

unch System

5

1

Model Integration Approaches for System Design and Analysis

10 September 2019

Michael D. Watson, Ph.D.

Consortium Team UAH George Washington University Iowa State Texas A&M Dependable System Technologies, LLC Multidisciplinary Software Systems Research Corporation (MSSRC) Missouri University of S&T University of Michigan AFRL Wright Patterson

Outline

NASA

- System Modeling Types
- System Relational Modeling (i.e., MBSE)
- System Integrating Physics
- System Value Models

System Stave Variable Modeling
 Goal Function Tree (GFT)
 State Analysis Model (SAM)

System Statistical Modeling

System Dynamics Modeling

System Models

System Models are important to gain understanding of the System

 Systems Engineering Principle 4(a): Systems engineering obtains an understanding of the system

System Models convey information at the system level

Complementary to discipline based engineering models

- Integrate system functions and relationships within the system context

 Systems Engineering Principle 3(i): Systems engineering seeks a best balance of
 functions and interactions within the system budget, schedule, technical, and other
 expectations and constraints.
- Provide a technical systems basis for system operations and maintenance functions, approaches, and procedures
- Provide a relationship of the system capabilities to the stakeholder expectations

System Model Types

- System Modeling is based on a set of system models rather than a single system model
- System Modeling Types
 Relational (i.e., MBSE)
 - Physics-Based
 - State Variable
 - System Value
 - Statistical
 - System Dynamics

System Relational Models

System Relational Models

 System Relational Models focus on the relationships between system components, system process flows, and requirements
 Model Based Systems Engineering (MBSE) typically refers to SysML based models

- Several vendors provide these tools
 - -Cameo Systems Modeler/Magic Draw
 - -Innoslate (Lifecycle Modeling Language (LML))
 - -Enterprise Architect
 - -Rationale Rhapsody
 - -Visual Paradigm
 - -Modelio SysML Architect
 - -Eclipse Papyrus
- Other tools provide better capabilities in some aspects
 - -Requirements Management
 - Cradle
 - Doors
 - CORE
 - -Visualization
 - Visio
 - Tom Sawyer

System Relational Models

System Relational Models Support

- System Block Diagrams and Internal Block Diagrams define relationships between components/assemblies/subsystems of the system
- Provides Requirements traceability including verification support
- Provides Activity Diagrams, State Machine Diagrams to illustrate Use Cases and Process Flows
 - -Use Cases can provide a structure to feed into an initial Discrete Event Simulation (DES) model to support statistical process flow analysis

System Integrating Physics

System Integrating Physics

- Physics provides some help with capture of the system physics relationships to develop a physics based model.
- These Integration relationships exist in physics but are not often used in engineering design

These physics based integration relationships are driven by the system type

- Thermodynamic Systems
 - Aircraft
 - Propeller Driven
 - Jet Aircraft
 - Electric
 - Rotorcraft/VTOL
 - Gliders
 - Automobiles
 Electrical System
 - Electrical Systems
 - Fluid Systems
 - Launch Vehicles and Spacecraft
 - Robotic
 - Integrated through the bus which is a thermodynamic system

Each Instrument may have a different integrating physics but integrates with the bus thermodynamically

- Crew Modules
 - Integrated by the habitable volume (i.e., ECLSS)

A thermodynamic system

- Entry, Descent, and Landing (EDL)
 - Integrated by thermodynamics as spacecraft energy is reduced (i.e., destroyed) in EDL
- Power Plants
- Ships
- Optical Systems
- Logical Systems
 - Data Systems
 - Communication Systems
- Structural Systems
- Biological Systems

• System Integrating Physics provides the engineering basis for the System Model

Thermodynamics Has Balance Relationships

Energy Balance (First Law of Thermodynamics)
 E_{in} - E_{out} = E_{sys2} - E_{sys1},
 Q - W = m(u₂ - u₁) + ¹/₂m(v₂² - v₁²)+mg(z₂ - z₁) for a control volume

• Entropy Balance (Second Law of Thermodynamics) • $S_{in} - S_{out} + S_{gen} = (S_{sys2} - S_{sys1})$, where $S_{gen} \ge 0$

