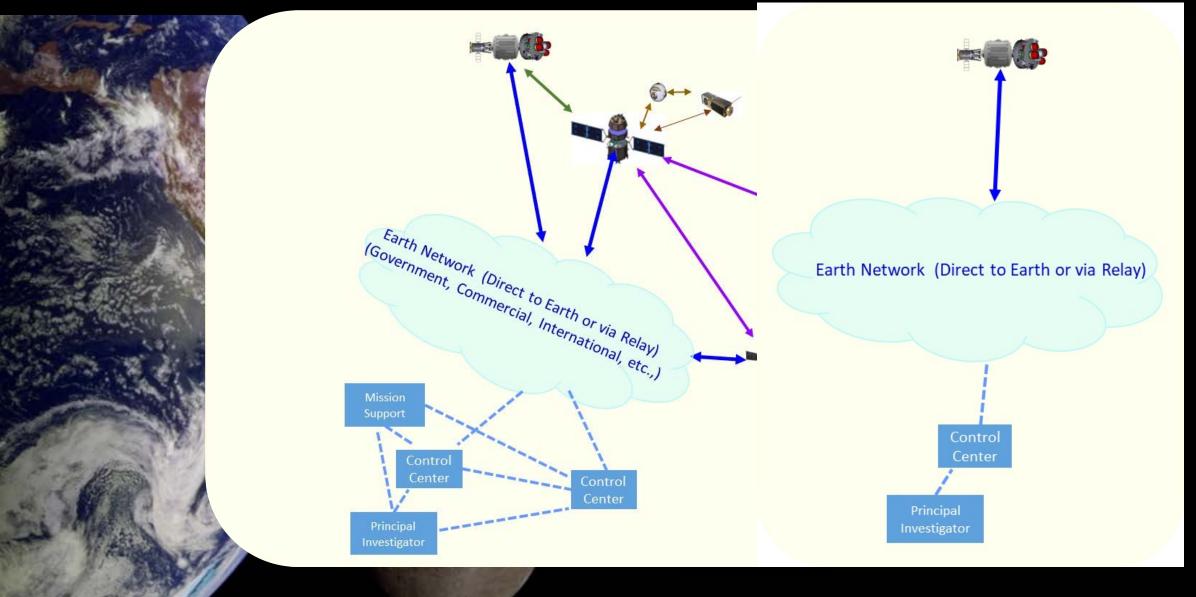
Communication Interoperability for Lunar Missions


S. K. Johnson, NASA Glenn Research Center S. V. Vitalpur, NASA Johnson Space Center W. S. Tai, NASA Jet Propulsion Laboratory J. S. Schier, NASA Headquarters D. B. Bussey, NASA Headquarters J. E. Bleacher, NASA Goddard Space Flight Center

70th International Astronautical Congress (IAC), Washington D.C.

October 21-25, 2019 IAC-19-B2.7.6

As Humans venture beyond earth orbit, missions are getting more complex

Future Exploration Missions

NASA

Large number (80+) of missions planned for the lunar region over the next decade
Spanning a variety of scientific, exploration and commercial objectives

Based on a multi-mission "campaign" instead of individual missions

Partnerships with Commercial and international providers

Ability to operate over multiple phases and interfaces

Evolving networked architecture and capabilities

Compatibility with existing assets/infrastructure System Integration across multiple levels

Key Challenges Driving Interoperability

- Evolving architecture
- Ability to operate over different mission phases, longer latencies
- Compatible with multiple interfaces
 - Ground and in-space infrastructure
 - Commercial, Government and international partner
- Forward compatibility, scalability and extensibility
- System integration across multiple levels
- Highly Reliable, sustainable operations
- Vehicle's size, weight and power constraints

Key Benefits Driving Interoperability

NASA

Interoperable, cross supportable and compatible communications between space vehicles, ground infrastructure, etc. is critical to the success of human exploration

