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Background

Cloud Computing Advances in Machine Learning
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What is this talk about?

Increasing interest in applying Machine Learning
Techniques (MLT) to solve problems in Aviation
Operations (AO)

Review simulation and analysis methods in AO

Promises and challenges of applying MLT to AO
problems

Compare physics-based modeling and data driven
Modeling using examples from recent literature

Concluding remarks



Outline

Simulation and analysis
Data sources

MLT
Applications

— Detailed example
— Different areas

Conclusions



Simulation and Analysis

* Problems in AO range widely in spatio-temporal scale
— Conflict detection involving two aircraft ( local, seconds)
— Controlling traffic in a sector (many aircraft, minutes)
— Traffic Flow Management (Large number of aircraft, hours)
— Impact on climate (Global and several decades)

* Modeling approach
— Task
— Data/Information
— Problem formulation
— Types of models
— Criterion for success



Air Traffic Simulation Model
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Problem Formulation

* Most problems in Air Traffic Management (ATM) can be

formulated as "

dt

y = g(x,u,w.0)
X (state), u (control), w (disturbance/uncertainty), y (output)

— Select u such that y is close to y4 by minimizing

f(x,u w,0)

tf

Min / (va — y)* + u’dt
U S

MinZy (va — y)* + u’dt
u

« Prediction: Given y(t), for t<=0, find y(t) for t>0
 In classification problem, it may be necessary to divide

y into several groups (Y1 Y2, ¥3,---- Yp)
« Data-driven models derive f and g using data



Systems, Feedback and Neuro-Dynamic Programming

Markov Chains

X(k+1) =A(k)x(k)
Transition from current state x(k) to new state x(k+1) depends on the
transition probability matrix A(k)

Transition cost (reward) to go from x(k) to x(k+1): c(k,u,k+1)
Multi-stage optimization: Costs satisfy Bellman’s equations

J*(k) = Min  E[c(k,u, k +1)+ J"(k+1)|k,u] for all k
Approximate the cost-to-go by
J(k+1)=J"(k+1,r)

Minimization provides the feedback (agent) policy

Neural Network provides the approximation architecture and calculation of r
to minimize the error between Jand J-



Characteristics of Physics-based models

Choice of state variables and their relationship to the
physical quantities, dimensionality

Model reduction
Low order unbiased minimum variance models
Feature Selection



Metrics for Evaluation

 Maximum Absolute Square Error (MASE), Root Mean
Squared Error (RMSE)

Actual: Positive  Actual: Negative = TPR=TP/(TP+FN)
Predicted: YES TP FP TNR=TN/(TN+FP)

L FNR=FN/(FN+NP)
Predicted: NO FN TN FPR=FP/(FP+TN)

— True Positive Rate (TPR), True Negative Rate (TNR), False
Negative Rate (FNR) and False Positive Rate (FPR)

— Precision: TP/(TP+FP), Recall: TP/(TP+FN)
— F4-score: Harmonic mean between precision and recall
F1= 2 (precision x recall)/(precision + recall)

« Cross-correlation
* Receiver Operating Characteristics (ROC) curve
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Data Sources: FAA

Operations System Network (OPSNET)

« From 1990; 45 airports; Different types of daily delays

Aviation System Performance Metrics (ASPM)

» Available from 2000; 77 airports in US; Every 15 minutes; provides the
airport specific data, runway configuration and the local meteorological
conditions at each airport. Hourly values of wind speed, visibility, ceiling,
Instrument Meteorological Conditions (IMC), scheduled arrivals and
departures, Airport hourly delays and airport arrival rates (AAR)

Terminal Area Forecast (TAF)

» Database used by the FAA for planning purposes and covers airports in
the US; Historical (1990-2017) and forecast data (2018-2045) for
enplanements, airport operations, TRACON operations, and based aircraft

» Covers 264 FAA towered airports, 254 Federal contract tower airports, 30
radar approach control facilities and 2850 non-FAA airports.

