The Exo-Brake as an Inexpenive Means of Achieving Sample Return from Low Earth Orbit – Recenet Flight

M. S. Murbach,¹ P. Papadopoulos,² A. Guarneros,¹ J. Wheless,¹ F. Tanner,¹ C. Priscal,¹ S. Smith,¹ A. Salas, ¹ Z. Hughes, ¹ R. Ntone, ¹ Sanny Omar, ³

Department, One Washington Square, San Jose, CA, 95192, ³University of Florida, Gainsville, FL, 32611

Abstract: The Exo-Brake is a simple, nonpropulsive means of de-orbiting small payloads from orbital platforms such as the International Space Station (ISS). Recent flight experiments involving the TechEdSat (TES) 6, 7, 8 are discussed in terms of both 'targeted' and 'disposal' de-orbit techniques. These build on the previous flight experiments with fixed surface areas - and now involve improved uplink/downlink communication and GPS for improved targeting and control. The recent targeting experiments are discussed involving the TechEdSat-6,7,8 nanosatellites. The extension of the concept to a 1-stage, 3-stage, and lifting entry sample return system are discussed.