

In Space Manufacturing: From Low Earth Orbit to Deep Space Exploration

R.G. Clinton Jr., PhD Associate Director Science and Technology Office NASA Marshall Space Flight Center International Astronautical Congress October 25, 2019 Washington DC

In Space Manufacturing Path to Exploration Key Thrust Areas

ISM Utilization and the Additive Manufacturing Facility (AMF): Material Characterization and Functional Parts

AMF on ISS with printed multi-purpose tool floating in front (photos courtesy of MIS)

SPHERES Tow Hitch

REM Shield Enclosure

Antenna Feed Horn

OGS AAA Adapter

- Additive Manufacturing Facility (AMF), the second generation printer, is a commercial, multi-user facility developed by Made in Space, Inc.
- Upgrades beyond 3DP include:
 - a) Print with multiple material (ABS, ULTEM 9085, and HDPE
 - b) Integral cameras/sensors for automated monitoring
 - c) Maintenance procedures reduce crew time
 - d) Leveling and calibration with on-board systems
- Materials characterization task developing baseline mechanical properties on ABS (test matrix below)

AMF Mechanical	Property Tes	t Matrix		
Type, Orientation	Qty (ground)	Quantity (flight)	ASTM #	Properties
Tension, 0	10	10	D638	Modulus, strength, strain, Poisson's
Tension, 90	10	10	D638	Modulus, strength, strain
Compression, 0	10	10	D695	Modulus, "strength," strain
Compression, 90	10	10	D695	Modulus, "strength," strain
Tension, +/-45 (shear)	10	10	D3518	Modulus, strength, strain, Poisson's
Flatwise tension	10	10	C297	z-direction (through- thickness) tensile strength
Range coupon	2	2	n/a	n/a
EMU fan cap	1	1	n/a	n/a
Total	63	63		

MIS CEO Andrew Rush with a demonstration of the ArchinautOne Solar array

Objectives:

- Continue success of ESAMM and GBMASH to build ArchinautOne
 - Small satellite with best in class power capability
 - Operate in LEO
 - ESAMM unit will produce 2x 10 m beams which support 10 m² flexible solar panels each
 - Robotic arm will position vital components
 - In-situ V&V ensures quality product

ArchinautOne Small Sat

ArchinautOne Small Sat with printed solar arrays

Demonstration of small satellite with >2kW power

Lunar Surface Innovation Initiative

Space Technology Thrust Areas

203X

2020

Lunar Surface Innovation Initiative (LSII)

In Situ Resource Utilization

Collection, processing, storing and use of material found or manufactured on other astronomical objects

Sustainable Power

Enable continuous power throughout lunar day and night

Extreme Access

Access, navigate, and explore surface/subsurface areas

Surface Excavation/Construction

Enable affordable, autonomous manufacturing or construction

Lunar Dust Mitigation

Mitigate lunar dust hazards

Extreme Environments

Enable systems to operate through out the full range of lunar surface conditions

- Spurs the creation of novel technologies needed for lunar surface exploration
- Accelerates technology readiness of key systems and components.
- Addresses technology development needs for lunar surface operations, including surface payloads.
- Implements development through a combination of unique in-house activities, competitive programs, and public-private partnerships.
- Coordinates across Agency stakeholders in order to identify priorities.

ISRU Development and Demonstration Timeline

Reconnaissance, Prospecting, Sampling

Resource Acquisition & Processing

Pilot Consumable Production

Sub-system Demonstrations: Investigate, sample, and analyze the environment for mining and utilization. Follow The Natural Resources: Demonstrations of systems for extraction and processing of raw materials for future mission consumables production and storage. Sustainable Exploration: Scalable Pilot - Systems demonstrating production of consumables from in-situ resources in order to better support sustained human presence.

Oxygen from Lunar Simulant Ground Demos

2022

CLPS Drill Down Select

2019

Production

Polar Resources Ice Mining Experiment (PRIME-1) on CLPS

urces Ice eriment

ISRU Subsystem Consumables Extraction Demos

2024

2028+

Scalable Pilot - ISRU

Systems for Consumable

Production

Technology Drives Exploration

•.+

NAS