
divides Phase 2 into two halves: one that is solved
with direct collocation and the other which is explic-
itly propagated backwards in time from science orbit
insertion (SOI).

The backwards propagated section of the LIC tra-
jectory is updated in the differential corrections pro-

(a) Earth-Moon Rotating Frame

(b) Zoomed View of Phase 2 Map

Fig. 9: Map of Sun angle events along unstable mani-
fold trajectory and low-thrust spiral to the science
orbit in the BCR4BP.

cess by the addition of three design variables and a
constraint. The three design variables are appended
to the design variable vector in Equation (9),

Xspiral =
[
X τspiral νSOI mSOI

]
(13)

where τspiral is the backwards propagation time from
SOI, νSOI is the true anomaly value on the science
orbit at insertion, and mSOI is the spacecraft mass at
SOI. By including these variables in the corrections
process, the evolution of the spiraling LIC trajectory
is allowed to change and can be joined with the sec-
tion of the transfer that departs from the staging or-
bit. A constraint is added to ensure that the two
halves of this connect,

gspiral = xn,f − xspiral,f (14)
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where xn,f is the final state in the final segment of
the LIC trajectory section that is represented by col-
location polynomials, and xspiral,f is the state at the
end of the backwards propagation from the science
orbit. Using the design variables in equation (13)
and the constraints in equations (11), (12), and (14),
a single direct collocation problem is solved. The so-
lution is a continuous low-thrust transfer from the
staging to the science orbit. Because a sub-optimal
control law is used for the spiraling portion of the tra-
jectory, the result of the direct collocation algorithm
is not a fully optimized low-thrust transfer. How-
ever, optimization is used to minimize the propellant
consumed before the backwards propagated spiraling
phase begins. Additionally, the selected control law
ensures the maximum rate of change of the space-
craft’s energy, and this reduces the time required to
achieve Lunar capture, thus reducing propellant con-
sumption. This approach for computing a trajectory
from the staging to the science orbit generates a con-
tinuous low-thrust transfer without the complexity of
a multi-phase collocation scheme.

4. Sample Trajectory Design

The proposed trajectory design framework offers
a procedure for developing an initial guess for the
full Lunar IceCube trajectory, from deployment to
insertion on the science orbit. After maps are gener-
ated for phases 1 and 2, close matches between for-
ward and backward propagated trajectory segments
are identified and used to construct an initial guess
for the direct collocation algorithm. This robust algo-
rithm is frequently able to converge even when given
very discontinuous initial guesses.

4.1 Phase 1: Deployment to Staging Orbit

An initial guess for Phase 1 of the Lunar IceCube
trajectory is assembled by identifying a close match
between events on deployment and stable manifold
trajectories in a Phase 1 map. An example of such
a match is highlighted by black markers in Figure
7, where the black square indicates the deployment
event and the black five-pointed star denotes the
manifold event. This match is identified using the
nearest neighbor search algorithm and the trajecto-
ries that correspond to the selected events are shown
in Figure 10. While a discontinuity between the for-
ward and backwards propagated trajectories is evi-
dent, the criteria used to identify matches between
events on the map yield a promising initial guess.
This initial guess is passed to COLT which eliminates
the discontinuity by inserting additional thrust seg-

(a) Earth-Moon Rotating Frame

(b) Sun-B1 Rotating Frame

Fig. 10: Initial guess for Phase 1 trajectory. Corre-
sponds to the close match identified in the Phase
1 map in Figure 7.

ments. The optimized trajectory resulting from this
initial guess, is displayed in Figure 11, and consumes
0.23 kg of propellant to reach the staging orbit in
140 days. The collocation algorithm computes this
solution with relatively few iterations, moreover the
geometry of the initial guess is generally preserved in
the direct collocation result. These two factors indi-
cate that the initial guess identified with the Phase
1 map was useful in guiding the algorithm towards a
solution.

