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1. Better understand the
drivers of past carbon flux

« Developing modeling tools that make
use of multiple satellite data constraints
(see L. Ma poster)

« Improved understanding of the role of
climate variability using atmospheric
reanalyses

* Monthly varying land use transition data

« Characterization of the relative roles of
the biological and physical ocean
pumps (see G. Hurtt poster)

« Estimating the role of circulation
changes on atmospheric carbon
concentrations

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov

Motivation (1)

Balance of sources and sinks
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Total estimated sources do
-30 not match total estimated
sinks. This imbalance reflects
the gap in our understanding.
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Motivation (2)

2. Evaluate the extent to
which carbon flux changes

_ Seasonal Forecasting System
are predictable on seasonal

timescales
Atmosphere GCM  Ensemble
. il i icti SST, Sea i Wind stress, P-E, : :
Seasonal forecasts show skill in predicting i lifo'ﬁse ﬁ '”H garﬁ?lsux Simulations

climate anomalies several months in
advance, particularly in the tropics u
* |f extended to include carbon fluxes, such Ocean GCM

forecasts have the potential to support
« NASA's ability to observe changes in
the carbon cycle by providing a longer
lead time
* Quicker analysis of satellite
observations in support of carbon
monitoring

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov
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Motivation (3)

2. Evaluate the extent to
which carbon flux changes
are predictable on seasonal

timescales

« Seasonal forecasts show skill in predicting
climate anomalies several months in
advance, particularly in the tropics

« If extended to include carbon fluxes, such
forecasts have the potential to support

« NASA's ability to observe changes in
the carbon cycle by providing a longer
lead time

* Quicker analysis of satellite
observations in support of carbon
monitoring

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov

Forecasts of the 2015-16 El Nino

Past and current forecasts for Nino3.4 region of tropical Pacific

JAN 2015

El Nino threshold

Difference from average SST (°C)

La Nina threshold

NOAA Climate.gov, 2016
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How well can we forecast each of these components, and at
what lead times?
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- Vegetation

Credit: NASA/Jenny Mottar and Abhishek Chatterjee
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Forecasting Atmospheric CO, Growth Rate

a Airborne Fraction (AF) = fraction of 12 P e
anthropogenic carbon emissions which remain 1o B3 Fromsessanenc GRS .
in the atmosphere after natural processes _ 8} \ §
have absorbed some of them 36l I_I_,_,__n-l"_‘ |

(@]
[a
<) I :
AFFF LU = dt 2 —_ e Accumulation rate 7]
+ FF(t) _I_ LU(t) , in atmosphere

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
O AF is a fundamental property of the carbon

cycle (long-term avg. = 0.45) RN AR A A A A A AR AR AN
35F  —e— Actual dC/dt El Ni
5| ~ —Estimated dCat El Nino El Nino ino
QO as part of this work, estimating dC/dt using ~ 25 El Nino

MLR and information about anthropogenic £ 2r /\:/QWJ\
emissions, modes of climate variability - 1'15:
(ENSO, NAOQ, etc.) and other natural forcings O_S_W

(Chatterjee et al., in prep.) — initial results are of

extremely enCouraging, stay tuned 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Global Modeling and Assimilation Office .
gmao.gsfc.nasa.gov A Chatte rjee
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How well can we forecast each of these components, and at
what lead times?
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- Vegetation

Credit: NASA/Jenny Mottar and Abhishek Chatterjee
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Land use predictions using economic models e

Global cropland economic return (2000)

« Simulation of major crop production using Agro-
Ecological Zones model and cropland economic
return calculation

« Development of Logistic Share Model of Land Use
for Land Use prediction studies

o I e  Applications in countries with reasonably good
and accessible agricultural statistics (e.g. United

Cropland LUH 2011 Cropland prediction 2011 States and Brazil)
J :
» Because year-to-year changes are relatively

small, greatest applications are on 2-5 year time
horizon

000
MMMMM

Absolute error RMSE: 0.033

Global Modeling and Assimilation Offi
gmacgsicasagoy L. Sun and G. Hurtt
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How well can we forecast each of these components, and at
what lead times?
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- Vegetation

Credit: NASA/Jenny Mottar and Abhishek Chatterjee
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Statistical fire forecasts using ocean climate indices (OCIs)
and vapor pressure deficit (VPD)