Meteorological Aviation Weather Report (METAR)

« airport identifier, time of observation, wind, visibility, runway visual range,
present weather phenomena, sky conditions, temperature, dew point, and
altimeter setting.
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Data Sources: Bureau of Transportation

Statistics (BTS)

» Data provided by air carriers that have more than 0.5
percent of total domestic scheduled-service passenger
revenue

— Airlines report causes of delays in five broad categories:

(a) Air Carrier Delays: cancellation or delay due to circumstances within
the airline's control (e.g. aircraft maintenance or crew problems)

(b) Extreme Weather conditions such as tornado, blizzard or hurricane that
delays or prevents the operation of a flight such as tornado, blizzard or
hurricane

(c) National Aviation System (NAS): Delays and cancellations attributable
to the national aviation system to manage traffic safely during non-extreme
weather conditions, airport operations and heavy traffic volume

(d) Late-arriving aircraft: Flight delayed due to aircraft arriving late from a
previous flight
(e) Security: Delays or cancellations for maintaining security of aviation

such as caused by evacuation of a terminal or inoperative screening
equipment.
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Machine Learning Techniques (MLT)

Major concepts in MLT originate from Pattern
Recognition, Computer Vision, Text Processing and
Voice Recognition (sparse or repetitive data)

Define terminology and characteristics to provide
background to review applications

Techniques selected based on the frequency of
application in ATM

Methods

— Classification

— Support Vector Machine (SVM)
— Decision Trees

— Neural Networks

— Reinforcement Learning (RL)
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Support Vector Machine (SVM)

« SVM classifies data using Linear
Discriminant Function (LDF) to
minimize the error in classification of ,
training samples

— Computational simplicity

— Gradient procedures used to speed up
computation of the hyperplane

— Used for both regression and
classification

— Robust performance under limited,
sparse, noisy data

« SVM performs classification of non-
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linear decision functions by
transforming inputs using kernel
functions

— Gaussian radial basis function (RBF)

>

y=wlx+b
If wix; +b =0, then y; = +1
If wix; +b < 0, then yi=—1
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Decision Trees

« Classification and Regression Tree (CART)

— Used both for classification and regression

— Easy to interpret and see importance of feature based on its
location

— Sensitive to inputs

<=0.86 >0.86

>0.55
<=0.55

Foop(X) = -2.89 + 0.01%v + 2.89%p
Frocop(X) = 2.89 - 0.01%v - 2.89%p

<=14 >14

Feoe(X) = -1.57 + 0.02*v + 0.79%p
FrocoplX) = 1.57 - 0.02%v - 0.79%p

* Ensemble decision trees: Random Forest

— Build several classifiers (trees) by sampling data (forest) and
combine the outcome of samples to produce final result
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Neural Networks

Hidden

Output
i Sy TAYEC Performance
d Metric O
(Target)
="
=1

« Good general purpose modeling approach
« Ability to model large class of input/output relations
» Generalization capability



Neural Networks: Design Considerations

 Architecture: input layer, # of hidden layers, output
layers

 Activation Functions: Identity, Sigmoid, ReLU (Rectified
Linear Units)

* Training: Learning rate

(§2 f 2

~ 2 v

f(x + Ax) = f(x) + [(?f]r * Ax + 0.5 %
0X 0X<

Ax = —20xH txg’
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Reinforcement Learning

= (i) , State x(i)
; Stochastic System :

Feedback policy E—

Learning environment generates and presents scenarios to the agent
Based on the feedback policy, agent tries to solve the problem

Receives positive reward for successful performance and negative
reward or penalty for poor performance

R"1(x,a) = (1 — a)R"(x,a) + afr(x, a,j) + ,f'3{\)/1:/£7R”(/, b)]

Training objective is to maximize the reward function and the policy is
consistently correct for new scenarios

18



Physics-based and Data-driven Models

Property Physics-based Model Data-driven Models
Model Linear, Non-Linear, Dynamic, Static, Queueing Black-Box
Interpretation Easy to explain results in terms Hard to interpret and gain

of physical quantities

trust in the system

Model-Building

Expensive and requires lot of application
expertise

Availability of quantity
and quality of data

Suitability

Availability of well-defined physical models

Ideal for building causal relationship
between inputs and outputs when good
physics-based models are non-existent

or expensive to build

Feature Selection

Defined by the model and various
methods to reduce dimensions (Aggregation,
time and space separation)

Major issue to reduce
the dimension in complex
problems

Size

Various methods to determine minimal order
unbiased minimal variance models

Efforts to balance over-fitting and
under-fitting by cross-validation,
regularization and other methods
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Applications

