

Ţ

George Plattsmier MSFC September 10, 2019

NASA Systems Engineering MODEL BASED SYSTEMS ENGINEERING

National Aeronautics and Space Administration

What is MBSE?

INCOSE definition of MBSE

 Model-based systems engineering (MBSE) is the formalized application of modeling to support system requirements, design, analysis, verification and validation, beginning in the conceptual design phase and continuing throughout development and later life cycle phases (Systems Engineering Vision 2020, INCOSE-TP-2004-004-02).

MBSE is not a new process being added to the existing SE processes.

MBSE is systems engineering through the use of models.

MBSE Infusion And Modernization Initiative

MBSE Agency Collaboration

"A fully operational model-centric infrastructure that enables integration of physical models with domain discipline analytical models, simulations and cost models to support activities throughout lifecycle from concept through disposal"

- Shared system model is explicit, available, durable and authoritative
- System design kept current with 2-way information exchange with discipline models
- Agency-wide modeling standards facilitate multicenter collaboration

MSFC MBSE Advocacy

- Primarily utilizing MagicDraw 19.0 Service Pack 2 as the MBSE pathfinding tool throughout the Agency
- Marshall Space Flight Center (MSFC) is focusing on small wins by infusing MBSE through Tech Excellence (TE) projects
- Project scope is centered around lifecycle deliverables
- Process of Establishing common framework

MagicGrid 101

- The MagicGrid approach is based on the framework, which can be represented as a Zachman style matrix (link below), and is designed to guide the engineers through the modeling process and answer their questions, like "how to organize the model?", "what is the modeling workflow?", "what model artifacts should be produced in each step of that workflow?", "how these artifacts are linked together?", and so on.
- The approach includes the definition of the problem, solution, and implementation domains in the system model. They align with the processes defined by ISO/IEC/IEEE 15288 as follows: problem domain with the Stakeholder Needs Development process, solution domain with the Architecture Definition process, and implementation domain with the Design Definition process. Each domain is represented as a separate row of the MagicGrid framework.
- <u>https://www.zachman.com/about-the-zachman-framework</u>
- http://www.15288.com/about_standards.php

MagicGrid 101 Cont.

2. Behavior

NASA MODEL BASED SYSTEMS ENGINEERING

· · · · ·

• •• +•

NASA MBSE 4 Pillar SE Integration

GATE PRODUCTS: eg.NPR 7123.1B

NASA Evolution Beginner: 4 Pillar basics Intermediate: Integrating 4 Pillars (OOSEM) Advanced: Model what's needed for products!! FY20+: Generate tailored NASA-standard profiles,

artifacts and views

MSFC MBSE Architecture Approach

Stakeholder Expectations Definition Process

FIGURE 4.1-1 Stakeholder Expectations Definition Process

🔁 Containment 🐉 Diagrams 🗄 Structure		Stakeholder Needs ×	
Containment 🕑 🛡 🗙		Add New 🔢 Add Neste	d 🗋 Add Existing 🏦 Delete 🖷 Remove From Table 🕴 🛱 👻 🔶 🐥
🖆 👷 Q 🐘 🔹 🌣 -	Criter	ia	
⊡… ▲ Model ⊕ / Relations	Sco	pe (optional): 1 Stakeholder Needs	{»y Filter: Q
🗄 📋 1 Problem Domain	#	△ Name	Text
🗄 📩 1 Black Box	1	R 1 Setting Temperature	It must be possible to set and maintain desired temperature in the cabin.
Stakeholder Needs	2	R 2 Heat and Cool Modes	Unit shall be able to heat and cool.
I Setting Temperature	3	R 3 Noise Level	Climate control unit in max mode shall not be louder than engine.
2 Heat and Cool Modes	4	R 4 Climate Control Mass	Mass of the unit shall not exceed 2 percent of the total car mass.
R 3 Noise Level			
R 4 Climate Control Mass			

