

Urban Air Mobility Regional Readiness

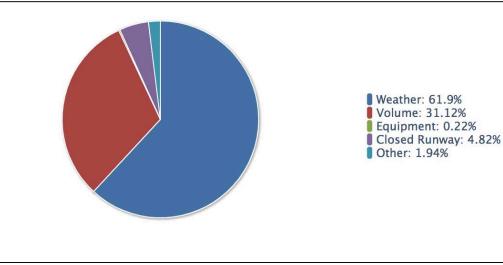
Parimal Kopardekar, Ph.D. Director, NASA Aeronautics Research Institute (NARI)

Needs

- Success of high-scale UAM and overall advanced air mobility(AAM) depends on:
 - Airspace operations concepts and technologies that will not overload air traffic management
 - Battery technologies
 - Manufacturing and supply chain network for high-scale operations
 - Aircraft designs and operations with acceptable noise
 - Infrastructure charging, vertiports, etc.
 - Passenger experience and acceptance

Airspace Operations

- Forecast for commercial, small non-model UAS fleet: nearly triple from 277,386 in 2018 to 835,211 in 2023, an average annual growth rate of 24.7 percent (FAA, 2019 Forecast)
 - Reference: https://www.faa.gov/news/updates/?newsId=93646
- Forecast for UAM and AAM is not yet available but business predictions are in millions
- Current take-off and landing operations are about 60,000/day and peak traffic 5 – 7K



Delay Statistics

Causes of National Aviation System Delays National (April, 2019)

More Topics:

- On-time arrival performance
- Flight delays by cause
- Weather's share of delayed flights
- Weather's share of national aviation system (NAS) delays

Reference: <u>https://www.transtats.bts.gov/OT_Delay/ot_delaycause1.asp?type=5&pn=1</u>

Enabling Future Operations

- Clearly, we need new ways to accommodate new entrants drones and urban air mobility
- Scalability is key however that needs to be interoperable as well; we can't segregate airspace for every new entrant
- Integration where possible and segregation where necessary (e.g., commercial space launches)
- Flexibility where possible and structure where necessary to ensure safety and high capacity (e.g., bike lanes vs cars)

Objectives for Aviation Autonomy

- Address pilot shortage and international competitiveness with increasingly automated cockpit, flight and operations
 - Reduced crew operations for long-haul
 - M:N operations for small to mid-size
 - Fully autonomous drones and urban air mobility (UAM)
- Substantially increase airspace system capacity without overloading air traffic control (ATC) and controller workload
- Enable new emerging market pilots to receive certification with order-of-magnitude reductions in training
- Enable aircraft to auto-land anywhere and under any conditions
- Maintain and enhance safety of individual flight and airspace

Technical Capability Levels (TCL)

Risk-based development and test approach along four distinct TCL

TCL 2

What: Concept for management of airspace in lower risk environments and multiple visual line-ofsight (VLOS) UAS operations

When: Aug 2015, May 2016

Outcomes: Validation of cloud-based service oriented architecture

What: Complex multiple beyond visual line of sight (BVLOS) UAS Operations in lower risk environments

When: Oct 2016, May 2017

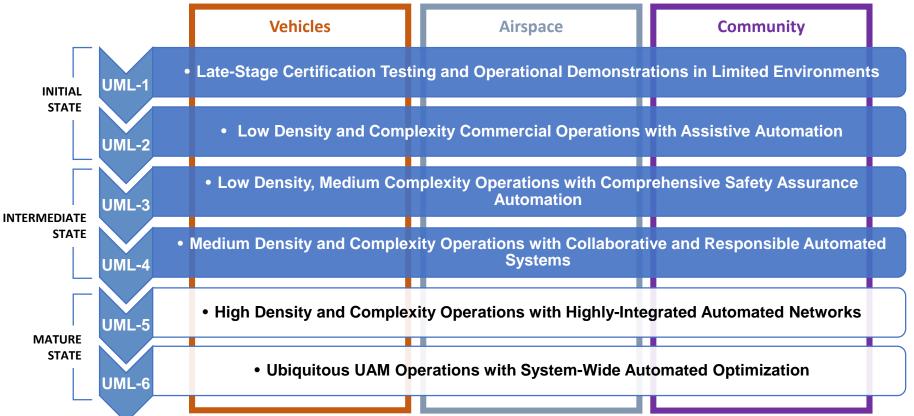
Outcomes: Information sharing between operators, and established federated 3rd party service model TCL 3

What: Technologies needed for BVLOS UAS Operations over populated areas and near airports

When: March-June 2018

Outcomes: Technologies for detect and avoid, comm. and nav., and data exchange between multiple USS