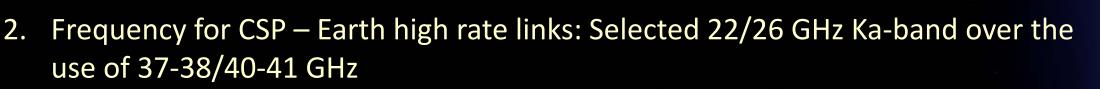
- Enables use of NASA, international partner, commercial assets interchangeably
- Makes efficient use of limited spectrum
- Decreases vehicle development and procurement costs
- Reduces operational and training complexity
- Lowers burden of ground infrastructure to support multiple configurations, protocols and standards

NASA and it's International Partners collaboratively established the International Communication System Interoperability Standard (ICSIS)

Purpose and Scope

- Defines the functional, interface and performance standards necessary to support interoperable and compatible communications between Cislunar Space Platforms (CSP) such as human exploration spacecraft and other lunar orbiting and surface vehicles and associated ground infrastructure.
- The scope of the standard is for deep space human spaceflight missions and spacecraft that interface with human missions (i.e. visiting vehicles, landers, etc.), surface systems.
- Where practicable, the document includes content relevant to future deep space human exploration missions.
 - Future revisions will update as needed for deep space human exploration missions

• Status of Standard


- Baselined and signed off by NASA and International Partners in May, 2019
- Baseline version available at:

https://internationaldeepspacestandards.com/

- Defines protocols, standards and operational philosophies for communications and tracking between space vehicles, ground infrastructure, EVAs, free flyers, payloads, and surface systems
 - Radio frequency bands, modulation, coding and synchronization, framing;
 - Ranging;
 - Audio, video;
 - Network, transport, and security including Delay Tolerant Networking (DTN) protocol suite for secure end-to-end, networked communication
- Follows Interagency Operations Advisory Group (IOAG), Space Frequency Coordination Group (SFCG), and Consultative Committee on Space Data Systems (CCSDS) standards and recommendations
- Consistent with Interagency Operations Advisory (IOAG) Lunar Communications Architecture Working Group (LCAWG) study recommendations

International Communication System Interoperability Standard (ICSIS) Key Trades: Frequency

- 1. Frequency for CSP Earth TT&C Link (X-band vs. S-band): Selected X-band
 - a. Spectrum: X-band is less congested that S-band
 - b. Ground Station support: more assets supporting X-band
 - c. X-band is Mars forward
 - d. X-band offers mass and power advantages over S-band
 - e. S-band links are more susceptible to multipath effects due to the lunar terrain/regolith than X-band

- a. Ground stations support and investments into 22/26 GHz Ka-band
- b. High implementation costs for developing hardware for space vehicles

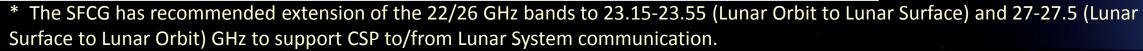
NASA

Key Trades (continued)

- 3. Forward Error Correction Coding: Low Density Parity Check (LDPC)
 - a. Selected LDPC codes for all links (Forward and Return, and Space-to-Space)
 - b. Higher achievable coding performance.
 - coding gain provided by the LDPC codes at rate 1/2, considering a BER of 10⁻⁶, is ~1.4 dB more than that provided by concatenated Reed-Solomon/convolution codes

- 4. Space Data Link Protocol: Advanced Orbiting System Space Data Link Protocol (AOS) or Unified Space Data Link Protocol (USLP), but not both
 - a. ICSIS baseline is AOS
 - Once partners agree to implementation of USLP and the Ground Stations implement it, consider transitioning to USLP for future missions

Defines the "minimum" standards and protocols for communications for a "Cislunar Space Platform