• Exergy Balance (Integration of First and Second Laws) • $X_{in} - X_{out} + X_{des} = (X_{sys2} - X_{sys1})$, where $X_{des} = T_0 S_{gen} \ge 0$ (T_0 in Kelvin) • $\sum (1 - \frac{T_0}{T_k})Q_k - [W - P_0(Vol_2 - Vol_1)] + X_{des} = m \left[(h_2 - h_1) + T_0 (S_{sys2} - S_{sys1}) + \frac{1}{2}(v_2^2 - v_1^2) + g(z_2 - z_1) \right]$ for a control volume

All relationships maintain mass balance

• $m_{\rm in} - m_{\rm out} = m_2 - m_1$

Exergy Balance Relationship

- Exergy Balance for a rocket balances the exergy expended (fluid flow out of the nozzle) with the change in the vehicles kinetic and potential energy
 - Mass balance is maintained
 - Rockets are control volumes, not control masses
 - Each stage is a constant control volume
 - The vehicle is the integration (addition) of separate control volumes
 - Staging results in the dropping of a control volume (mass drop) but not a change in the individual stage control volumes
 - Entropy and Enthalpy of propellant products assumed negligible (are for LOX, LH2)

$$\Delta m_{prop} \sum_{stage} \left(h_{prop} + \frac{V_e^2}{2} + \frac{GM_E}{r_{altitude,initial}} \right) - X_{des} = \left(M_{vehicle,final} \frac{V_{vehicle,final}^2}{2} - M_{vehicle,initial} \frac{V_{vehicle,initial}^2}{2} + \left(\frac{GM_EM_{vehicle,initial}}{r_{altitude,initial}} - \frac{GM_EM_{vehicle,final}}{r_{altitude,final}} \right)$$

- Represents energy expended in gaining velocity and altitude
 Rocket equation can be derived from the exergy balance for a rocket
- Orbital mechanics energy balance is also maintained in the exergy balance equation for a rocket

Launch Vehicle System Exergy Efficiency

Un-crewed Spacecraft Exergy Balance and Optical Transfer Function

Optical Transfer Function

Spacecraft Exergy Balance

$$\Delta m_{propellant,engine} \left(h_{prop,engine} + \frac{V_{e,engine}^{2}}{2} \right) \\ + \Delta m_{propellant,thruster} \left(h_{prop,thruster} + \frac{V_{e,thruster}^{2}}{2} \right) \\ + \sum_{t} \left(\sigma Ae \left(T_{radiator}^{4} - T_{space}^{4} \right) + V_{bus} I_{bus} \cos \left(\theta \right) \right) \Delta t - X_{de} \\ = \left(M_{vehicle,final} \left(\frac{I_{c,final} \omega_{vehicle,final}^{2}}{2} + \frac{V_{vehicle,final}^{2}}{2} \right) \right) \\ - M_{vehicle,initial} \left(\frac{I_{c,initial} \omega_{vehicle,initial}^{2}}{2} + \frac{V_{vehicle,initial}^{2}}{2} \right) \right) \\ + \left(\frac{GxM_{E}M_{vehicle,initial}}{r_{altitude,initial}} - \frac{GxM_{E}M_{vehicle,final}}{r_{altitude,final}} \right) \\ + \left(\sum_{t} \left(1 - \frac{T_{fluid}}{T_{instrument}} \right) Q_{instrument} + \sum_{t} \sum_{t} P_{electric,stored} + \sum_{t} \sum_{t} P_{electric,stored} \right) \Delta t \right)$$

 d_{ap}

 $\mathsf{d}_{\mathsf{baffl}}$

 $\mathsf{d}_{\mathsf{virtual}}$

 $\mathsf{d}_{\mathsf{secondary}}$

$$\iint_{-\infty} \psi_{obj} s_{f} dx dy$$

=
$$\iint_{-\infty}^{\infty} \psi_{obj}(x_{0} + \epsilon x, y_{0} + \epsilon y) e^{j\left(\frac{k_{0}}{2f_{1}}\right)(x^{2} + y^{2})} \operatorname{circ}\left(\frac{x + \Delta x + \delta x}{R}, \frac{y + \Delta y + \delta y}{R}\right) dx dy$$

