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Overview
• NASA is broadly engaged in advanced subsonic commercial vehicle concepts 

to enable the reduction of fuel burn.  
• This paper will discuss an embedded boundary layer ingestion (BLI) application 

which was tested in NASA GRC’s 8x6 wind tunnel at high-speed.
• The benefits and challenges with the design and test of this particular BLI 

system are presented.
• A vehicle-level system study is presented using the results of this test on an 

advanced concept aircraft.  
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NASA Subsonic Transport System-Level Measures of Success

Use industry pull to mature technology that enables aircraft products that meet near-term metrics and push to 
mature technology that will support development of new aircraft products that meet or exceed mid-term and 
far-term metrics.
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Evolutionary Transformational Revolutionary 

TECHNOLOGY
BENEFITS*

TECHNOLOGY GENERATIONS
(Technology Readiness Level = 5-6)

Near Term
2015-2025 

Mid Term
2025-2035

Far Term
beyond 2035

Noise Reduction
(cum below Stage 4) 22 – 32 dB 32 – 42 dB 42 – 52 dB

LTO Nox Emissions Reduction
(below CAEP 6) 70 – 75% 80% > 80%

Cruise Nox Emissions Reduction
(rel. to 2005 best in class) 65 – 70% 80% > 80%

Fuel/Energy Consumption Reduction
(rel. to 2005 best in class) 40 – 50% 50 – 60% 60 – 80%

* Note: Reference is best commercially available 
or best in class in 2005. 



Advanced Air Vehicles Program
Advanced Transport Technologies Project

Boundary Layer Ingestion
• The technology of a propulsion system with boundary layer 

ingestion (BLI) has been significantly advanced through a 
number of analytical, computational, and experimental 
studies.  

Common Aircraft w/NASA’s ERA Project

N2A-EXTE Hybrid Wing Body Aircraft Credit:  United Technologies Research Center / NASA
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Boundary Layer Ingestion

7

Conventional Installation

Propulsion system is installed on the aircraft with pylons to 
avoid or minimize any interactions with the aircraft wake as 

much as possible

Momentum excess from jet exhaust

(Ideally) Balances

Momentum deficit due to a/c wake

AIAA-2014-2573
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Boundary Layer Ingestion

Boundary Layer Ingestion (180 Degree Distortion)

Wake Ingestion (360 Degree Distortion)

Principle
Place engine downstream of the 
body in order to ingest its wake 
ideally to re-energize the wake 

back to freestream velocity

Momentum excess from jet exhaust
Partially Balanced

Momentum deficit due to a/c wake

Balanced

Propulsor ingests 
and reaccelerates 
the airframe 
boundary layer

Less Wake & Lower Jet Kinetic Energy for 
the same net force

Means
Less Power needs to be added to the flow 

by the Propulsor
Means

Less Fuel Burn

AIAA-2014-2573
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TRL Timeline for BLI2DTF Propulsor

TR
L

2

3

4

1

HWB Airframe Integrated
Embedded BLI Propulsor System

Study Complete

Optimized BLI Inlet Aero
Design Complete

Full Wheel GTF G4 Pre-Baseline
Distorted Inflow/Fan Analysis

Complete

Integrated BLI2DTF
Design Complete

PDR

CDR

Hardware
Fab Complete

AeroDR

FY 2009 FY 2010 FY 2011 FY 2012 FY 2013 FY 2014 FY 2015 FY 2016 FY 2017 FY 2018

BLI2DTF 8x6 Test
Complete

Raised Floor Test Section 
Calibration Test Complete
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WT Setup with BLI2DTF Propulsor

Boundary Layer Bleed

Raised Test Section Floor

Boundary Layer
Ingesting Inlet

Ultra High Bypass 
Ratio Fan Drive Rig

Fast-Acting, Variable
Area Nozzle

Distortion-Tolerant Fan Stage
• Rotating AIP Rake Array
• Distortion-Tolerant Fan Stage
• Fan Exit Rotating Rake Array

Test Section Porosity

Raised Floor
Roughness
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Inlet Boundary Layer Profile
Target incoming BL determined by CFD
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BLI2DTF Propulsor

Mach 0.78
BL Thk = 4.80in

Fan Exit Guide VanesInlet High-response 
Variable Area Nozzle

UHB Drive Rig 
(existing)

Inlet Pre-Entry 
Diffusion Ramp

BLI inlet with distortion-tolerant fan stage (18 Rotors / 48 Vanes).
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BLI2DTF Propulsor Instrumentation

9

AIPRRAStatic  
Taps

Distortion-Tolerant Fan Rotor  
Speed, Strain Gages, and  
Light and Capacitance Probes

VAFN Position,  
Static Taps

FERRAStatic  
Taps

External Nacelle  
Thermocouple  
Probes

BLI Inlet  
Static Taps

Inlet Lip  
Static Taps

Pre-Entry Diffusion  
Ramp Static Taps

Inlet Throat  
Static Taps

Fan Intra-Stage  
Static Taps

Aerodynamic Interface  
Plane Rotating Rake  
Array (AIPRRA) Fan Stage Exit

Rotating Rake
Array (FERRA)
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AEROMECHANIC RESPONSE & INLET PERFORMANCE
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Inlet Distortion at the AIP
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Performance & Operability Maps

Fan Stage Pressure Ratio Fan Stage Adiabatic Efficiency
102.5 lbm/sec
PR=1.35
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System Study Assessment – NASA D8 Aircraft

Sensitivity Result:
A 1% decrease in fan efficiency 
causes a 0.95% increase in 
block fuel if aircraft sizing effects 
are included. 

Baseline ND8
no fan efficiency loss

ND8 with "BLI-off" 
(sized to meet 
performance
constraints)

BLI Benefit: 5.35% reduction relative 
to Underwing Engines Configuration

Final ND8
includes fan efficiency loss

Underwing 
Engines 

Configuration

BLI2DTF 3.5% Fan 
Efficiency Loss 

Penalty 

Effect of BLI alone:
6.5% increase when 
BLI is turned off 

8.5% potential 
reduction benefit 
with BLI and no 

fan efficiency loss 

BLI configurations
(sized to meet 
performance 
constraints)
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CONCLUSION

• Type I BLI propulsor was developed & tested in the NASA GRC 
8x6 wind tunnel

• New Tools/Techniques Developed for BLI:
• Integrated Design of Inlet and Fan
• Aeromechanics tools for Critical Modes Analysis
• Raised floor to deliver the ‘right’ boundary layer
• Rotating Rake Arrays to Capture Data
• Unique Post-Processing Capabilities for non-clean inlet flow

• System study shows good fuel burn reduction potential for BLI

NASA Glenn Research Center, NASA Langley Research Center, United Technologies Research 
Center, Vantage Partners, Virginia Polytechnic University, Air Force Arnold Engineering 

Development Center
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