20



Task: Modeling flight delays and cancellations due
to Weather

Arrival
Airport

Nominal
Convective Route a
Weather

Actual
Route

Departure
Airport

 Weather is the major cause of delay in the National Airspace System (NAS)

» Relate delay, cancellations and other NAS performance metrics to the
weather conditions
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Factors in modeling delay

Data
— OPSNET, ASPM

— Traffic Data (2004-
2008)

— Convective
Weather, Wind data

Choice of nominal
traffic

Feature selection
Modeling approach
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Neural Networks

» Selection of WITI reduces the input images of traffic and convective weather

and simplifies the convolutional and pooling layers
Hidden

Output
ot Performance
Metric O

(Target)




Feature Selection : Weather Impacted Traffic Index (WITI)

Latitude (deg.)

Aircraft positions Severe weather
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National WITI
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Feature Selection Influenced by Data

« Number of aircraft affected by weather ( X)

* Number of aircraft affected by weather in each
Center or Airport (X))

» Performance metric: Delay or cancellation ( §)

 Models

— Linear Regression (LR) 8 = aX + ﬁ
— Multiple Linear 20

Regression (MLR) O = Ea X +p b

— Neural Networks O = f(Xp)
()= f(Xp(t— k),...Xp(t— 'I),Xp(t),

X, (t+1)..X (t+r))

— Dynamic Models
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Neural Network Design Considerations

Number of hidden layer
— One was found adequate

Number of neurons
— Different values were used and errors for each were estimated

— Neurons in the range 2/3(sum of number of inputs and outputs)
provided consistent results and error

Activation function
— Nonlinear sigmoid function

Data includes pairs of inputs and desired outputs
m(l+1) weights
Weights updated using a gradient procedure until the

sum of squares error (SSE) between the neural
network output and the desired output is minimized

Balance between over fitting and under fitting
27



Variation of Training Error

Training S5E = 3.65263
10° |
Error
-‘IDD 1 1
o Squared Weights = 29.5447
1D T T T

Weights K

Effective Mumber of Parameters = 190.553

- 200 ' ' '
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100
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1 1 1 1 1 1
] 20 40 E0 a0 100 120 140 160 180 200
200 Epochs

 Result of training after 200 epochs

- Neural network represents total delay training
data extremely well



Over fitted Neural Network
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» Model fits the total delay training data (2004-
2005) well, but does not generalize (correlation
coefficient for test set is significantly less)
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Methods for Good Design

» Training data should be sufficiently large and
statistically representative

* QOverly complex models should be avoided

» Methods to reduce complexity
— Early Stopping (ES)
— Principal Component Analysis (PCA)
— Stepwise Regression (SR)
— Bayesian Regularization (BR)



Early Stopping

MM ES Training (75%) and Yalidation (25%) 2004-2005
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» Training data (2004-2005) divided into two parts
— Training set (80%) used to update weights
— Validation set (20%) used for stopping criterion



Performance with Early Stopping

« 107 NN ES Outputs vs. Targets, C.C.=0.91 R=0.832 w107 NN ER Outputs vs. Targets, C.C.=0.88 R=0.775
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« 2004-2005 total delay training data with Early Stopping
produces a more balanced model with better
generalization capability

- N-fold cross-validation using 2004-2006 data
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Computational Results

OPSNET total delay

Method | CC RMSE MAE
LR 0.71 32700 26600
MLR |0.77 31200 24500
BR 0.88 30000 2300
ES 0.88 30900 23200
PCA |0.88 30100 23100
SR 0.88 29600 22300

Five-fold cross-validation

ASPM Scheduled delay

Method | CC RMSE MAE

LR 0.75 99200 74300
MLR |[0.76 97600 72900
BR 0.88 95800 74300
ES 0.88 94200 70800
PCA |0.88 91700 68600
SR 0.87 99100 73800

Five-fold cross-validation

Method | CC RMSE MAE

BR 0.88 29100 22000
ES 0.88 31500 23900
PCA |0.87 30500 23300
SR 0.89 29600 22500

Method | CC RMSE MAE

BR 0.87 93700 70300
ES 0.87 95000 72000
PCA |0.87 94900 70800
SR 0.85 96100 73000
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Traffic Delay Estimation

Problem Flight Delay and Cancellation in US

Data FAA OPSNET and ASPM data
Convective weather 2005-2008.

