Advanced Electronics for the SONTRAC Neutron Spectrometer

George Suarez NASA Goddard Space Flight Center Greenbelt, Maryland, U.S.A

> 2019 IEEE NSS-MIC Manchester, U.K.

SPACE FLIGHT CENTER

Acronyms

ASIC – Application Specific Integrated Circuit FPGA – Field Programmable Gate Array SiPM – Silicon Photomultiplier SONTRAC – SOlar Neutron TRACking

SOlar Neutron TRACking (SONTRAC) Team

NASA Goddard Space Flight Center

- Dr. Alessandro Bruno
- Dr. Georgia De Nolfo/PI
- Jeffrey J. Du Monthier
- Iker Liceaga Indart
- Grant Mitchell
- George Suarez
- Teresa Tatoli

Jason Legere Dr. Richard Messner Dr. James Ryan

University of New Hampshire

Background

Measure:

- Albedo neutrons
- Solar Neutrons

Major interest in small instruments for CubeSats

Double scatter

Neutron Imaging

Current design:

- 5cm cube with 1.36mm fibers built at the University of New Hampshire.
- Read by 1mm SiPMs with 1.36mm pitch

Problem:

- Reading all the fibers requires 32x32x2 = 2048 channels!
- Impractical for small instruments \bullet targeting small satellites (e.g. CubeSats)

Neutron

path

To be presented by George Suarez Martinez at the 2019 IEEE Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC) Manchester, United Kingdom, October 26 to November 2, 2019.

SONTRAC 3D Neutron Spectrometer

Possible solution:

- Strip readout (1D Projections)
- Only need 32x3 = 96 channels
- Events are encoded in strips
- **Reconstruction** needed

Main limitation:

 Some events will be ambiguous (more on this later).

SONTRAC - Track Reconstruction Single Scatter

Geant4 simulation (double scatter) Dr. Alessandro Bruno/NASA GSFC

To be presented by George Suarez Martinez at the 2019 IEEE Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC), Manchester, United Kingdom, October 26 to November 2, 2019.

Reconstruction

SONTRAC - Track Reconstruction Double Scatter

Geant4 simulation (double scatter) Dr. Alessandro Bruno/NASA GSFC

To be presented by George Suarez Martinez at the 2019 IEEE Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC), Manchester, United Kingdom, October 26 to November 2, 2019.

Reconstruction

10

Instrument Concept

To be presented by George Suarez Martinez at the 2019 IEEE Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC), Manchester, United Kingdom, October 26 to November 2, 2019.

Fiber bundle with SiPM array boards (Mechanical)

SONTRAC – SiPM boards

1mm 32x32 Strip Board

SONTRAC – Prototyping with 300 µm Fiber Bundle

SONTRAC – Readout CAEN DT5550W with Petiroc2 chips

- Evaluate 5cm fiber bundle science model with SiPMs configured as strips using Muons.
- Prepare for accelerator run in 2020.
- Explore smaller pitch (1.2mm) Hamamatsu 1mm SiPMs.
- Explore ASICs with 64-channels such as the PETsys \bullet TOFPET2ET and Weeroc Triroc 1A ASICs.
- Custom design with readout ASICs and FPGA.

Q&A