SE Product Maturity

TABLE 3.0-1 SE Product Maturity from NPR 7123.1

			Formu	lation		Implementation									
	Uncoupled/ Loosely Coupled		KDP 0	KDP I		Periodic KDPs									
ucts	Tightly Coupled Programs			KDP 0	KDP I	KDP II			KDP III	Periodi	c KDPs				
Projects and		Pre- Phase A	Pha	se A	Phase B	Pha	se C	Pha	se D	Phase E	Phase F				
	Single Project Programs	KDP A	DP A		KDP C		KDP D		KDP E	KDP F					
	og. amo	MCR	SRR	MDR/SDR	PDR	CDR	SIR	ORR	FRR	DR	DRR				
Stake	eholder identification and	**Baseline	Update	Update	Update										
Conc	ept definition	**Baseline	Update	Update	Update	Update									
Meas defin	sure of effectiveness ition	**Approve													
Cost	and schedule for technical	Initial	Update	Update		Update	Update	Update	Update	Update	Update				
SEMP	P 1	Preliminary	**Baseline	**Baseline	Update	Update	Update								
Requ	irements	Preliminary	**Baseline	Update	Update	Update									
Techi Meas	nical Performance sures definition	nance **App		**Approve											
Archi	itecture definition		**Baseline												
Alloc next	ation of requirements to lower level			**Baseline											
Requ trend	ired leading indicator Is			**Initial	Update	Update	Update								
Desig	n solution definition			Preliminary	**Preliminary	**Baseline	Update	Update							
Inter	face definition(s)			Preliminary	Baseline	Update	Update								
Imple code,	ementation plans (Make/ , buy, reuse)			Preliminary	Baseline	Update									
Integ	ration plans			Preliminary	Baseline	Update	**Update								
Verifi plans	cation and validation	Approach		Preliminary	Baseline	Update	Update								
Verifi resul	cation and validation ts						**Initial	**Preliminary	**Baseline						
Trans	sportation criteria and uctions					Initial	Final	Update							
Opera	ations plans				Baseline	Update	Update	**Update							
Opera	ational procedures					Preliminary	Baseline	**Update	Update						
Certi	fication (flight/use)							Preliminary	**Final						
Deco	mmissioning plans				Preliminary	Preliminary	Preliminary	**Baseline	Update	**Update					
Dispo	osal plans				Preliminary	Preliminary	Preliminary	**Baseline	Update	Update	**Update				

NASA MODEL BASED SYSTEMS ENGINEERING

.+

Requirement Challenges

What Product Marketing specified

What the salesman promised

Corp. Product Architecture's modified design

Pre-release version

General release version

What the customer actually wanted

NASA MODEL BASED SYSTEMS ENGINEERING

· ·· + ·

Requirement Development

NASA MODEL BASED SYSTEMS ENGINEERING

. • • . . +

Activity Implementation

NASA MODEL BASED SYSTEMS ENGINEERING

•• •

NASA MODEL BASED SYSTEMS ENGINEERING

•••

NASA MODEL BASED SYSTEMS ENGINEERING

•• •

Criter	ria											
Eler	Element Type: Connector Context: Climate Control Unit {>>> Filter: Q											
#	Part A	Port A	Port A Features	Port B	Port B Features	Part B						
1	Control System]]] inout p4 : I/O	F in Control F out Status] inout p4 : ~I/O	F out Control F in Status	P: UI System						
2	P : Control System]] inout p5 : I/O	F in Control F out Status] inout p5 : ~I/O	F out Control F in Status	P: Heating System						
3	P : Control System] inout p6 : I/O	F in Control F out Status] inout p6 : ~I/O	F out Control F in Status	P : Cooling System						
4	📃 Climate Control Unit	inout p1 : Air	F inout Air Flow	inout p1 : Air	F inout Air Flow	Cooling System						
5	Climate Control Unit] inout p1 : Air	F inout Air Flow	inout p1 : Air	F inout Air Flow	: Heating System						
6	Climate Control Unit] inout p2 : I/O	F in Control F out Status] inout p2 : I/O	F in Control F out Status	P: UI System						
7	Climate Control Unit] in p3 : Energy	F in Electrical Power F in Mechanical Power] in p3 : Energy	F in Electrical Power F in Mechanical Power	P : Control System						
8	Climate Control Unit] in p3 : Energy	F in Electrical Power F in Mechanical Power] in p3 : Energy	F in Electrical Power F in Mechanical Power	Cooling System						
9	Climate Control Unit] in p3 : Energy	F in Electrical Power F in Mechanical Power] in p3 : Energy	F in Electrical Power F in Mechanical Power	P: Heating System						
10	Climate Control Unit] in p3 : Energy	F in Electrical Power F in Mechanical Power) in p3 : Energy	 in Electrical Power in Mechanical Power 	P: UI System						