Where

 α

$$e_x = 1.22\lambda_0 \left(\frac{f_1}{d_0 + \epsilon z + \omega_y \Delta t}\right) + v_x \Delta t + \omega_y \Delta t$$
$$e_y = 1.22\lambda_0 \left(\frac{f_1}{d_0 + \epsilon z + \omega_x \Delta t}\right) + v_y \Delta t + \omega_x \Delta t$$

$$f_1 = -\frac{R}{2} = -\frac{\sqrt{(x + \Delta x + \delta x)^2 + (y + \Delta y + \delta y)^2 + (z + \Delta z + \delta z)^2}}{2}$$

$$\Delta x = \alpha x \Delta T$$
$$\Delta y = \alpha y \Delta T$$

$$C^{2} > 4Mk \text{ Over Damped}$$

$$\delta x = c_{1}e^{-\left(\frac{C}{2M} - \frac{1}{2M}\sqrt{C^{2} - 4Mk}\right)t} + c_{2}e^{-\left(\frac{C}{2M} + \frac{1}{2M}\sqrt{C^{2} - 4Mk}\right)t}$$

$$C^{2} = 4Mk \text{ Critically Damped}$$

$$\delta x = (c_{1} + c_{2})e^{-\left(\frac{C}{2M}\right)t}$$

$$C^{2} < 4Mk \text{ Under Damped}$$

$$\delta x = c_{3}e^{-\left(\frac{C}{2M}\right)t}\cos\left(\sqrt{4Mk - C^{2}}t - \varphi\right)$$

$$\tan(\varphi) = \frac{x'(0)}{x(0)\sqrt{\frac{k}{M}}}$$

$$c_{3}^{2} = \sqrt{x(0)^{2} + \frac{M}{k}x'(0)^{2}}$$

13

System State Variables

System State Models

System Stage Models represent the system as a whole in terms of the hardware and software states that the system transitions through during operation

Goal Function Tree (GFT) Model

- "Middle Out" model of the system based on the system State Variables
- Shows relationship between system state functions (hardware and software) and system goals
- Does not contain system physical or logical relationships and is not executable

System State Machine Model

- Models the integrated State Transitions of the system as a whole (i.e., hardware states and software states)
- Confirms system functions as expected
 - Checks for system hazardous, system anomalies, inconsistent state progression, missing states, improper state paths (e.g., short circuits in hardware and/or software design)
 - -Confirms that the system states progress as stated in the system design
- Executable model of system

Hydrogen Sensor Goal Function Tree

NA SA

State Analysis Model for SLS M&FM

in Power Distribution and Controller Unit 1 A CCSE 1 RPC Closed 8.4 in Power Distribution and Controller Unit 1 A Power Bus Powered (

- Over 7,200 Transitions in the Vehicle and Software
- •Over 3,500 States in the Vehicle

System Value

System Value Model

A System Value Model is a mathematical representation of Stakeholders Preferences (Expectations) for the system

- The basic structure is straight forward
- The sociology/psychology of representing the Preferences can be a challenge

The System Value Model is the Basis of System Validation!!!

- The Requirements and Design Models form the basis of System Verification
- The System Value Model forms the basis of System Validation

Constructing an SLS Value Model to compare to System Validation results

 Can expand to Integrated Stack with input from MPCV and GSDO

System Value model also provides basis for a measure of System Robustness

How many mission types are supported by the system?

	Status	Gradient	Value
Efficiency	90%	150,000	135,000
Weight	700	-130	-91,000
Reliability	1500	2	3,450
Maintainability	7.8	x -340	-2,652
Maintenance Cost	500	-1	-250
Support Equipment	12	-15	-180
Manufacturing Cost	700	-1	-700
Design Value		\$	43,668

$$\pi = f_{aircraft} \quad x_1, x_2, \dots, x_n$$

$$\boldsymbol{v}_{e} = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} \frac{\partial \pi}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial y_{j}} y_{j} \right)$$