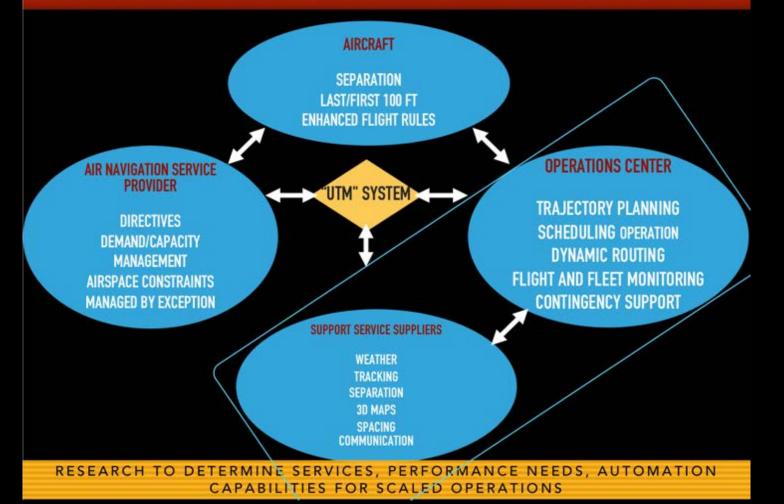
TCL 4

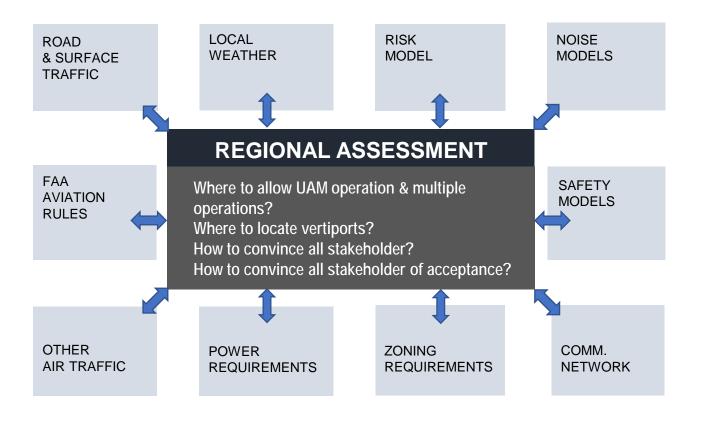

What: Complex BVLOS operations in urban environment, nominal and contingency situations

When: Summer 2019

Outcomes: Operational concept, vehicle technologies, and data exchanges for operations near large structures and in highly populated areas

UAM Maturity Levels (UML)




* UML indicates operational system capability, not "technology readiness"

FLEXIBILITY WHERE POSSIBLE, STRUCTURE WHERE NECESSARY

Regional Modeling & Simulation Tool to Assess UAM Readiness & Implementation

NEED

Regional authorities lack a tool to make decisions @ UAM implementation and operationalization

NASA ROLE:

Develop M&S tool for regional authorities and state DOT's aviation departments.

Summary

- Regional and urban air mobility is of high interest
- Tools to manage regional preparedness are lacking
- NASA is building modeling and simulation toolkit
- Regional level supply chain management need to be established

Airspace Operations Classics

- Operations under VMC and IMC conditions
- RNP requirements in dense congested operations
- Weather integration and impacts, and disturbance management
- Trajectory definitions and rerouting
- Tracking (accuracy)
- CNS services and requirements
- Separation among cooperative and non-cooperative (aircraft, buildings, etc.)
- Spacing and scheduling
- Large-scale disturbance handling (e.g., GPS failure, comm failure, weather problems)

Airspace Operations: UTM, UAM, and Beyond

- Scalable increasingly autonomous
- Cooperative information needs, and technologies for cooperation among vehicles, and operators, and service providers
- Digital data exchanges and standardized application protocols
- Resilient technologies and procedures for faster recovery from disruptions
- Manage by exception flexibility where possible and structure where necessary
- Safety assurance in-time data, prognostics, V&V of increasingly autonomous systems
- Air/ground/cloud integrated
- Service oriented architecture third party

Airspace operations....

....enabling beyond possible!

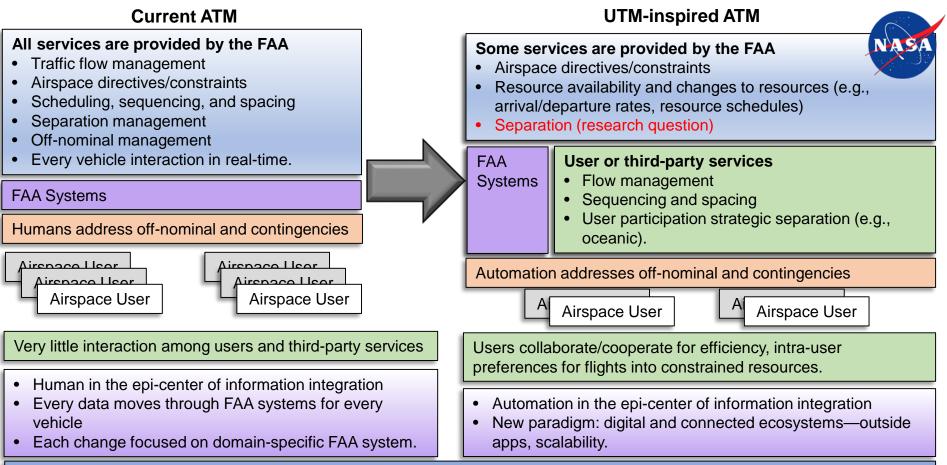
Space Traffic Management

High Altitude UTM (Upper E)