The strong influence of the initial guess on the fi-
nal result is more evident when alternate solutions
are examined. A different Phase 1 map, one gener-
ated with events at a Sun angle of 180◦, is used to
construct the initial guess shown in Figure 12. This
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(a) Earth-Moon Rotating Frame

(b) Sun-B1 Rotating Frame

Fig. 11: Direct collocation result for Phase 1 transfer
using initial guess displayed in Figure 10. This
transfer takes 140 days and consumes 0.23 kg of
propellant.

initial guess includes an Earth flyby, and this flyby
is maintained in the optimized COLT solution dis-
played in Figure 13. This transfer reaches the stag-
ing orbit in approximately 115 days and requires only
0.09 kg of propellant mass. By experimenting with
maps generated using different Sun angle events and
selecting various event pairs on those maps, a variety
of initial guess geometries can be obtained that lead
to an array of optimized solutions. The flexibility of
this approach and the diversity of solutions it offers
makes it adaptable to different mission constraints
and deployment conditions.

(a) Earth-Moon Rotating Frame

(b) Sun-B1 Rotating Frame

Fig. 12: Initial guess for Phase 1 trajectory that in-
cludes an Earth flyby. Corresponds to a close
match identified in a Phase 1 map generated with
events recorded at a Sun angle of 180◦.

4.2 Phase 2: Staging Orbit to Science Orbit

A solution for Phase 2 of the LIC trajectory is com-
puted in a similar manner to Phase 1, and because a
staging orbit is used, no information on the converged
results of Phase 1 is required to develop an initial
guess for Phase 2. A close match between events on
a sample Phase 2 map is identified in Figure 9, and
the trajectories corresponding to the selected events
are displayed in Figure 14(a). Because the staging
orbit and the science orbit are significantly out-of-
plane, the xy-plane view of the Phase 2 map shown
in Figure 9 can be deceptive. Events that appear to
overlap in this map may differ significantly when the
ẑ position and velocity components are considered.
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(a) Earth-Moon Rotating Frame

(b) Sun-B1 Rotating Frame

Fig. 13: Direct collocation result for Phase 1 transfer
using initial guess displayed in Figure 12. This
transfer takes 115 days and consumes 0.09 kg of
propellant.

As a result, the NN search algorithm is especially
useful for identifying matches on Σ2, because the al-
gorithm can be weighted to emphasize close matches
in energy, a parameter that includes information on
the out-of-plane components of each event. This step
enables the identification of useful initial guesses that
would likely have been passed over if visual inspec-
tion alone were employed. The close connection point
between the unstable manifold and low-thrust spiral
trajectories displayed in Figure 14(a) actually occurs
under the Moon, i.e., z < 0, therefore it is difficult to
see even in the zoomed in view of the Phase 2 map
shown in Figure 9(b). Utilizing the nearest neighbor
algorithm ensures that this close match is not over-

(a) Initial Guess

(b) Converged Result

Fig. 14: Initial guess and direct collocation result
for Phase 2 transfer in the Earth-Moon rotating
frame that remains in the Lunar vicinity. This
transfer takes 228 days and consumes 0.52 kg of
propellant.

looked.

The initial guess identified with the Phase 2 map
and NN search is passed to the direct collocation al-
gorithm, i.e., COLT, for convergence. In general, it
is more difficult to achieve convergence for this phase
of the LIC trajectory because the initial guesses gen-
erated by the map possess larger state discontinuities
and the majority of the trajectory is near the Moon
which increases the sensitivity of the optimizer. The
likelihood of convergence is increased by bounding
the design variables, scaling, and including a min-
imum radius constraint with respect to the Moon.
Additionally, convergence is improved by providing
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COLT more trajectory, and therefore more time, with
which to achieve the desired transfer. This is done
by “stacking” additional revolutions of the staging
orbit prior to departure on the unstable manifold
path.25 Four additional revolutions on the staging
orbit are added to the initial guess displayed in Fig-
ure 14(a). Thus, the initial guess passed to COLT
consists of these four revolutions, the unstable man-
ifold trajectory, and the values of τspiral, νSOI , and
mSOI that produce the low-thrust spiral displayed in
14(a). With this initial guess COLT computes the
low-thrust transfer in Figure 14(b), which requires
approximately 228 days and 0.52 kg of propellant to
achieve. The solution displayed in Figure 14(b) shows
that the stacked staging orbit revolutions included in
the initial guess are distributed by the direct collo-
cation algorithm into a quasi-periodic-like structure.
This new motion is even more evident in Figure 15(a),
a three-dimensional view of the transfer. After mov-
ing along this structure the spacecraft departs the
vicinity of the staging orbit and conducts a powered
lunar flyby to insert on the explicitly propagated low-
thrust spiral trajectory. This geometry is influenced
by the initial guess which also includes an unstable
manifold trajectory with a close lunar flyby.