Use Case Refinement

Legend	Ξ		2 W	/hite	Box														⊡	- 4	H Me	asu
↗ Refine		ġ.	. 🛅	2 Fu	uncti	onal	Ana	Ξ	· 🛅	3 Lo	gica	l Arc	hite	cture	e					Ġ		10E
, 기 Refine (Implied)			면 Cool	🗘 Heat	C Prepare System	🔂 Reach Required Temperatur	🔁 Transfer Data		Ġ.	alir 🛁 🦷	1 In Energy	ofi Ofi	Ġ	Control System	Cooling System	Heating System	UI System	Climate Control Unit			M /Sound Level : dBA	m /Total Mass : mass[kilogram]
🖃 💼 1 System Requirements			2	2	2	2	1			2	1	1		2	4	4	2	4			1	1
⊡. R SR-1 VCC System Requirements Specification																						
F SR-1.1 Automatic Temperature Control	8	4	7	7	7	7		4	1	7			2		2	2		2				
🖪 SR-1.2 Manual Temperature Control	8	4	7	7	7	7		4	1	7			2		2	2		2				
SR-1.3 Temperature Display	7	1					7	6	1			7	4	2	2	2	2	2				
P SR-1.5 Sound Level																			1		7	
Ph SR-1.6 Total Mass																			1			7
SR-1.7 Engine Use	6							6	1		7		4	\mathbb{Z}^{n}	27	2	\mathbb{Z}^{n}	$\mathcal{P}^{\mathbf{n}}$				

Requirement to Design Trace

Legend	D -	· 🗀	1 S)	/ster	m Re	equir	eme	nts
	I	Ġ.	R	SR-	1 VC	C S	/ster	m Re
			F SR-1.1 Automatic Temperature Control	E SR-1.2 Manual Temperature Control	SR-1.3 Temperature Display	P SR-1.5 Sound Level	Ph SR-1.6 Total Mass	Ph SR-1.7 Engine Use
UCCS Configuration [3 System Structure]			9	9	2	1	3	1
P : Control System Design	2		~	~				
P : Cooling System Design	2		~	~				
P : Heating System Design	2		~	~				-
P : Sensors System Design	2		~	~				
C : Total Mass	1						~	
… P : UI System Design	1				~			
···· m /soundLevel : dBA	1					~		
···· [m] /totalMass : mass[kilogram]	1						~	
] in p1 : iHeat	2		~	~				
in p2 : iElectricity	3		~	~	~			
in p3 : iMechanical Power	3		~	~				\sim
···· V mass : mass[kilogram]	1						~	
	2		~	~				
			_					

NASA MODEL BASED SYSTEMS ENGINEERING

...

