Modeling the meteoroid environment as seen by spacecraft

Althea Moorhead NASA Meteoroid Environment Office

Western University Physics & Astronomy Colloquium 12 September 2019

Outline

The Meteoroid Environment Office What is the MEO? Why does the MEO exist? What does the MEO do?

Sporadic meteoroids: the Meteoroid Engineering Model (MEM) Fundamental components Recent improvements (MEM 3) Validation

Shower meteoroids: meteor shower forecasting Critical meteor shower parameters Modeling variable showers New forecast capabilities

What is the Meteoroid Environment Office?

Why does the MEO exist?

Meteoroid impact crater on shuttle window. Image provided by the NASA/JSC Hypervelocity Impact Technology (HVIT) Team.

The loss of a section of the MOS1 CCD sensor of the XMM-Newton telescope following an impact. Image credit: ESA

diameter	KE	damage		
💮 BB gun				
0.04 cm	7 J	spacesuit		
0.1 cm	105 J	delicate components		
🖌 bowling ball				
0.3 cm	3 kJ	sturdier components		
@ watermelon at terminal velocity				
1 cm	105 kJ	mission-critical		
🔎 small wrecking ball				

grade stainless loose ball bearings by Oleksandr Panasovskyi from the Noun Project strike by Noah Mormino from the Noun Project watermelon by Blaise Sewell from the Noun Project

Why does the MEO exist?

Spacecraft require protection such as a Whipple shield:

Detached Spall

Diagram adapted from Ryan & Christiansen (2015)

Too much shielding = wasted weight

What does the MEO do?

- all-sky network, comet observations, lunar impacts, Geostationary Lightning Mapper
- individual meteor reductions, shower flux measurements, using ablation models to obtain densities
- meteor shower stream modeling
- engineering models of the sporadic complex (MEM) and meteor showers (shower forecast)

What does the MEO do?

	Meteoroid Engineering Model (MEM)	shower forecasts	"sky falls"
what does it model?	sporadic complex	meteor showers	individual bright events
how important is it to spacecraft?	95-99% of risk	1-5% of risk	\sim 0% of risk
what form does it take?	software that users down- load and run	annual report and data files	individual emailed reports
what is it used for?	spacecraft design	operational mitigation	keeping the public informed

What does the MEO do?

	Meteoroid Engineering Model (MEM)	shower forecasts	"sky falls"
what does it model?	sporadic complex	meteor showers	individual bright events
how important is it to spacecraft?	95-99% of risk	1-5% of risk	\sim 0% of risk
what form does it take?	software that users down- load and run	annual report and data files	individual emailed reports
what is it used for?	spacecraft design	operational mitigation	keeping the public informed

Sporadic and shower meteoroids

Photographs by David Kingham

Sporadic and shower meteoroids

Meteoroid Engineering Model (MEM)

MEM does the following:

models meteoroid orbits

determines the local environment

outputs the environment relative to a spacecraft

Jones (2004) 🗟

- ► MEM ...
 - is not purely empirical
 - is not an N-body simulation
 - is a physics-based model calibrated to match observations
- Jones (2004) linked parent populations to observed distributions, taking radiative forces and collisions into account
- Orbital populations mostly the same since 2004

Coordinate system

Radiant distribution

Observed radiant distribution Campbell-Brown (2008) ♥

Speed distribution

Velocity distribution

$$\frac{d}{d\theta}\frac{d}{d\phi}\frac{dF}{dv} \neq \frac{1}{F}\frac{dF}{d\theta} \times \frac{1}{F}\frac{dF}{d\phi} \times \frac{dF}{dv}$$

Limitations

- Limited to inner Solar
 System: 0.2 2 au
- Limited to ecliptic plane: within ~ 5° of the ecliptic

Limitation: 1 μ g - 10 g

Meteoroid densities

- ► Kikwaya et al. (2011) S constrained densities for ~ 100 small meteoroids using ablation modeling.
- T_J appears to be a better proxy for density than K_B :

Density distribution

Moorhead et al. (2017)

- We divide meteoroids into two groups and assign a density distribution to each:
 - $T_J < 2 HTCs$, NICs apex and toroidal
 - $T_J > 2 JFCs$, asteroids helion/antihelion

Density distribution

Local effects: gravitational focusing and shielding

Local effects: gravitational focusing and shielding

Planets (and moons) bend and block the paths of meteoroids.

Overall, energy and angular momentum are conserved:

$$\frac{\mathrm{flux}_1}{\mathrm{flux}_2} = \left(\frac{\mathrm{speed}_1}{\mathrm{speed}_2}\right)^2$$

Local effects: gravitational focusing and shielding

Grav. focusing is applied when your spacecraft within the Hill radius of a planet

Massive bodies include all the inner Solar System planets and the Moon (but not asteroids, Martian moons, etc.)