Conventional Manned Aviation (Class A, B, C, D, E)

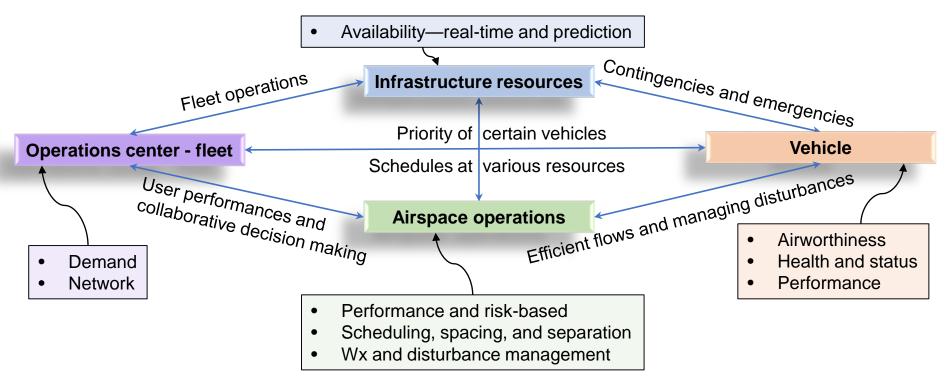
Urban Air Mobility

Low-altitude small UAS

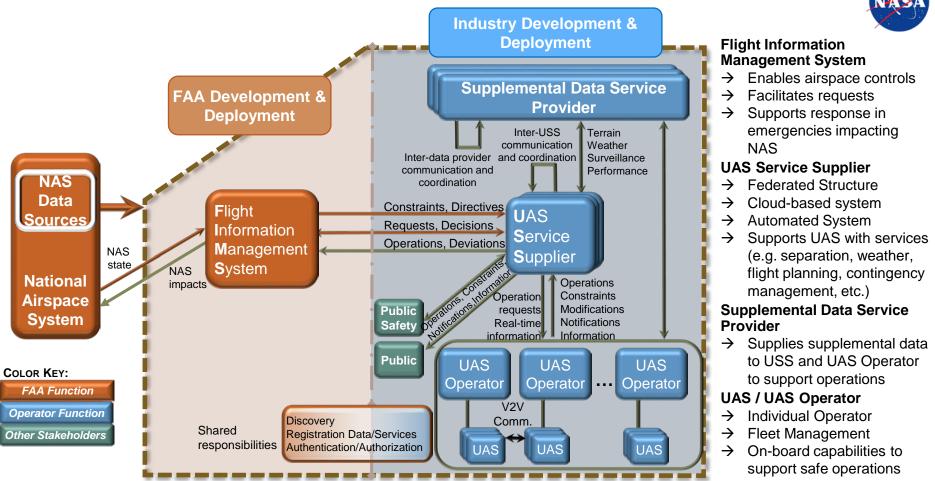

UTM and ATM Environments

- UAM aircraft will operate where drones are operating in low altitude and where manned aviation is operating
- Interoperability will be key
- UAM aircraft could be dual capable for near future they will interact inside UTM environment using UTM construct and inside current ATM environment with ATC

Concept of Operations


- Building comprehensive concept of operations that includes piloted, autonomous, and remotely operated UAM-type vehicles
 - Accommodate various use cases (e.g., point-to-point, healthcare related)
 - Nominal operations (e.g., corridors, routes, etc.)
 - Interoperability
 - UTM-ATM environment (there is separate effort underway for future UTM inspired ATM)
 - Off-nominal conditions and contingencies (e.g., energy depletion, bird strike)
- Example: Reserve fuel requirement for GA

NASA's unique role: architecture, data exchange, service allocation/roles/responsibilities, rules of engagement, service performance requirements, automation for contingency management and disruption handling, machine learning environment and algorithms for continuous improvement, safety assurance, certification/acceptance approaches and technology transition.


Connectivity is Key

Autonomy alone will not lead to efficiency and large-scale disturbance management. Connectivity is crucial: air/ground/cloud/infrastructure integration will be key.

UTM Service-Based Architecture

UTM-Like-ATM Airspace Operations Environment

- Cooperative
- Intent-sharing
- Digital: data exchanges among operators
- Standardized application protocol interfaces
- Air/ground integrated
- Service-oriented architecture
- Role for third parties

Space Traffic Management

High Altitude UTM (Upper E)

Conventional Manned Aviation (Class A, B, C, D, E)

Urban Air Mobility

Low-altitude small UAS

Key Research Areas and Contributions

- Concept of operations (NASA, industry, Deloitt, etc)
- Simulations to demonstrate feasibility of UTM construct to scale the operations nominal and off-nominal
- Develop third-party UAM service suppliers and their requirements
- UAM Maturity Levels (UMLs): aircraft, airspace, infrastructure/community low to high density and complexity
- Support grand challenge series to assess UAM state of maturity
- Demonstrate services helicopter and drones to scale, and eVTOLs
- NASA-FAA-industry collaboration