Legend	.	. 🛅	1 St	akeł	nolde	er Ne
↗ Refine		ġ.	R	SN-	1 Us	er N
			SN-1.1 Setting Temperature	SN-1.2 Heat and Cool Modes	R SN-1.3 Noise Level	R SN-1,4 Climate Control Mass
🖽 🛅 2 Functional Analysis			4	2		
	1			7		
🔁 Display Data	1		7			
	1			7		
	1		7			
	1		7			
	1		7			
					1	1
白. 🔜 MoEs Holder					1	1
m /Sound Level : dBA	1				7	
[m] /Total Mass : mass[kilogram]	1					

Mass Roll Up

NASA MODEL BASED SYSTEMS ENGINEERING

• •• •• •

Mass Rollup Requirement Verification

Name	Value
ECLSS_H2_Technology_Demonstration_System {totalMass <= 500.0}	ECLSS_H2_Technology_Demonstration_System@3839f730
mass : Real [1]	0.0000
···· 🔽 /totalMass : Real	501.0000
Gas Manifold {subsets subMass} {totalMass <= 500.0}	Gas Manifold@411c1368
Manual Flow Valve {subsets subMass} {totalMass <= 500.0}	Manual Flow Valve@7884afa3
🔽 mass : Real [1]	0.0000
	250.0000
	total@275f742e
Flow Meter {subsets subMass} {totalMass <= 500.0}	Flow Meter@65097727
···· V mass : Real [1]	251.0000
	251.0000
	total@4f681329
Pressure Relief Valve {subsets subMass} {totalMass <= 500.0}	Pressure Relief Valve@43f893e1
■ P : A/D Conv, PCDU {subsets subMass} {totalMass <= 500.0}	A/D Conv, PCDU@7a84d3cf
Heater Zone 1 {subsets subMass} {totalMass <= 500.0}	Heater Zone 1@4af8ca6a
Heater Zone 2 {subsets subMass} {totalMass <= 500.0}	Heater Zone 2@7cc944f4
Sensor Elec. {subsets subMass} {totalMass <= 500.0}	Sensor Elec.@6ccf0733
	Sensor Elec.@418c082c
Sensor Elec. {subsets subMass} {totalMass <= 500.0}	Sensor Elec.@115c7c55
: Sensor Elec. {subsets subMass} {totalMass <= 500.0}	Sensor Elec.@b3c1d54

NASA MODEL BASED SYSTEMS ENGINEERING

.....

· · · · · · ·

Views and Viewpoints

HTML Document Generation

ECLSS Concept of Operations

Table of Contents

- <u>1. TOC</u>
- <u>2. Project Goal</u>

••••

<u>3. Scope</u>

List of Figures

• 2.1. Project Goal

Chapter 1. ECLSS H2 ConOps

Chapter 2. Project Goal

NASA MODEL BASED SYSTEMS ENGINEERING

· · · + ·

MBMA Integration

NASA MODEL BASED SYSTEMS ENGINEERING

· · · · ·

• • • + •

MBMA Pathfinding

Pathfinding approach with MagicDraw Plugin Cameo Safety and Reliability

NASA MODEL BASED SYSTEMS ENGINEERING

· . · · . .+

• •• +•

NASA Future MBSE Work

- Pilot Patterns for deploying a Scalable Architecture
- Develop Profile (and patterns) for generating a complete set of tailorable 7123 products, artifacts and views
- >Explore end verification and validation approaches.
- Research Configuration and Data Management approaches.
- Further investigation into PLM tools for complete Digital Thread
- Pilot Patterns for implementing S&MA Comprehensive Project Risk Management
- Exploring Teamwork Cloud Environment centered around Cameo Collaboration

CLM Takeaways Using MBSE

Improved Communications

- Graphical elements
- Consistent definitions
- Collaborative infrastructure
- Authoritative data

Managing a Complex System

- View multiple perspectives
- Analyze change impacts
- Evaluate system for consistency, accuracy, and completeness
- Simulate the functionality of the system
- Integrate with other disciplines

e data

Enhanced Knowledge Transfer

- Store models and model elements in a library
- Reduced start-up time
- Consistent information between projects and between project lifecycle phases
- Iterative and multi-level modeling

 Reduced Time
 Reduced Cost
 Reduced Risk
 but...Requires upfront investment

Any Questions or go backs?

* Details can be found in backup charts

MBSE Trace to NPR 7123 17 SE Processes