. ARIMAX: autoregressive (AR) integrated (I) moving average (MA) with exogenous variables
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How well can we forecast each of these components, and at
what lead times?
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- Vegetation

Credit: NASA/Jenny Mottar and Abhishek Chatterjee
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Forecasts of NEE using two terrestrial biosphere models
Global ED (UMD)

C atc h m e nt-C N ) ] ED-global annual GPP (KgC/m2/yr) 2001-2916 ]
k Land Model
Output to
LAI, canopy Compute Compute atmosphere
conductance energy > water P —
balances balances (updatedT, g;
surface flux
diagnostics,
|
carbon
Input from Dynamic vegetation uptake)
atmosphere module: update
carbon prognostic aE
(CTO Pra,u, states g
2-) (with C/N model & W \/ \7/
—— GCB_DGVMs —— CAMS v17r1
types) Koster et al., 2014 — NOAACTZ017  — ED-giobal
1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

LiDAR - Light Detection and Ranging

Development of global Ecosystem

» Can be run offline or within GEOS modeling
Demography model (ED)

system — strong connection to met data
assimilation and SMAP
« Merger of CLM C-N dynamics and GEOS water, sensing (LIDAR, Landsat)
energy balances ° Appllcatlons IN CMS, GEDI, IDS
Global Modeling and Assimilation Office E Lee, F Zeng, G Hurtt, and L Ma

gmao.gsfc.nasa.gov




National Aeronautics and Space Administration

Case study: End of the 2015-16 El Nino

n T Anomaly (K) Raw Seasonal Forecast T Anomaly
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Observation-drive

Global Modeling and Assimilation Office
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Case study: End of the 2015-16 El Nino

Observation-driven T Anomaly (K) al Forecast Anomaly
¥ ip, - AR V v — ﬂu Pl " 7

Global Modeling and Assimilation Office

gma.gsfc.nasa.gov Bias correction courtesy of F. Zeng, K. Arsenault, A. Hazra, and S. Shukla
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Case study: End of the 2015-16 EIl Nino

Observatlon-drlven Premp Anomaly (mm mon-1) Blas-corrected Forecast Precip. Anomaly
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gma.gsfc.nasa.gov Bias correction courtesy of F. Zeng, K. Arsenault, A. Hazra, and S. Shukla
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Predicted NEE Anomalies — Catchment-CN

Observation-driven NEE Anomaly (g C m2 mon-) Forecast NEE Anomaly B
- IRy » S X i \)!‘g

Global Modeling and Assimilation Office

gmao.gsfc.nasa.gov F Zeng and E Lee
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Predicted NEE Anomalies — Global ED

Observation-driven NEE Anomaly (g C m2 mon-)
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Comparing Tropical American Flux Anomalies

NEE Anomalies over Tropical America (Pg C mon™')
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— Observation-driven
-== Forecast « Both TBMs driven by seasonal
01k, N @ Nteeemmm T meea forecast meteorology predict consist

0.0 flux anomalies out to ~4 months
_o.1|Catchment-C ;
0.2 Global ED « Both models predict positive NEE
1601 1602 1603 1604 1605 1606 1607 1608 1609 aG”;g‘a”eS associated with reduced
GPP Anomalies over Tropical America (Pg C mon™')
3;(‘, * Results are qualitatively consistent

ol ooo-. "~ == with inverse model results using

-0.2 OCO-2 data, though more careful
-0.3 analysis is needed to confirm this
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Conclusions

 Through IDS, NASA is supporting the world’s first seasonal carbon flux forecasts (thanks!)

« All components of the carbon cycle demonstrate some level of predictability, though
establishing how, where, and how good is a work in progress (FF and ocean forecasts also
ongoing but not shown here)

« Current generation seasonal climate forecasts require careful bias correction, but they
contain information on temperature and moisture anomalies that can support skillful
seasonal forecasts of NEE in some regions

» It's a work in progress, but seasonal carbon forecasts show the potential to support a variety
of research applications including
« Targeted remote sensing
 Aircraft and field campaign deployments
« Contributing to carbon budget analyses
« Bridging a gap to provide more informed prior fluxes to atmospheric modelers

GMA Global Modeling and Assimilation Office

gmao.gsfc.nasa.gov