Several important differences exist between the
convergence process for Phase 1 and 2 transfers.
First, the initial mass used to converge a Phase 2
transfer must be the final mass of a converged Phase
1 transfer. In this case, the final mass of the transfer
shown in Figure 11 is used as the initial mass for the
transfer in Figure 14(b). The spacecraft mass is the
only parameter from Phase 1 that must be carried
over to compute Phase 2. Furthermore, the space-
craft mass and the maximum thrust, Tmax, determine
the maximum acceleration that the spacecraft can
produce. When convergence difficulty is encountered
it is frequently advantageous to temporarily raise the
maximum available acceleration by first computing a
transfer that uses a Tmax value slightly higher than
that available to LIC. Then, a natural parameter con-
tinuation process can be used to lower Tmax to the
correct value. Continuation is employed to obtain
both staging to science orbit transfers presented in
this investigation. Finally, as stated previously, be-
cause the low-thrust spiral phase of the staging to
science orbit transfer is explicitly propagated with a
sub-optimal control law the resulting transfer is not
fully optimal. Instead the objective of the direct col-
location problem in this phase is to maximize the
mass at the connection point between the trajectory
computed with collocation and the explicitly propa-

(a) Near Moon Transfer

(b) Around Earth Transfer

Fig. 15: Out-of-plane views of two different transfers
for Phase 2 plotted in the Earth-Moon rotating
frame.

gated low-thrust spiral.

Phase 2 transfers generally fall into one of two
categories: transfers that remain near the Moon, as
seen already, and those that include at least one loop
around the Earth. The latter of these two options
is examined by generating a new Phase 2 map. A
close connection is identified on a Phase 2 map gen-
erated with events at a Sun angle of 315◦, and the
resulting initial guess is displayed in Figure 16(a).
In this case, the difference in position between the
end of the unstable manifold trajectory and the be-
ginning of the low-thrust spiral is especially large.
However, these two points are relatively close in en-
ergy and in velocity direction. Thus, the NN search
algorithm identifies this initial guess that may have
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(a) Initial Guess

(b) Converged Result

Fig. 16: Initial guess and direct collocation result
for Phase 2 transfer in the Earth-Moon rotat-
ing frame that includes a loop around the Earth.
This transfer takes 212 days and consumes 0.52
kg of propellant.

been disregarded by a visual inspection. Despite the
seemingly large discontinuity, COLT uses this initial
guess to compute the low-thrust transfer shown in
Figure 16(b). This transfer delivers the spacecraft
from the staging orbit to the science orbit in 212 days
and requires roughly the same propellant mass as the
previous case, 0.52 kg. Figures 16(b) and 15(b) il-
lustrate that rather than using repeated revolutions
near the staging orbit, most of the plane change re-
quired to begin the spiral down to the science orbit is
completed during the transit around the Earth. This
behavior, and the lack of a low-altitude Lunar flyby,
make this transfer and others like it easier to converge

because the larger distance from the Moon decreases
the sensitivity of the optimization problem.

Combining the results computed for phases 1 and
2 of the LIC trajectory yields complete deployment
to science orbit trajectories. The sample LIC trajec-
tories computed in the BCR4BP using the proposed
framework are summarized in Table 3. The Phase
1 transfer without an Earth flyby, shown in Figure
11, is labeled A while the transfer that includes the
Earth flyby, displayed in Figure 13, is B. Similarly,
the Phase 2 transfer that remains near the Moon, de-
picted in Figure 14(b), is labeled C and the transfer
that loops around the Earth, shown in Figure 16(b),
is D. Note that for all transfer combinations up to a
month of additional transfer time may be added to
account for the phasing time that must be included
in the staging orbit following Phase 1 of the transfer.
This time allows the spacecraft to reach the state and
Sun angle required to begin Phase 2. In this case, the
maximum phasing time required is 25 days and the
minimum is 0.5 days. The transfer times and pro-
pellant consumption values provided in Table 3 are
comparable to the current baseline trajectory shown
in Figure 1 which requires 318 days and 0.69 kg of
propellant.