Salient Features: CSP – Earth RF Links

CSP - Earth								
Command and Telemetry								
Direction	Data Rate	Frequency	Modulation	Coding	Ranging			
Uplink	<10 Msps	7190-7235 MHz	BPSK OQPSK PCM/PM/bi-phase-L -Modulation on residual carrier	LDPC coding rates ¹ / ₂ , ² / ₃ , ⁴ / ₅ , ⁷ / ₈ uncoded	CCSDS PN Non- regenerative. Ranging chip rate: < 4 Mcps			
Downlink	< 4 Msps	8450-8500 MHz	BPSK OQPSK PCM/PM/bi-phase-L -Modulation on residual carrier	LDPC coding rates 1/2, $2/3$, $4/5$, $7/8uncoded$	CCSDS PN Non- regenerative. Ranging chip rate: < 4 Mcps			
High Data Rate								
Uplink	≤ 25 Msps	22.55-23.15 GHz	Filtered OQPSK with suppressed carrier	LDPC coding rates ${}^{1}/{}_{2}, {}^{2}/{}_{3}, {}^{4}/{}_{5}, {}^{7}/{}_{8}$ uncoded	None			
Downlink	100 Msps+	25.5-27.0 GHz	Filtered OQPSK with suppressed carrier	LDPC coding rates 1/2, $2/3$, $4/5$, $7/8uncoded$	None			

Salient Features: CSP – Lunar Systems RF Links

CSP – Lunar Systems							
Direction	1	Data Rate	Frequency	Modulation	Coding	Ranging	
CSP t Lunar System	to	Low rate	2025-2110 MHz	PCM/PM/bi-phase- L modulation on residual carrier	LDPC coding rates ¹ / ₂ , ² / ₃ , ⁴ / ₅ , ⁷ / ₈ uncoded	CCSDS PN Non- regenerative. Ranging chip rate: < 4 Mcps	
Lunar System t CSP	to	Low rate	2200-2290 MHz	PCM/PM/bi-phase- L modulation on residual carrier	LDPC coding rates 1/2, $2/3$, $4/5$, $7/8uncoded$	CCSDS PN Non- regenerative. Ranging chip rate: < 4 Mcps	
CSP t Lunar System	to	High rate	22.55-23.15 GHz*	Filtered OQPSK – suppressed carrier	LDPC coding rates ¹ / ₂ , ² / ₃ , ⁴ / ₅ , ⁷ / ₈ uncoded	None	
Lunar System t CSP	to	High rate	25.5 – 27.0 GHz*	Filtered OQPSK – suppressed carrier	LDPC coding rates 1/2, $2/3$, $4/5$, $7/8uncoded$	None	

* The SFCG has recommended extension of the 22/26 GHz bands to 23.15-23.55 (Lunar Orbit to Lunar Surface) and 27-27.5 (Lunar Surface to Lunar Orbit) GHz to support CSP to/from Lunar System communication.

Salient Features: CSP – Visiting Vehicle RF Links

CSP – Visiting Vehicle							
Direction	Data Rate	Frequency	Modulation	Coding	Ranging		
Point A transmit/ Point B receive	18 ksps – 20 Msps	2200-2290 MHz	Data Group 1 and 2 Balanced SQPN Spread Spectrum (I Only) Unbalanced QPSK Balanced SQPSK	LDPC coding Rate ½, uncoded	PN spreading for Data Group 1. None for Data Group 2.		
Point B transmit/ Point A receive	18 ksps - 300 ksps	2025-2110 MHz	Spread Spectrum Unbalanced QPSK (10:1)	LDPC coding rate ½, uncoded	PN spreading		

Forward Work:

- Standards for Contingency Communications
- Standards for interfaces between ground stations and control centers
- Standards for Optical Communication
 - CCSDS Standards are in work
- Engage Industry partners
 - Adoption of the standards is critical to achieving the benefits of Interoperability

Acknowledgements:

- IOAG Lunar Communications Architecture Working Group and their co-chairs for working with us on that the standards in the ICSIS were consistent with the IOAG LCAWG study recommendations
- ICSIS development and splinter teams consisting of CSA, ESA, JAXA, NASA and RSA subject matter exports who participated in the development and review of the

Acknowledgements:

- IOAG Lunar Communications Architecture Working Group and their co-chairs for working with us on that the standards in the ICSIS were consistent with the IOAG LCAWG study recommendations
- ICSIS development and splinter teams consisting of CSA, ESA, JAXA, NASA and RSA subject matter experts who participated in the development and review of the interoperability standards.