

The Solar Cruiser Mission: Demonstrating Large Solar Sails for Deep Space Missions

Les Johnson*, Frank M. Curran**, Richard W. Dissly***, and Andrew F. Heaton*

* NASA Marshall Space Flight Center

** MZBlue Aerospace

*** Ball Aerospace

Solar Sails Derive Propulsion By Reflecting Photons

Solar sails use photon "pressure" or force on thin, lightweight, reflective sheets to produce thrust.

Solar Sail Missions Flown (as of October 2019)

Current and Planned Solar Sail Missions

CU Aerospace (2018) Univ. Illinois / NASA

Earth Orbit Full Flight In Orbit; Not yet deployed

3U CubeSat 20 m²

LightSail-2 (2019) The Planetary Society

Earth Orbit Full Flight In Orbit; Successful

3U CubeSat 32 m²

Near Earth Asteroid Scout (2020) NASA

Interplanetary Full Flight

6U CubeSat 86 m²

Solar Cruiser (2024) NASA

L-1 Full Flight

90 Kg Spacecraft >1200 m²

Near Earth Asteroid Scout

The Near Earth Asteroid Scout Will

- Image/characterize a NEA during a slow flyby
- Demonstrate a low cost asteroid reconnaissance capability

Key Spacecraft & Mission Parameters

- 6U cubesat (20cm X 10cm X 30 cm)
- ~86 m² solar sail propulsion system
- Manifested for launch on the Space Launch System (Artemis 1 / 2020)
- 1 AU maximum distance from Earth

Leverages: combined experiences of MSFC and JPL with support from GSFC, JSC, & LaRC

Target Reconnaissance with medium field imaging Shape, spin, and local environment

Close Proximity Imaging Local scale morphology, terrain properties, landing site survey

NEA Scout Full Scale EDU Sail Deployment

Solar Cruiser

Mission Concept

Solar Cruiser may launch as a secondary payload on the NASA IMAP mission in October, 2024. It then cruises past the Sun-Earth L 1 point, demonstrating station keeping at an artificial equilibrium point.

Solar Cruiser Solar Sail Technology Investment Heritage

HEOMD Near-Earth Asteroid Scout 86 m², 2-year mission to an asteroid Manifested on Artemis 1 (2020)

LightSail 1 (The Planetary Society) 32 m² sail (NanoSail heritage design) Successful flight in 2015

Successful flight in 2019

32 m² sail

LightSail 2 (The Planetary Society)

MSFC NanoSail – D 10 m² sail (made using parts left over from 400 m² demonstrator) Successful flight 2010

In 2021, JWST will deploy 5 layers (772m²) of thin film material traceable to Solar Cruiser (NeXolve)

A 6. 3 64

Reflective Control Devices (RCDs) NASA STMD Early Career Faculty STRA (2012)

e Lightweight Devices Integrate So ASA Array (LISA) rly thin-film aculty power 12) generation MSFC TIPs,

> SSTP (2012-2021)

Lightweight Roccor Integrate Solar Compo Array (LISA) Boom thin-film Techno power Phase I generation (2018 – MSFC TIPs, STMD ECI &

Composite Boom Technology Phase I & II SBIR (2018 – 2020)

NeXolve Large Sail Fabrication Automation Phase I &II SBIR (2019 – 2021)

AR CRUISER

Key Feature: The Solar Sail

Reflectivity Control Devices (RCDs) for sailcraft attitude control

Composite TRAC booms with excellent strength/weight ratio and thermal stability

Embedded photovoltaics for additional power

- Passively stable design
- Scalable to future missions like SPI

Key Feature: PELE Coronagraph

PELE instrument (Polarization and Energetics in Line Emission) will provide space-based coronal imaging of both linear polarization states, combined with Doppler velocimetry, for a capability that is readily extensible to future missions.

The PELE coronagraph occults the solar disk down to Rsun=1.1, enabling observations of magnetic structure in CME triggering regions

Solar Cruiser Operations Plan

Mission Phase	Time Since Launch (days)	Duration (days)	Activities
Launch and Commissioning	L+0 to L+28	28	Assess spacecraft functionality
Coronagraph Checkout	L+29 to L+53	24	Test and operate coronagraph
Sail Deploy and Checkout	L+54 to L+61	7	Deploy and Assess Sail
Sailcraft Cruise	L+62 to L+221	160	Use sail to fly to sub-L1
Sub-L1 Halo Orbit	L+222 to L+283	62	Operate coronagraph on the sailcraft
Leave Ecliptic Plane	L+284 to L+365	92	Demonstrate heliocentric plane change
Science Enhancement	L+366 to L+ 730	365	Use coronagraph to obtain science data

Science Enhancement Option

After the Baseline mission, *Solar Cruiser* proposes a 1-year SEO to observe the solar corona from vantage points off the Sun-Earth Line

The sailcraft will cruise to 5 degrees Earth-trailing, where it will stationkeep for 4 months for coronal observations

WHY SOLAR SAILS? Solar Storm Warning

WHY SOLAR SAILS? Earth Pole Sitters

WHY SOLAR SAILS? High Inclination Solar Science

Questions?