Method MLR and feed-forward NN with several

stopping criterion

Feature Selection

Weather Influenced Traffic Index(WITI)
at the Center, National and airport level

Method of Evaluation

MAE, RMSE and Correlation Coefficient

Remarks

For all metrics and seasons at all levels NN
produced slightly better results the MLR

34



Traffic Delay Estimation

Problem Network Delay Estimation in US

Data BTS data 2011-2012 hourly different types of
delays between 1107 origin-destination pairs
and 158 airports

Method Markov Jump Linear System

CART and NN

Feature Selection

Local delay: Links between airports
Global delay: time and type of day

Method of Evaluation

MAE, RMSE and Correlation Coefficient

Remarks

NN performed well in classifying

links with high delays; MLJS performed
better on estimating delay on individual
links. Performs varies with problem and
prediction horizon
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Conflict Detection and Resolution

36



Conflict Detection and Resolution

Problem

Conflict detection and resolution

Data

Randomly generated conflicts in a circular
area with radius of 50nm.

Conflicts are detected when separation is

< 5nm and tepa < 480 sec

Vehicle speed 400nm/hr and max 15 aircraft

Method

RL with Deep Deterministic Policy Gradient

Feature Selection

State and action of each aircraft represented
by 8 parameters 73 parameters for 15 aircraft

Method of Evaluation

MAE, RMSE and Confusion Matrix

Remarks

Al agent had a success rate of 81% in the
presence of uncertainty and 14 other aircraft
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Conflict Detection and Resolution

Problem Conflict detection and resolution

Data Mode-S data covering France on Jan 20,2012
21,314 trajectories with flight number, time,
position, ground speed, vertical speed,
heading, wind speed and direction

Method Linear (MLR),Non-Linear (SVM,FFNNs,

KNN), Ensemble (GBM, and RF)

Feature Selection

Number of trajectories reduced
to 88,217 by focusing on trajectories with
tcpa between 5 to 20 minutes

Method of Evaluation

MAE, RMSE and Confusion Matrix

Remarks

NN,GBM and RF performed better than the

baseline model. GBM outperforms all
other methods
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Man-Machine Interaction

Pilots
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Man-Machine Interaction

Problem Air Traffic Controller Workload

Data Recorded air traffic data (position, velocity of
aircraft at Dallas Fort-Worth Center
Aug 10, 1998

Method Gradient-based Back-propagation

Neural Network

Feature Selection

Spatial distribution of aircraft
represented by a minimum spanning tree

Method of Evaluation

MAE, RMSE and Correlation Coefficient
Confusion Matrix

Remarks

NN correctly identified 95% of low-workload
cases, 82% medium-workload cases and was
unable to identify high-workload cases
due to limited high-workload samples
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Man-Machine Interaction

Problem Reroute Aduvisories
Data Trial of DWR concept at American
Airlines

Accepted and rejected reroute advisories
during May-September, 2014

Method Logistic Regression, SVM, Decision Tree
RF and Adaptive Boosting
Feature Selection 10 Feautures based on controller

and pilot activity and expert opinion

Method of Evaluation | MAE, RMSE and Correlation Coefficient
Confusion Matrix, F1 and ROC
Ten-fold cross-validation

Remarks RF and Adaboost performed best

with F1 score 0.815 and 0.766 respectively
better on estimating delay on individual
links. Performs varies with problem and
prediction horizon




Aviation Safety: Anomaly Detection
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Aviation Safety: Anomaly Detection

Problem Aviation Safety: Anomaly Detection
Data Boeing 777 aircraft data, 365 flights
between 14 airports
Aug 10, 1998
Method Density-based clustering algorithm

Feature Selection

69 flight parameters

Method of Evaluation

MAE, RMSE and Correlation Coefficient
Confusion Matrix

Remarks

MLT detects anomaly without looking for
violation of the range of parameters.ldentified
1%, 3% and 5% outliers during take-off and
landing. Poor sensitivity to short duration
anomalies and latent features
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Concluding Remarks

Presented research on comparing different modeling
approaches in aviation operations

MLT provide a new class of complimentary tools
Feature selection plays a key role

Results on the application of MLT to aviation operations
falls into three groups
— Method of choice due to lack of physics-based models
— MLT performs better than baseline techniques
— MLT either marginally better than baseline technique or
performs worse

Task, prior knowledge, data: key to modeling approach
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