Validation: in situ data

We used two sets of *in situ* data to validate MEM 3: Pegasus and the Long Duration Exposure Facility (LDEF)

In each case we use the largest penetration or crater data available (0.4 mm deep or 1 mm wide)

Validation: in situ data

Ballistic limit equations (BLEs) describe the extent of damage caused by an impact.

$$p_t = 5.24 \, d^{19/18} \, \mathrm{BH}^{-1/4} \left(\frac{\rho}{\rho_t}\right)^{1/2} \left(\frac{\mathbf{v}_\perp}{c_t}\right)^{2/3}$$

extent of damage	meteoroid properties	target properties
$p_t = crater depth$	d = diameter	BH = Brinell hardness
	ho = density	$ \rho_t = \text{density} $
	$v_{\perp} = normal speed$	$c_t = $ sound speed

BLE uncertainties

- CP BLE derived from Al-on-Al impacts at relatively low speeds
- scatter is $\lesssim 30\%$
- behavior at high speeds?
- behavior for non-metal particles?

We also apply the Watts & Atkinson (WA) BLEs:

crater diameter:

$$d_t = 1.3235 f d(c_t/c)^{2/7} (v_\perp/v_0)^{4/7}$$

 $f = \left(1 + \sqrt{2\Delta/d_0}\right)^{-1/3}$

crater depth:

$$p_t = \frac{fd}{4} \left(\frac{4}{3} \frac{\rho}{Y_t} \left(c_{0,t} + \frac{s(v_\perp - v_0)}{1 + \sqrt{\rho_t/\rho}} \right) (v_\perp - v_0) \right)^{1/3}$$

penetration thickness:

$$t_t = \frac{fd}{4} \left(\frac{1}{6} \frac{\rho}{Y_t} \left(c_{0,t} + \frac{s(v_\perp - v_0)}{1 + \sqrt{\rho_t/\rho}} \right) (v_\perp - v_0) \right)^{1/3} + \frac{fd}{4} \frac{v_\perp}{v_0} \sqrt{\frac{Y_t}{\sigma_t}}$$

Pegasus

- Year(s) data collected: 1965
- Detection method: penetration detectors
- Relevant area: over 200 m² (0.4 mm panels)
- Attitude: attitude information lost (assume randomly tumbling)
- Material: 2024-T3 Al alloy

Pegasus: limiting penetration thickness

Cour-Palais: $p/t = 1/1.8 = 0.\overline{5}$

Watts & Atkinson:

Pegasus: limiting masses

Long Duration Exposure Facility (LDEF)

- Year(s) data collected: 1984 – 1990
- Detection method: examination of panels
- Relevant area: 10.8 m²
- Attitude:
 - constant relative to orbit
- Material: 6061-T6 Al alloy

Long Duration Exposure Facility (LDEF)

- Interested in largest craters (100 µm)
- Significant orbital debris present
- Orbital debris estimate available on three sides from smaller craters on CME

LDEF: depth-to-diameter ratio

Cour-Palais: p/d = 0.5 (based on observed morphology)

Watts & Atkinson:

LDEF results

- ► The core of MEM is a dynamical model S that recreates the sporadic sources S
- Gravitational focusing and shielding and the spacecraft's motion and orientation are taken into account
- ► We have recently added a new bulk density distribution based on ablation modeling
- MEM 3 has now been validated against *in situ* data (Pegasus and LDEF)

Shower forecasting

- MEM's environment is time-invariant
- MEO shower forecast provides time-dependent shower fluxes
- These are derived from hourly rates (ZHRs)

Activity profiles in the annual forecast

Original forecast parameters from Jenniskens (1994)

Plots from Jenniskens (1994)

Visual observations in both the northern and southern hemispheres.

14 years of CMOR data ^S

Improved showers

We were able to improve the activity profiles for 12 showers:

Total shower ZHR profile

ZHR to flux Koschack & Rendtel, 1990

First, convert ZHR to magnitude-limited flux:

$$f_{6.5} = \frac{\mathsf{ZHR} \cdot (13.1r - 16.5)(r - 1.3)^{0.748}}{37200 \text{ km}^2}$$

Second, convert magnitude-limited flux to mass-limited flux:

$$f_{\rm mg} = f_{6.5} \cdot r^{9.775 \log_{10} \left(29 \text{ km s}^{-1} / v_{\rm TOA} \right)}$$

Finally, scale to desired mass:

$$f_m = f_{\rm mg} \left(\frac{m}{1 \, \rm mg}\right)^{-2.3 \log_{10} r}$$

Total shower flux profile

Population indices

Arietids, r = 2.7 (value from default forecast list)

Population indices

Arietids, r = 2.1(closer to Bruzzone et al., 2015)

Variable showers

Artist's rendition of the 1833 meteor storm, from Bible Readings for the Home Circle.

1999 Leonids photo graphed from aircraft. NASA Ames/ISAS/ Shinsuke Abe and Hajime Yano

MSFC stream model

The Egal stream model 2018 Draconids

2018 Draconid advisory

New forecast capabilities

Flux and apparent direction of meteoroid flux varies with spacecraft position:

Spacecraft-specific rate

Perseid ZHR encountered by an ISS-like spacecraft:

Aberrated radiant and radiant drift

The shower radiant drifts in R.A. and dec. The *apparent* radiant also depends on spacecraft speed (this is the aberrated radiant)

- Shower forecasts are used by spacecraft operators to determine whether mitigation is necessary.
- Lower fidelity than MEM
- Shower parameters based on typical shower activity and numerical models of shower streams
- Forecast capabilities have been expanded recently to tailor results to specific spacecraft