Mapping System Capability to Value

Engineering Statistics

Optimal Sensor Information Configuration

 Applying Akaike Information Criteria (AIC) corrected (AICc) to assess sensor coverage for a system

$$AICc(F) = -2\left(I^{KL}(F|G)\right) + 2K + \frac{2K(K+1)}{n-K-1}$$

Two Views of Information Content

- AIC Information
 - Information is viewed as the number of meaningful parameters
 - Parameters with sufficient measurements to be reasonable estimates
- Fisher Information Matrix
 - Defines information as the matrix of partial second derivatives
 - Information is the amount of parameters with non zero values (so provides an indication of structure)
 - This value converges to a maximum as the number of parameters goes to infinity
 - Does not contain an optimum, always increases with added parameters
- AIC/AICc has an adjustment factor to penalize sensor arrangements where: number of sensors < 3x(number of measurements)

Provides an optimization tool for use with System Models

System Dynamics

- Tools and techniques have been developed using the System Dynamics methodology that make it possible to efficiently decompose complex systems and to quickly set-up and test models of system operation.
- Tools promote understanding through visual diagramming and modeling.

STS-ISS Transportation / Operation Analysis

NASA

Summary

Design Analysis Cycle (DAC)

Understanding the systems integrating relationships provides an important advancement in the practice of systems engineering and contribution to the engineering of the system

Provides a complete understanding of the system functions and interactions

- Basis to define system GR&A in a way to have a closed set to begin design work
- Basis of system closure criteria
- Basis for identifying adjustments to the system function design solutions
- Basis for determining optimal system performance
- Provides a method to quickly compare system configurations and identify best balance result, reducing time necessary for DACs
- Provides a method to more completely test software algorithms, reducing amount of real-time software testing

Analysis complements detailed design work done by the Engineering Disciplines

- System Exergy is an integrating relationship
- Depends on results from each Engineering Discipline
 A positive for systems engineers in conducting system level design
 More difficulty to use (depends on results from each Engineering Discipline) for specific components of subsystems

Summary

System Modeling is composed of several different model types to gain a complete understanding of the system

- System Relational Modeling (i.e., MBSE)
- System Integrating Physics
- Sýstem Value Models
- System_Stave Variable Modeling
 - -Goal Function Tree (GFT)
 - State Analysis Model (SAM)
- System Statistical Modeling
- System Dynamics Modeling
- These System Models provide the basic understanding of the system leading to:
 - Reduced development analysis cycle time
 - Reduced system software testing time
 - Better corrélation of system capabilities with stakeholder expectations

The results of the research conducted by all Consortium members is available on the NASA Portal

https://www.nasa.gov/consortium

 "Engineering Elegant Systems: Theory of Systems Engineering" – NASA Technical Publication in work (Due out in October 2019)

 "Engineering Elegant Systems: The Practice of Systems Engineering" – NASA Technical Publication in work (Due out in November 2019)

Backup

Motivation

System Engineering of Complex Systems is not well understood

System Engineering of Complex Systems is Challenging

- System Engineering can produce elegant solutions in some instances
- System Engineering can produce embarrassing failures in some instances
- Within NASA, System Engineering does is frequently unable to maintain complex system designs within budget, schedule, and performance constraints

"How do we Fix System Engineering?"

- Michael D. Griffin, 61st International Astronautical Congress, Prague, Czech Republic, September 27-October 1, 2010
- Successful practice in System Engineering is frequently based on the ability of the lead system engineer, rather than on the approach of system engineering in general
- The rules and properties that govern complex systems are not well defined in order to define system elegance

4 characteristics of system elegance proposed as:

- System Effectiveness
- System Efficiency
- System Robustness
- Minimizing Unintended Consequences

Consortium

Research Process

- Multi-disciplinary research group that spans systems engineering areas
- Selected researchers who are product rather than process focused