The transfers computed with the demonstrated
framework all require more time and propellant than
the baseline transfer, however, several steps are avail-
able to reduce the time and change in mass of the
transfers in Table 3. First, refinement of the maps
and NN search algorithm used to compute a Phase 2
transfer could reduce the time of flight and propellant
mass required for this phase where these quantities
are the largest. Alternate maps or search criteria for
the NN algorithm could generate initial guesses that
lead to improved transfer performance. Second, while
the additional staging orbit revolutions added to the
initial guess for the staging to science orbit phase are
useful for achieving convergence it may be possible
to remove some of them after a transfer is converged.
For example, some of the revolutions near the stag-
ing orbit that appear in Figure 15(a) could likely be
removed because they consist largely of long coast
segments. If possible, removing excess trajectory will
reduce transfer time. Another step for improving the
transfers is using a multi-phase collocation algorithm
to solve the staging to science orbit phase. A multi-
phase approach would permit the low-thrust spiral
to the science orbit to be fully optimized, thereby in-
creasing the spacecraft mass at SOI. The majority of
propellant consumption occurs during the low-thrust
spiral, thus optimizing this section of trajectory could
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offer significant propellant savings. These three steps
can lead to reductions in both time of flight and pro-
pellant consumption for the LIC transfer.

Table 3: Summary of sample transfers. All results
are from the given deployment state to the sci-
ence orbit. Given characteristics are time of flight
(TOF), final mass (mf ), and total change in mass
(∆m).

Transfer TOF [days] mf [kg] ∆m [kg]

A → C 369.25 13.25 0.75

B → C 371.88 13.24 0.76

A → D 353.02 13.24 0.76

B → D 382.34 12.87 1.13

Baseline 318 13.31 0.69

5. Concluding Remarks

The proposed framework for constructing a LIC
baseline trajectory addresses the need for a design
methodology that is both robust and flexible. Em-
ploying a dynamical model that includes the Sun en-
ables the perturbing acceleration of this body to be
leveraged to achieve the desired transfer despite LIC’s
limited control authority. Moreover, utilizing direct
collocation to converge initial guesses developed in
the BCR4BP allows a wider range of guesses to be
used due to the robustness of this algorithm. Flex-
ibility is further enhanced by using a staging orbit
to separate the LIC trajectory into two halves that
can be designed independently. Together these de-
sign choices offer a framework to systematically gen-
erate a variety of transfer configurations with time of
flight and propellant consumption values comparable
to the current baseline. Further improvements to this
procedure could increase the efficiency of the process,
enhance the quality of the solutions it generates, and
broaden its applicability to missions beyond LIC.

Several steps for improving the design methodol-
ogy are immediately evident. First, other staging or-
bits should be examined, particularly quasi-periodic
orbits (QPOs). In the BCR4BP, QPOs are especially
useful because they do not require a resonance with
the synodic period of the Sun; thus, there is a larger
number of options available for use as a staging or-
bit. Furthermore, the Phase 2 transfer shown in Fig-
ure 15(a) appears to leverage quasi-periodic struc-
tures indicating that this type of orbit may be prefer-
able for use as a staging orbit. Another potential

improvement to the design methodology is increased
insight for selecting a Sun angle that locates the hy-
perplanes for the Phase 1 and 2 maps. Currently,
a trial and error process is used to to identify Sun
angles that generate maps which contain events with
close matches. However, there is likely a more in-
formed approach that can be taken for this step of the
design process. Refining this step, along with mak-
ing improvements to how the NN search algorithm is
used to identify close matches between events, may
alleviate some of the convergence challenges encoun-
tered in Phase 2. Finally, the results computed in this
investigation should be validated in a full ephemeris
model to confirm their applicability to flight opera-
tions. All of these enhancements would increase the
usefulness of the proposed framework; however, even
in the present state this strategy offers a powerful
approach for designing low-thrust trajectories for a
cislunar CubeSat.
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[21] Y. Cheng, G. Gómez, J. J. Masdemont, and
J. Yuan. Study of the transfer between libra-
tion point orbits and lunar orbits in EarthMoon
system. Celestial Mechanics and Dynamical As-
tronomy, 128(4):409–433, 2017.

