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Motivation

Reusable TPS material considerations: 
catalycity, emissivity, toughness

Image credit: NASA

Ablative TPS material considerations: 
recession, oxidation, pyrolysis

Image credit: NASA Objectives:

• Characterize carbon surface 
recession/ablation due to oxidation

• Develop a predictive model of carbon 
oxidation for use in CFD/DSMC/material 
response
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Porous Microstructure Analysis (PuMA)

Porous Microstructure Analysis (PuMA) [1]

4

[1] J. C. Ferguson, F. Panerai, A. Borner, N. N. Mansour, 
PuMA: the Porous Microstructure Analysis software, 
SoftwareX 7 (2018) 81–87.
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Surface chemistry framework in PuMA

• Methodology to represent surface sites similar to Marschall, Maclean and 
Driver [2] for CFD.

• Particles adsorbed (deleted) and desorbed (created), surface element stores 
adsorbed particle concentration. 

• Surface reactions based on concentration within surface element. 
• Multiple triangulated elements (like cells) on surfaces
• Langmuir model for surface sites.

[2] Marschall, J., & MacLean, M. (2011). Finite-rate surface chemistry model, I: Formulation and reaction 
system examples. AIAA Paper, 3783, 2011.
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Surface Reaction Mechanisms

Adsorption Desorption

Eley-Rideal Collision-induced
desorption
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Surface Reaction Mechanisms

Condensation Sublimation

Langmuir-Hinshelwood 

Adsorption Formation Desorption
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Different Types of LH Mechanisms

The Langmuir-Hinshelwood mechanism has two steps –

Based on time scale arguments 4 types of LH mechanisms can be defined

1. tf << 𝜏 td << 𝜏 - Prompt thermal mechanism
2. tf ~ 𝜏 td << 𝜏 - LH limited by formation
3. tf << 𝜏 td ~ 𝜏 - LH limited by desorption
4. tf ~ 𝜏 td ~ 𝜏 - LH limited by both desorption and formation

Time scale of interest  =   𝜏𝑂 𝑔 + 𝐶 𝑏 → 𝐶𝑂 𝑔 (3)

𝑂 𝑔 + 𝑠 → 𝑂 𝑠

𝐶𝑂 𝑠 → 𝐶𝑂 𝑔 + 𝑠 (2) − 𝑡/

𝑂 𝑠 + 𝐶 𝑏 → 𝐶𝑂 𝑠 1 − 𝑡1

Formation 
Desorption

𝑂 𝑠 – Reactant
𝐶𝑂 𝑠 – Intermediate
𝐶𝑂 𝑔 – Product
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List of gas-surface (GS) reactions
• Reactants include both gas-phase and surface species.
• Comprehensive set of reactions – Includes reaction types from thermal regime 

and hyperthermal energy regime. 
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Modeling of gas-surface (GS) reactions

• GS reaction probability computed when gas-phase species hits surface.
• Reaction probability function of: 

o rate constant
o gas-phase particle properties (energy, angle, etc.)
o surface conditions (temperature, surface coverage, etc.)

[3]

[5]

[4]

4 Molchanova, et al. "A detailed DSMC surface chemistry model." In AIP Conference Proceedings, vol. 1628, no. 1, pp. 131-138. AIP, 2014.
3 Kisliuk, P. "The sticking probabilities of gases chemisorbed on the surfaces of solids." JPhysChemSolids 3, no. 1-2 (1957): 95-101

5 Rettner and Lee. "Dynamic displacement of O2 from Pt (111): A new desorption mechanism." The JChemPhys 101, no. 11 (1994): 
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List of pure-surface (PS) reactions

• Pure-surface (PS) reactants include only surface species (adsorbed and 
bulk).

• Comprehensive set of reactions

11USNCCM 15: #1301 Image-Based Simulation29th Jul 2019



ckg 
COMPUTATIONAL 
KINETICS GROUP @ UIUC 

Modeling of pure-surface (PS) reactions

• Characteristic time computed between two reactions: Time counter method [5]. 
• Characteristic time function of 

o reaction rate constant
o surface conditions (temperature, surface coverage, etc.). 

• Time counter algorithms developed to be independent of dt.

4 Molchanova, A. N., A. V. Kashkovsky, and Ye A. Bondar. "A detailed DSMC surface chemistry model." In AIP Conference Proceedings, 
vol. 1628, no. 1, pp. 131-138. AIP, 2014.

[4]
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Reactive scattering simulation in PuMA
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Molecular Beam Experimental Setup [6] 

Thermally desorbed (TD) prompt
- MB distribution

Impulsively scattered (IS)
/non-thermal

TD Slow desorbing

14

Reprinted with permission from “[6] Murray, V J., et al. The Journal of Physical 
Chemistry C 119.26 (2015): 14780-14796. Copyright 2015. American Chemical Society.
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Vitreous Carbon (VC) Oxidation Model [7]

15

[7] K. Swaminathan-Gopalan et al., "Development and validation of a finite-rate model for 
carbon oxidation by atomic oxygen." Carbon 137 (2018): 313-332.
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O : 1875K

CO : 1875K

O : 1875K

CO : 1875K

Vitreous Carbon (VC) Oxidation Model
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Vitreous Carbon (VC) Oxidation Model
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Effective models for use in CFD: 
Extension of VC model to FiberForm®

Image credit: NASA

Vitreous carbon

FiberForm®

Artist rendering. 
Credit: SPI Supplies Division 
of Structure Probe, Inc

18

Objectives: 
• Develop a predictive model of carbon 

oxidation for use in CFD
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Effective model for use in CFD

Real model 
Rates → k

Effective model 
Rates → keff

19

Image credit: NASA
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Effective model for use in CFD
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Effective model for use in CFD
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O : 1623K

CO : 1623K

Effective model for use in CFD
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Vitreous Carbon and Effective model

23

Vitreous Carbon model Effective model
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FiberForm – Varying Porosity

24

ϕ = 0.84 ϕ = 0.96ϕ= 0.90

Varying porosity
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FiberForm – Varying Porosity

25

Real model Rates → k

Effective model Rates → keff(T,ϕ)

Effective Rates → keff(T) Effective Rates → keff(T) Effective Rates → keff(T)
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FiberForm – Varying Porosity

26USNCCM 15: #1301 Image-Based Simulation29th Jul 2019



ckg 
COMPUTATIONAL 
KINETICS GROUP @ UIUC 

Conclusions
• Detailed surface chemistry framework was implemented in PuMA.

• The vitreous carbon (VC) model was extended to FiberForm® and validated.

• Effective oxidation model as a function of structural properties and temperature
keff (T,Φ) was developed for use in CFD.

Future Work
• Extension to other species (N)

Summary
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