List of Consortium Members

- Michael D. Griffin, Ph.D.
- Air Force Research Laboratory Wright Patterson, Multidisciplinary Science and Technology Center: Jose A. Camberos, Ph.D., Kirk L. Yerkes, Ph.D.
- Doty Consulting Services: John Doty, Ph.D.
- George Washington University: Zoe Szajnfarber, Ph.D.
- Iowa State University: Christina L. Bloebaum, Ph.D., Michael C. Dorneich, Ph.D.
- Missouri University of Science & Technology: David Riggins, Ph.D.
- NASA Langley Research Center: Peter A. Parker, Ph.D.
- Texas A&M University: Richard Malak, Ph.D.
- Tri-Vector Corporation: Joey Shelton, Ph.D., Robert S. Ryan, Kenny Mitchell
- The University of Alabama in Huntsville: Phillip A. Farrington, Ph.D., Dawn R. Utley, Ph.D., Laird Burns, Ph.D., Paul Collopy, Ph.D., Bryan Mesmer, Ph.D., P. J. Benfield, Ph.D., Wes Colley, Ph.D., George Nelson, Ph.D.
- The University of Colorado Colorado Springs: Stephen B. Johnson, Ph.D.
- The University of Michigan: Panos Y. Papalambros, Ph.D.
- The University of Texas, Arlington: Paul Componation, Ph.D.
- The University of Bergen: Erika Palmer

Previous Consortium Members

- Massachusetts Institute of Technology: Maria C. Yang, Ph.D.
- Stevens Institute of Technology Dinesh Verma
- Spaceworks John Olds (Cost Modeling Statistics)
- Alabama A&M Emeka Dunu (Supply Chain Management)
- George Mason John Gero (Agent Based Modeling)
- Oregon State Irem Tumer (Electrical Power Grid Robustness)
- Arkansas David Jensen (Failure Categorization)

~50 graduate students and 15 undergraduate students supported to date

Understanding Systems Engineering

- Definition System Engineering is the engineering discipline which integrates the system functions, system environment, and the engineering disciplines necessary to produce and/or operate an elegant system.
 - Elegant System A system that is robust in application, fully meeting specified and adumbrated intent, is well structured, and is graceful in operation.

Primary Focus

- System Design and Integration
 - Identify system couplings and interactions
 - Identify system uncertainties and sensitivities
 - Identify emergent properties
 - -Manage the effectiveness of the system
- Engineering Discipline Integration
 - Manage flow of information for system development and/or operations
 - Maintain system activities within budget and schedule

Supporting Activities

Process application and execution
 Processes organize the engineering

Systems Engineering Postulates

System Integration (physical/logical system)

Discipline Integration (social system)

Both System and Discipline Integration

- Postulate 1: Systems engineering is system specific and context dependent in application
- Postulate 2: The Systems Engineering domain consists of subsystems, their interactions among themselves, and their interactions with the system environment
- Postulate 3: The function of Systems Engineering is to integrate engineering disciplines in an elegant manner
- Postulate 4: Systems engineering influences and is influenced by organizational structure and culture
- Postulate 5: Systems engineering influences and is influenced by budget, schedule, policy, and law
 - Postulate 6: Systems engineering spans the entire system life-cycle
- Postulate 7: Understanding of the system evolves as the system development or operation progresses
- Postulate 7 Corollary: Understanding of the system degrades during operations if system understanding is not maintained.

Systems Engineering Principles

- Principle 1: Systems engineering integrates the system and the disciplines considering the budget and schedule constraints
 - **Principle 2: Complex Systems build Complex Systems**
 - Principle 3: A focus of systems engineering during the development phase is a progressively deeper understanding of the interactions, sensitivities, and behaviors of the system, stakeholder needs, and its operational environment
 - Sub-Principle 3(a): Mission context is defined based on understanding of the stakeholder needs and constraints
 - Sub-Principle 3(b): Requirements and models reflect the understanding of the system
 - Sub-Principle 3(c): Requirements are specific, agreed to preferences by the developing organization
 - Sub-Principle 3(d): Requirements and design are progressively elaborated as the development progresses
 - Sub-Principle 3(e): Hierarchical structures are not sufficient to fully model system interactions and couplings
 - Sub-Principle 3(f): A Product Breakdown Structure (PBS) provides a structure to integrate cost and schedule with system functions
 - Sub-Principle 3(g): As the system progresses through development, a deeper understanding
 of the organizational relationships needed to develop the system are gained.
 - Sub-Principle 3(h): Systems engineering achieves an understanding of the system's value to the system stakeholders
 - Sub-Principle 3(i): Systems engineering seeks a best balance of functions and interactions within the system budget, schedule, technical, and other expectations and constraints.