[22] P. Cao, B. He, and H. Li. Analysis of di-
rect transfer trajectories from LL2 halo orbits
to LLOs. Astrophysics and Space Science, 362
(9), 2017.

[23] K. K. Boudad. Disposal Dynamics From The
Vicinity Of Near Rectilinear Halo Orbits In The
Earth-Moon-Sun System. Master’s Thesis, Pur-
due University, 2018.

[24] N. L. Parrish, J. S. Parker, S. P. Hughes, and
J. Heiligers. Low-Thrust Transfers From Dis-
tant Retrograde Orbits To L2 Halo Orbits in
the Earth-Moon System. In International Con-
ference on Astrodynamics Tools and Techniques,
Darmstadt, Germany, 2016.

[25] R. E. Pritchett, E. Zimovan, and K. C. How-
ell. Impulsive and Low-Thrust Transfer De-
sign Between Stable and Nearly-Stable Peri-
odic Orbits in the Restricted Problem. In 2018
AIAA/AAS Space Flight Mechanics Meeting,
Orlando, Florida, 2018. ISBN 978-1-62410-533-
3.

[26] D. J. Grebow and T. A. Pavlak. MColl:

IAC–19–C1.1.10 Page 18 of 19



70th International Astronautical Congress, Washington D.C., USA. Copyright © 2019 by the authors. All rights reserved.

Monte Collocation Trajectory Design Tool. In
AAS/AIAA Astrodynamics Specialist Confer-
ence, Stevenson, Washington, 2017.

[27] R. E. Pritchett. Numerical Methods for Low-
Thrust Trajectory Optimization. Master’s The-
sis, Purdue University, 2016.

[28] A. Wachter and L. T. Biegler. On the Imple-
mentation of a Primal-Dual Interior Point Filter
Line Search Algorithm for Large-Scale Nonlinear
Programming. Mathematical Programming, 106
(1):25–57, 2006.

[29] G. Shakhnarovich, P. Indyk, and T. Darrell.
Introduction. In Nearest-Neighbor Methods in
Learning and Vision, chapter 1, pages 1–12.
MIT Press, Cambridge, Massachusetts, 1 edi-
tion, 2005.

[30] K. L. Clarkson. Nearest-Neighbor Searching
and Metric Space Dimensions. In Nearest-
Neighbor Methods in Learning and Vision, chap-
ter 2, pages 15–59. MIT Press, Cambridge, Mas-
sachusetts, 1 edition, 2005.

[31] M. Vaquero and J. Senent. Poincare : A Multi-
Body, Multi-System Trajectory Design Tool. In
7th International Conference on Astrodynamics
Tools and Techniques, pages 1–12, Oberpfaffen-
hofen, Germany, 2018.

[32] R. D. Falck, N. Glenn, and J. W. Dankanich.
Optimization of Low-Thrust Spiral Trajecto-
ries by Collocation. In AIAA/AAS Astrody-
namics Specialist Conference, number August,
pages 1–17, Minneapolis, Minnesota, 2012. ISBN
2012217699.

[33] Z. P. Olikara. Framework for Optimizing Many-
Revolution Low-Thrust Transfers. In AAS As-
trodynamics Specialists Conference, pages 1–19,
Snowbird, Utah, 2018.

IAC–19–C1.1.10 Page 19 of 19


	Introduction
	Background
	Previous Work
	Bicircular Restricted Four-Body Problem
	Direct Collocation
	Nearest Neighbor Search

	Trajectory Design Framework
	Phase 1: Deployment to Staging Orbit
	Phase 2: Staging Orbit to Science Orbit

	Sample Trajectory Design
	Phase 1: Deployment to Staging Orbit
	Phase 2: Staging Orbit to Science Orbit

	Concluding Remarks

