

Probabilistic Characterization of Tunguska-scale Asteroid Airbursts and Impact Frequencies

Lorien Wheeler, Donovan Mathias NASA Ames Research Center Asteroid Threat Assessment Project

EPSC-DPS Joint Conference
18 Sept. 2019, Geneva, Switzerland

A Broader Characterization of Tunguska

- The 1908 Tunguska event provides a rare source of ground evidence for characterizing the potential damage from mid-sized asteroid airbursts.
 - Asteroid airburst that caused substantial tree-fall across 2,000 km² of forest (extending 15–35 km outward from the epicenter in a butterfly shape).
 - Estimated impact energies of 3–50 Mt (TNT equivalent) with 10–20 Mt as the most prevailing consensus, diameter of 34–190 m, and burst altitude of 5–15 km.
- Challenges of characterizing asteroid threats based on Tunguska:
 - Lack of knowledge about the properties of the initial object.
 - Many existing studies only consider a small subset of cases or assume or single representative property values to draw broad conclusions.
 - Does it represent a typical impact case or an outlier?
- Objective of this study:
 - Provide broader characterization of the range and relative likelihood of asteroid properties that could yield Tunguska-scale threats.

Probabilistic Asteroid Impact Risk (PAIR) Model

PHA Measurements

- H-magnitude
- Albedo
- Orbital trajectory
- Asteroid class
- Composition

Impact Parameters

- Diameter
- Density
- Strength
- Luminous efficiency
- Velocity
- Entry angle
- Azimuth angle
- Impact coordinates

Damage results used for Tunguska comparisons:

- Impact energies (initial KE)
- Airburst altitudes from entry/breakup model
- 4-psi blast overpressure footprint
 - Correlates with tree-fall wind-speeds ~48-50 m/s

Probabilistic Impact Cases

Energy (Mt)

L. Wheeler

- Modeled 50 million Tunguska-scale asteroid impact cases.
 - Diameters 20–180 m
 - Impact energies ≤50 Mt
- Probabilistic sampling accounted for:
 - Size frequencies:

 H-magnitude impact
 frequencies + NEOWISE
 albedo distribution
 - Distributions of asteroid and entry properties
 - Uncertainties in entry/breakup model parameters (ablation, breakup parameters)

Sampled asteroid and entry property distributions

Density (g/cm³)

10⁻¹

10⁰

Strength (MPa)

10¹

Airburst & Blast Damage Trends

 Results characterize relative likelihoods of various impact energy, burst altitude, and blast damage combinations across broad range of Tunguskascale impactors.

Relative probabilities of airburst altitudes and blast damage radii as function of energy

Airburst & Blast Damage Trends

 Can then consider the relative probabilities among subsets of cases meeting of more specific Tunguska-like constraints

Tunguska-like Criteria Energy 5-20 Mt Altitude 5-15 km Blast Radius 10-30 km (4 psi)

Relative probabilities of airburst altitudes and blast damage radii as function of energy

Tunguska-like Criteria Probabilities

- Results show relative probabilities of properties among cases meeting each criterion, compared with the baseline distribution of all cases.
- Tunguska-like events can be produced by a broad range of asteroid and entry properties.

Size Probabilities for Tunguska Criteria

Tunguska-like Criteria

All (20-180 m, E ≤ 50 Mt)
Energy 5-20 Mt
Altitude 5-15 km
Blast Radius 10-30 km (4 psi)

- Diameter probabilities peak around:
 - 45 m for the energy criterion
 - 55 m for the altitude criterion
 - 75 m for the blast damage criterion

Size Probabilities for Tunguska Criteria

Tunguska-like Criteria

- All (20-180m, E ≤ 50 Mt)Altitude 5-15 kmBlast Radius 10-30 km (4 psi)Altitude + Blast Radius
- Energy probabilities peak around:
 - 6 Mt for the altitude criterion
 - 20–30 Mt for the blast damage criterion
 - 23 Mt for blast damage and altitude criteria together

Summary

- Tunguska-like events can be produced by a broad range of impact scenarios and asteroid properties.
- Larger objects of 20–30 Mt or 70–80 m are more likely to cause Tunguska-scale ground damage than sizes on the smaller end of Tunguska estimates.
 - Greater damage potential of larger objects outweighs their rarity (lower impact frequency).
 - Smaller objects, while more frequent, are much less likely to cause Tunguska-scale ground damage.

References:

- Wheeler L. and Mathias D., 2019. Probabilistic assessment of Tunguska-scale asteroid impacts. Icarus, Vol. 327. https://doi.org/10.1016/j.icarus.2018.12.017
- Wheeler L. and Mathias D., 2019. Effects of asteroid property distributions on expected impact rates. Icarus, Vol. 321. https://doi.org/10.1016/j.icarus.2018.12.034
- Mathias D., Wheeler L., Dotson J., 2017. A probabilistic asteroid impact risk model: assessment of sub-300m impacts, Icarus, Vol. 289. https://doi.org/10.1016/j.icarus.2017.02.009

Backup

Property Combinations Most Likely to Cause Tunguska-Scale Blast Damage

- Individual property probabilities do not necessarily
- What combinations of properties altogether are most likely to cause Tunguska-scale blast damage?
 - Diameter 70–80m
 - Energy 19–32 Mt (mean/mode ~25 Mt)
 - Density 2.5–2.7 g/cm³
 - Entry 18.5-19.5 km/s at 55-60 degrees
 - Burst altitude 10–20 km (mean/mode ~12–13 km)
 - Blast radii 10-25 km (mean/mode ~12-14 km)

Tunguska-like Criteria Probabilities

13

Airburst Blast Damage

- The Fragment-Cloud Model (FCM) models energy deposited in the atmosphere during entry and breakup.
- Effective airburst altitude is taken at peak energy deposition or a given energy fraction.
- Height-of-burst (HOB) maps used to estimate blast footprint radii as a function of burst altitude and total impact energy.

FCM energy deposition curves for nominal Tunguska-scale impactor

15-Mt, \sim 70 m diameter, 3 g/cm³, 5 MPa, entry at 15 km/s, 30–60° from horizontal.

Height-of-burst (HOB) maps 4-psi blast footprint radii for Tunguskascale energies.

Blast Overpressure Damage

- Blast radii on the ground are estimated using yield scaling and height-ofburst (HOB) maps
- Nuclear-based HOB maps (Glasstone & Dolan, 1977)
- Simulation-based HOB maps that account for buoyancy effects in larger bursts (Aftosmis et al., 2017)
- 4 psi overpressure level correlates with tree-fall windspeeds ~48-50 m/s in CFD blast simulations (M. Nemec & M. Aftosmis)

4-psi HOB Curves for Tunguska-Scale Energies