Systems Engineering Principles

- Principle 4: Systems engineering has a critical role through the entire system life-cycle
 - Sub-Principle 4(a): Systems engineering obtains an understanding of the system
 - Sub-Principle 4(b): Systems engineering defines the mission context (system application)
 - Sub-Principle 4(c): Systems engineering models the system
 - Sub-Principle 4(d): Systems engineering designs and analyzes the system
 - Sub-Principle 4(e): Systems engineering tests the system
 - Sub-Principle 4(f): Systems engineering has an essential role in the assembly and manufacturing of the system
 - Sub-Principle 4(g): Systems engineering has an essential role during operations, maintenance, and decommissioning
 - Principle 5: Systems engineering is based on a middle range set of theories
 - Sub-Principle 5(a): Systems engineering has a physical/logical basis specific to the system
 - Sub-Principle 5(b): Systems engineering has a mathematical basis
 - Sub-Principle 5(c): Systems engineering has a sociological basis specific to the organization(s)
- Principle 6: Systems engineering maps and manages the discipline interactions within the organization
- Principle 7: Decision quality depends on system knowledge present in the decision-making process
- Principle 8: Both Policy and Law must be properly understood to not overly constrain or under constrain the system implementation

Systems Engineering Principles

Principle 9: Systems engineering decisions are made under uncertainty accounting for risk

 Principle 10: Verification is a demonstrated understanding of all the system functions and interactions in the operational environment

Principle 11: Validation is a demonstrated understanding of the system's value to the system stakeholders

Principle 12: Systems engineering solutions are constrained based on the decision timeframe for the system need

Principle 13: Stakeholder expectations change with advancement in technology and understanding of system application.

Principle 14: The real physical system is the perfect model of the system

 Kullback-Liebler Information shows the actual system is the ideal information representation of the system

 $-I(f,g) = \int f(x)\log(f(x)) \, dx - \int f(x)\log(g(x|\theta)) \, dx = 0$

System Engineering Hypotheses

Hypothesis 1: If a solution exists for a specific context, then there exists at least one ideal Systems Engineering solution for that specific context

• Hamilton's Principle shows this for a physical system

 $-\int_{t_1}^{t_2} (\delta T - \delta V + \delta W) dt = 0$

 Hypothesis 2: System complexity is greater than or equal to the ideal system complexity necessary to fulfill all system outputs

Hypothesis 3: Key Stakeholders preferences can be accurately represented mathematically

System Integrating Physics

- Consortium identified the significance of understanding and using the System Integrating Physics for Systems Engineering
- First Postulate: Systems engineering is system specific and context dependent.
 Systems are different, and therefore, the integrating physics for the various systems is different
- Second Postulate: The Systems Engineering domain consists of subsystems, their interactions among themselves, and their interactions with the system environment
 - System interactions among properly defined system functions and with the environment are the basis of systems engineering
- Sub-Principle 3(i): Systems engineering seeks a best balance of functions and interactions within the system budget, schedule, technical, and other expectations and constraints.
- Sub-Principle (5a): Systems engineering has a physical/logical basis specific to the system
 - -The physics of the specific systems defines the integration relationships
- Principle 7: Decision quality depends on system knowledge present in the decision-making process

-Understanding of system interactions must be included

- Principle 12: Systems engineering solutions are constrained based on the decision timeframe for the system need
 - Understanding the system interactions shortens the development time and opens design space more for a given timeframe

Methods of System Integration

Goal: System Design and Analysis

System Models Contain an Understanding of the System

Allow systems engineers to:

٠

- Define system functions based on the system state variables
- Understand stakeholders expectations on system value (i.e., capabilities)
- Integrate discipline engineering models into a system level physics based model (e.g., system exergy)
- Design and Analyze system responses and behaviors at the System level
 - MagicDraw Enterprise
 (SysML)
 - Matlab
 - Matlab StateFlow
 - Microsoft Excell

System Design and Integration

